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Abstract
The low capacity of main memory has become a critical issue in the performance of systems. Several memory schemes,

utilizing multiple classes of memory devices, are used to mitigate the problem; hiding the small capacity by placing data in

proper memory devices based on the hotness of the data. Memory tracers can provide such hotness information, but

existing tracing tools incur extremely high overhead and the overhead increases as the problem size of a workload grows.

In this paper, we propose Daptrace built for tracing memory access with bounded and light overhead. The two main

techniques, region-based sampling and adaptive region construction, are utilized to maintain a low overhead regardless of

the program size. For evaluation, we trace a wide range of 20 workloads and compared with baseline. The results show that

Daptrace has a very small amount of runtime overhead and storage space overhead (1.95% and 5.38 MB on average) while

maintaining the tracing quality regardless of the working set size of a workload. Also, a case study on out-of-core memory

management exhibits a high potential of Daptrace for optimal data management. From the evaluation results, we can

conclude that Daptrace shows great performance on identifying hot memory objects.

Keywords Memory tracing � Hot data identification � Performance � Optimization � Memory management

1 Introduction

Modern computing workloads are characterized by huge

working sets and low localities [1–3]. However, the growth

rate of memory devices such as DRAM has not followed

this trend, and it is evident in the number of data centers

and servers that suffer from a lack of memory these days.

Moreover, as the evolution of CPUs leads to an increasing

number of cores in a system, the size of memory that a

single CPU core can utilize decreases [4]. Thus, main

memory is becoming the bottleneck of system

performance.

To overcome the low memory capacity, alternatives

such as heterogeneous memory are used. They utilize two

or more types of memory: small high-performance memory

and large low-performance memory. Also, modern high-

end storage devices such as a solid-state drive and phase

change memory [5] reveal the opportunity for out-of-core

management. These alternatives give an illusion of large

high-performance memory by keeping the hot data in fast

memory. However, it is hard to provide the illusion without

proper data management, and the identification of the hot

objects in a workload plays an important role in this case.

One may trace the memory accesses of a workload for

hot object identification. Unfortunately, however, it would

take a large amount of time, because memory tracing

commonly incurs excessively high overheads. For exam-

ple, a popular memory tracing tool [6] results in a 1000 9

slowdown of workloads [7]. Moreover, an extremely large

amount of trace data is generated by this technique. The

main reason for these high overheads is that these kinds of

tools exploit workload instrumentation technique, which

provides rich information for various fields such as per-

formance modeling [8] and bug detection [9]. However,

the rich information is too excessive for checking the

hotness of data objects; we do not have to pay a large

amount of tracing cost to gather such information.
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Fortunately, a large portion of the high overheads can be

alleviated by access bit tracking technique. The technique

does not directly interfere with the execution of a program,

unlike the workload instrumentation technique. Neverthe-

less, because the technique fundamentally tracks accesses

by checking whether each page of a program is accessed,

the tracing overhead increases as program size grows. The

problem becomes worse when tracing modern workloads

that have extremely large working sets [1]. Moreover, the

tracing quality may degrade as the number of pages to be

tracked increases.

Thus, this paper presents Daptrace; a lightweight

memory access tracer for the identification of hot objects

that has low overhead regardless of program size. To keep

the overhead in a range, it exploits the access bit tracking

technique with a spatial sampling technique. The sampling

technique makes it possible to draw the overall memory

access of a program by inspecting a small number of

accesses. Also, Daptrace can even be applied to workloads

already running on a system because it does not require any

workload modification.

We trace a wide range of workloads with Daptrace:

high-performance computing, machine learning, and sci-

entific computing workloads. Results show that Daptrace

incurs only 1.95% runtime overhead for tracing while

keeping the tracing quality to provide the hotness infor-

mation. Only a small amount of storage space (5.38 MB on

average) is occupied for recording the trace data. We also

trace the workloads without the sampling technique, and

we observe that the sampling technique reduces the run-

time overhead by 14.2 9. In addition, we conduct a case

study on out-of-core memory management using Daptrace.

We optimize 9 workloads according to the data access

pattern of workloads, and performance improvement of

1.58 9 is achieved under high memory pressure. The

experimental result exhibits the high potential of Daptrace,

that Daptrace can be effective for such optimized data

management.

The rest of this paper is organized as follows: Sect. 2

provides a background of memory access tracing; Sect. 3

introduces the Daptrace with its design in detail; Sect. 4

shows the evaluation of Daptrace with a wide range of

workloads and studies its example use case; Sect. 5 dis-

cusses past works related to this paper and Sect. 6 con-

cludes this paper.

2 Background

Memory access tracing tools provide a variety of infor-

mation on memory accesses, including the hotness of

memory areas. They can be classified into two categories

based on the core techniques: workload instrumentation

and access bit tracking.

2.1 Workload instrumentation

Workload instrumentation is a widespread memory access

tracing technique [6, 10]. It uses compile-time optimiza-

tion [11, 12] or binary reversing scheme [13] to install a

hook in a target workload. When the workload runs, it

executes the hook function before and after every execu-

tion of memory reference instructions (e.g., load and

store), and the hook function records the information of

the memory reference. The information may include the

accessed memory address, type of access, and the value

loaded or written. This technique provides rich information

on every memory access, so it can be applied in various

fields such as correctness check, bug detection and per-

formance optimization. Since the technique hooks every

memory access, however, it inherently takes a large

amount of time for tracing. Worse yet, to record the

information of every memory access, extremely large

storage space is needed.

We trace a realistic workload [14] with a popular

instrumentation-based memory access monitoring tool [6]

to show the overhead. The workload has a working set of a

few hundred megabytes and takes 10 min to complete. The

execution time exceeds 24 h with tracing and the size of the

trace result is larger than 500 GB. It is not even able to

finish the tracing; the trace result requires more storage

space than available in our experiment.

2.2 Access bit tracking

Access bit tracking is a technique that is widely used for

memory access monitoring [15, 16]. It exploits the Ac-

cessed bit in a page table entry, which shows whether the

mapped page has been accessed or not. The bit is set when

the corresponding mapping is used for address translation

during a translation lookaside buffer (TLB) walk or a page

table walk. The bit can be cleared by the software, there-

fore, it is possible to track memory accesses by periodically

clearing and checking the bit. Unlike the workload

instrumentation technique, this technique does not gather

information such as access type, the value loaded or writ-

ten, or fine-grained memory address accessed. This tech-

nique tracks only whether a page is accessed or not. To

trace how frequently a page is accessed, it requires a brief

period of monitoring.

Since this technique does not directly interfere with the

execution of a program, it incurs a smaller overhead

compared to the instrumentation technique. Nevertheless,

as the program utilizes more memory, the overhead

becomes higher and the tracing quality degrades sharply
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because it requires a longer time to monitor whole pages

which leads to infrequent access monitoring. Thus, it is

challenging to maintain tracing quality with various kinds

of workloads.

3 Daptrace: a lightweight memory tracer

3.1 An example of a memory trace

Figure 1 shows an example of a memory access trace of a

workload. The workload has three objects mapped on the

virtual address space: 0x00-0x4f, 0x50-0x9f and

0xa0-0xff. The first and third objects are frequently

accessed during the first 5 s. In other words, those two

regions are hot for 5 s at the start. Immediately after, the

three regions are accessed equally for 5 s. The workload

then runs for another 5 s before it finishes, and the second

object is frequently accessed during this period. From now

on, we use the term ‘‘access frequency’’ as ‘‘observed

access frequency’’.

3.2 Overall workflow

Fundamentally, Daptrace exploits access bit tracking

technique due to its low overhead. In addition, to deal with

workloads with various sizes, Daptrace uses a spatial

sampling method to bound the overhead of tracing, which

we call region-based sampling. The region-based sampling

is described in the Sect. 3.3 in detail.

The overall workflow of the Daptrace can be described

as a loop that repeatedly monitors accesses and aggregates

monitoring results with different periods. A simplified

pseudo-code for the workflow is illustrated by Listing 1.

The loop iterates until a target workload finishes execution

or a user explicitly stops the tracing (line 1). In each iter-

ation of the loop, it is first checked whether each memory

region has been accessed since the last check (lines 3–4). If

a region is accessed, an access counter corresponding to the

region is incremented. Subsequently, Daptrace checks if

the time spent has passed aggregation interval (lines 7–8).

If it has, Daptrace aggregates the monitoring result, resets

access counters, and adjusts memory regions for the next

aggregation (lines 9–11). The adjustment is called adaptive

region construction, and it is illustrated in Sect. 3.4 in

detail. Before continuing the next iteration of the loop,

Daptrace waits for a short period to ensure monitoring

interval is passed until the next monitoring (lines 16–18).

1 while ( ! need stop ( ) ) {
2 /∗ access monitoring ∗/
3 f o r e a c h r e g i o n ( r , r l i s t )
4 che ck ac c e s s ( r ) ;
5
6 /∗ reg ion adjustment ∗/
7 i f (now( ) − l a s t a g g r
8 >= agg r i n t e r v a l ) {
9 merge reg ions ( r l i s t ) ;

10 a g g r e g a t e r e s u l t s ( r l i s t ) ;
11 s p l i t r e g i o n s ( r l i s t ) ;
12 l a s t a g g r = now ( ) ;
13 }
14
15 /∗ wait u n t i l the next monitoring ∗/
16 while (now( ) − l a s t mon i t o r
17 < mon i t o r i n t e r va l )
18 y i e l d cpu ( ) ;
19 l a s t mon i t o r = now ( ) ;
20 }

Listing 1 The main loop of the data access pattern tracing.

3.3 Region-based memory access sampling

Access bit tracking technique incurs significantly less

overhead for memory access tracing, compared to the

workload instrumentation technique. Daptrace uses this

technique, but it has an inherent problem. The overhead

and tracing quality can become worse as the working set of

a workload grows.

Daptrace solves the problem with a spatial sampling

method. Instead of monitoring all the pages, it monitors

only a small portion of pages, each representing a contin-

uous memory region. If Daptrace observes that a page is

accessed, it considers that the whole region represented by

the page is accessed. This indicates that a memory region

should be constructed with pages having similar access

frequency.

We might construct the regions by memory allocation

information, which is a widely used scheme for the iden-

tification of data objects [3, 10, 17]. In this scheme, each

memory region allocated with allocation operations such as

the malloc() library function is identified as an object.

This scheme works well if an object is accessed uniformly.

However, programs do not always access allocated objects

in a uniform manner, and there are programs, even, that

divide an allocated region into small objects or compose an

object with small allocated regions. The latter type of

programs is common and even encouraged for better per-

formance [18] and reusability [19]. Thus, it is not a good

idea to construct the memory regions in an allocation-
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Fig. 1 An example data access pattern
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oriented manner. Instead, we use an adaptive method to

construct the memory regions; Daptrace tries to find out the

best arrangement of memory regions at runtime. The trace

information is used for the adaptive construction. Sec-

tion 3.4 explains how Daptrace constructs the regions

adaptively.

The region-based memory access sampling is defined by

the check_access() function called in the main loop

in Listing 1. A simplified pseudo-code for the function is in

Listing 2. It first checks whether a region has a sampled

page or not (line 2). If so, it checks the access bit of the

sampled page and updates the access counter of the region

(lines 4–5). Otherwise, which is the case for regions just

created, it skips the access check. Next, it randomly sam-

ples a page in the region (line 7) and clears the access bit

for the page (line 8).

1 void che ck ac c e s s ( r eg i on ∗ r ) {
2 i f ( ! r−>sampled page )
3 goto next ;
4 i f ( acce s s ed ( r−>sampled page ) )
5 r−>n r a c c e s s e s++;
6 next :
7 r−>sampled page = rand pick ( r−>pages ) ;
8 c l e a r a c c e s s e d ( r−>sampled page ) ;
9 }

Listing 2 The region based sampling of memory accesses.

This sampling technique assumes each region is con-

structed properly as mentioned above. If the memory

regions are poorly constructed, Daptrace fails to generate

accurate trace results. To construct the memory regions

properly, we utilize an adaptive region construction

scheme, which is described in the following section.

3.4 Adaptive construction of memory regions

Daptrace requires two conditions to meet with construction

of memory regions. First, pages in a region should have

similar access frequencies; which makes sampling-based

access monitoring possible. Second, the number of memory

regions must not exceed max_nr_regions, which helps

limit tracing overheads. To satisfy these conditions, Dap-

trace exploits an adaptive region construction algorithm,

which is similar to the random forest algorithm [20].

At the initialization step, Daptrace splits a virtual

address space into min_nr_regions regions. However, it is

not a good idea to use the entire address space, because a

virtual address space is usually fragmented and only its

portion is utilized. Figure 2 illustrates a general virtual

address space. The code and heap sections are placed in the

low address, while the stack section lies in the high

address. The mmaped section, which includes file-backed

pages and anonymous pages, is located in the middle

address. One can observe that there are two large gaps

adjacent to the mmaped section. Thus, we construct three

regions; one with the code and the heap sections, another

with the mmaped section, and the other with the stack

section. Then, the Daptrace splits the middle region to

make sure that min_nr_regions regions are constructed

before starting the main loop in Fig. 1.

After the initialization, the Daptrace starts tracing

memory accesses. It counts accesses to each region

repeatedly during each aggregation interval. When the time

exceeds the interval, it first compares each region with

adjacent regions and merges them if they have similar

access frequencies in merge_regions(). The weighted

average of access counts of the two regions becomes the

access count of the merged region. After that, Daptrace

records the counts and resets the counters in aggre-

gate_results(). Then, each region is split into two

regions with a random ratio in split_regions().

When these steps are done, each region has access count of

zero which means it is ready for the next aggregation

interval.

The random ratio split makes it possible to construct

regions properly with sampling-based access monitoring,

even the accesses are focused on small memory areas. Such

adjustment is performed during each aggregation. During

the adjustment, the number of regions is kept in between

min_nr_regions and max_nr_regions. The max_nr_regions

makes Daptrace have an upper-bounded overhead, and the

min_nr_regions helps Daptrace follow the change of data

access pattern of a program quickly.

[code]

[heap]

[mmaped]

[stack]

Large gap

Large gap

Top region

Middle region

Bottom region

Fig. 2 A general memory address space
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Figure 3 shows an example of this process. Two gaps

are not illustrated for simplicity. In the example, there is a

small object accessed frequently (depicted as a black box)

and two objects accessed less frequently (depicted as two

gray boxes). In the first row, there are two regions that are

not yet well constructed. After splitting both regions, four

regions now exist. Another aggregation interval has passed,

the regions are checked to be merged. Daptrace observes

similar access frequencies for the three regions on the left.

However, it observes a higher access frequency for the

rightmost region due to the small hot object. Thus, only the

three regions in the left are merged. After a cycle of

splitting and merging, the regions are constructed properly

as shown in the fifth row.

As the proper regions are constructed as time passes, the

virtual address space also changes. The major cause of the

change is the dynamic allocation or deallocation of mem-

ory objects. Whether the regions are constructed properly

or not, they depend on the initial regions constructed at the

initialization step, which might be outdated. Thus, Dap-

trace updates the regions with update interval.

To show how Daptrace actually adjusts regions, we

conducted an experiment with an example program by

tracing the program using Daptrace. The example program

allocates eight memory objects with the same size and

accesses the objects one by one in ascending order. Thus,

Fig. 4a would be the actual data access pattern of the

program. Figure 4b is the trace result that Daptrace gen-

erates by tracing the program. From the figure, we can see

that accesses are observed not accurately at the start of

access to each object. This is due to the change of access

phase which leads to the reconstruction of regions. As

shown in Fig. 3, a few merge/split steps are needed to find

the proper region boundaries. However, we observe that

Daptrace quickly adapts to the phase change so only a

small amount of error occurs from the reconstruction. Once

after regions are properly constructed, they keep the

boundaries that separate hot memory objects from cold

memory objects. This is because the hot regions are not

likely to be merged with adjacent cold regions due to the

difference of access frequencies observed.

In short, Daptrace constructs proper regions with an

adaptive algorithm, which splits and selectively merges

regions repeatedly. The number of regions is maintained in

a range to limit the tracing overhead. However, because the

result of a split is random, it might take a long time to

construct proper regions. This is discussed with evaluations

in the next section.

4 Evaluation

In this section, we evaluate the accuracy and overhead of

Daptrace. To measure the accuracy, we compare the traces

from Daptrace with baseline traces, which are extracted by

general access bit tracking technique without sampling

method, described in Sect. 2.2. In the case of overhead, we

measure the size of trace results and the tracing time of

Daptrace and the baseline. In addition, we conduct a case

study on out-of-core memory management to show the

effectiveness of Daptrace in such areas that require iden-

tification of data hotness.

4.1 Evaluation setup

System configuration The machine we used for evaluations

has an Intel Xeon E7-8837 processor and 128 GB of

DRAM as the main memory. It utilizes an Intel Optane

SSD as a fast swap device, and has the Ubuntu 18.04 LTS

Server, with the Linux kernel v5.0 installed.

Workloads We chose 20 realistic workloads in wide

areas including high-performance supercomputing,

Fig. 3 An example of the adaptive region construction
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Fig. 4 An actual data access pattern of an example program (a) and
the trace of the program (b). The example program has eight memory

objects and accesses the objects in ascending order

Cluster Computing

123

Author's personal copy



machine learning, and scientific computing. The workloads

include 429.mcf, 433.milc, 458.sjeng, 462.libquantum and

470.lbm in SPEC CPU 2006 benchmark (SPEC); bt, cg, ep

and sp in NAS parallel benchmarks (NAS); ferret, vips,

9 264, streamcluster and freqmine in PARSEC benchmark

suite (PARSEC); water_nsquared, fft, volrend, lu_ncb and

raytrace in SPLASH-2x benchmarks (SPLASH); finally, a

Tensorflow benchmark for training the CIFAR-10 dataset

classification [21, 22].

We used input types of test, train and ref in SPEC CPU

2006 benchmark; A, B and C in NAS parallel benchmarks;

simmedium, simlarge and native in both PARSEC bench-

mark suite and SPLASH-2x benchmarks. We classified the

input types into three classes by the size: class A, B and C.

Class A consists of the smallest input types, class B con-

sists of medium-size input types, and class C consists of the

largest input types in the benchmarks. Table 1 shows the

classification of the input types. The class C input types are

used in Sect. 4.2, and the class A, B and C input types are

used in Sect. 4.3.

Implementation of Daptrace We implemented Daptrace

as a loadable kernel module on the Linux kernel v5.0. The

module creates a tracer thread that runs in parallel with the

target workload. Some userspace tools were developed for

visualization and investigation of Daptrace results.

Daptrace has three parameters that control the interval

of the access monitoring, aggregation of monitoring results

and update of regions: monitoring interval, aggregation

interval and update interval. Also, it has two parameters

that bound the number of regions: min_nr_regions and

max_nr_regions. To utilize meaningful access information,

the monitoring interval should be much smaller than the

aggregation interval. Additionally, the monitoring interval

should be larger than the time required for monitoring the

max_nr_regions regions. If the aggregation interval is too

large, it loses the ability to follow the dynamic access

pattern of workloads quickly. The update interval can be

relatively large because most memory allocations occur at

the start of a workload and the virtual address space

changes less frequently during runtime. The max_nr_re-

gions should be small to avoid high overhead under any

circumstances. The min_nr_regions, however, has a rela-

tively minor effect on the overhead, it should have a proper

value to help Daptrace follow the change of a program

behavior quickly. The values were chosen empirically with

experiments considering these conditions, which are listed

in Table 2.

4.2 Accuracy of daptrace

To evaluate the accuracy of Daptrace, we applied it to the

selected 20 workloads and compared the results to those of

baseline. We extracted the baseline traces of the workloads

using a general access bit tracking technique. It shares the

same internal structures with Daptrace; the only difference

is that it does not utilize a sampling technique, so it

monitors every page periodically. To reduce the size of the

trace result, the baseline tracer divides virtual memory

space into 1000 regions uniformly, except two large gaps

depicted in Fig. 2, and aggregates the per-page statistics

into per-region statistics. The parameters in Table 2 are

also applied to the baseline tracer.

Figures 5 and 6 show the results of Daptrace and the

baseline. Two traces are shown per workloads: one from

Daptrace on the left and baseline trace on the right. In each

trace, the x-axis represents time and the y-axis represents

the virtual memory space of a workload. Memory areas are

allocated discontinuously in the virtual memory space as

depicted in Fig. 2, thus the two large gaps in the space were

omitted and discontinuous areas are separated by two

horizontal lines. The bar on the right side shows the

mapping between access frequency (number of accesses

per second) and darkness. The darker area indicates a

higher access frequency to the area in each plot. Note that

the access frequency is not very accurate in the baseline;

the baseline shows the access differences between objects,

but the access frequency becomes inaccurate as the mem-

ory size of a program grows, unlike Daptrace. For instance,

the virtual memory size of fft (Fig. 6f) is approximately 12

GB, and the access frequency observed is even lower than

that of Daptrace because a single monitoring time exceeds

the monitoring interval (1 ms), which results in infrequent

monitoring. However, it is enough to see which objects are

hot and cold, thus we discuss the accuracy of Daptrace

based on the baseline.

Table 1 Classification of input types by size

Benchmark Class A Class B Class C

SPEC Test Train Ref

NAS A B C

PARSEC Simmedium Simlarge Native

SPLASH Simmedium Simlarge Native

Table 2 Values of parameters
Parameter Value

Monitoring interval 1 ms

Aggregation interval 100 ms

Update interval 1000 ms

Min_nr_regions 10

Max_nr_regions 1000

Cluster Computing

123

Author's personal copy



From Figs. 5 and 6, we can see that Daptrace is capable

of identifying consistently hot memory areas. It may appear

that hot areas are not properly identified in three cases: bt

(Fig. 5f), cg (Fig. 5g) and sp (Fig. 5i). In these cases, some

areas are not distinguished clearly. However, their access

frequencies are less than 10 per second, which means that

7
V

irt
ua

l a
dd

re
ss

 sp
ac

e

(a) 429.mcf

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(b) 433.milc

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(c) 462.libquantum
V

irt
ua

l a
dd

re
ss

 sp
ac

e
(d) 458.sjeng

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(e) 470.lbm

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(f) bt

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(g) cg

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(h) ep

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(i) sp

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(j) ferret

Fig. 5 Visualized trace of workloads
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they are not hot areas. In the case of temporally hot areas,

Daptrace also performs mostly well at identifying those

areas. 433.milc (Fig. 5b), water_nsquared (Fig. 6e) and

raytrace (Fig. 6i) show such cases. It is easy to see that hot

areas in the three workloads change dynamically with

unique patterns. The access patterns in x 264 (Fig. 6b) are

also tracked well overall, but the pattern becomes a little

blurred during an interval when the memory access

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(a) vips

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(b) x264

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(c) streamcluster

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(d) freqmine

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(e) water nsquared

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(f) fft

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(g) volrend

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(h) lu ncb

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(i) raytrace

V
irt

ua
l a

dd
re

ss
 sp

ac
e

(j) tensorflow

Fig. 6 Visualized trace of workloads. (cont.)
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frequency is low. freqmine (Fig. 6d) and lu_ncb (Fig. 6h)

also show dynamic access patterns, but they are slightly

ambiguous due to relatively low access frequencies. Sim-

ilarly, fft (Fig. 6f) shows three blurry hot areas for the same

reason.

The trace results give another insight into Daptrace. In

freqmine (Fig. 6d) and lu_ncb (Fig. 6h), we can see that

Daptrace follows the change of access patterns quite

properly. On the other hand, in fft (Fig. 6f), Daptrace fails

to follow the sequential access pattern. The main reason fft

is not properly tracked is that only a small area is hot at

every moment and the area changes too rapidly, consid-

ering the virtual memory size of fft. From this observation,

we can see that Daptrace follows dynamic access patterns

with modest changes, and it does not follow rapidly

changing access patterns. Nevertheless, such an access

pattern is far from being a hot object. In fact, it is a

memory-polluting access pattern. Thus, it would be rather

wrong to identify such memory areas as hot.

In short, Daptrace properly identifies consistently hot

memory areas and tracks dynamic access patterns as well.

However, it does not identify rapid access patterns such as

polluting access patterns. Moreover, Daptrace shows

higher accuracy for frequently accessed areas, and we

observe that the result is mostly accurate if access fre-

quency is above 30.

4.3 Tracing overhead

We measured the runtime overhead and space overhead of

Daptrace and compared the overheads with the baseline.

Trace data visualized in Fig. 5 are used for the evaluation.

4.3.1 Runtime overhead

Figure 7 shows the runtime overhead of Daptrace and the

baseline. Daptrace incurred only a small amount of over-

head except for two cases: 458.sjeng and streamcluster.

458.sjeng and streamcluster showed an overhead of 7.97%

and 20.0% respectively due to their cache sensitivity.

Cache hit ratio decreased by 10.5% and 23.7% in 458.sjeng

and streamcluster, respectively; the ratio decreased by only

0.28% in the other workloads. Nevertheless, the overhead

of Daptrace is 1.95% on average, and it is 0.71% except for

the two cases.

On the other hand, the overhead of the baseline is

89.5%, and it varies according to workload, Note that

programs with large virtual memory do not always indicate

large overheads. Indeed, the virtual memory size affects the

quality of tracing rather than runtime overhead when the

virtual memory size reaches a certain point. For example,

fft shows relatively low runtime overhead, but the huge

virtual memory size results in infrequent access monitor-

ing, which makes access frequency observed even smaller

than Daptrace. Nevertheless, the average overhead of the

baseline is 27.7%, which is 14.2 9 larger than Daptrace.

Figure 8 shows the overhead sensitivity to the size of

workloads. We measured the runtime overhead of Daptrace

by workload input type. The memory size of each workload

by input type is specified in Fig. 3. The runtime overhead

of each workload is maintained low except streamcluster.

The overhead of streamcluster of input classes A, B and C

are -3.4%, -0.7% and 20.0%, respectively. As mentioned

before, streamcluster shows higher overhead due to its

cache sensitivity. The average overheads of Daptrace with

input classes A, B and C are 1.7%, 1.6% and 2.7%,

respectively; they are 1.9%, 1.7% and 1.8% without

streamcluster. Note that the average memory sizes of

workloads with input classes A, B and C are 85 MiB, 128

MiB and 364 MiB, respectively. This shows that the run-

time overhead of Daptrace is controlled low even with the

large workload sizes.

4.3.2 Space overhead

In the context of space overhead, there are two meanings:

memory space consumed during tracing and storage space

required to store the trace result. Since it is difficult to

measure the runtime memory usage of kernel modules, we

focus on how much memory is required for core internal

structures.

Both Daptrace and the baseline use the same structure

for tracing. They use a result buffer of size 4 MB to avoid

Fig. 7 Runtime overhead comparison. Class C input types are used
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frequent writing and use per-region structures of size 44 B

each to maintain the statistics of regions. Thus, both con-

sume at most 4.044 MB of memory space for tracing. Other

memory consumptions such as kernel APIs, page caches

are not covered in here.

On the contrary, Daptrace and the baseline show dif-

ferent storage space overhead. Figure 9 shows such over-

head. In both cases, the trace size increases as the runtime

of a workload increases. However, the overhead of the

baseline is 98.4 9 larger at maximum (sp), 1.87 9 larger at

minimum (volrend), and 20.6 9 larger on average. The

average overhead of Daptrace and the baseline are 5.38

MB and 111.24 MB, respectively.

4.4 Case study: out-of-core memory
management

Out-of-core memory management is one of the schemes

that make it possible to process data larger than main

memory. Least recently used (LRU) scheme is widely used

for the management, however, it does not always provide

optimal performance. To show how useful Daptrace is in

this case, we optimized various workloads using Daptrace

for optimal out-of-core memory management, and we

compared the runtime with original workloads.

9 workloads are chosen out of the 20 workloads we

traced: 433.milc, 462.libquantum, 470.lbm, cg, sp, ferret,

water_nsquared, fft and volrend. We simulate memory

pressure simulation using cgroups [23]. The available

memory was set to 70% of the working set size of a

workload, which is a realistic case in cloud services where

memory overcommitment of 1.5 9 is recommended [24].

In this situation, we manually lock hot memory areas in the

main memory using mlock() system call [25]. If it is not

Fig. 8 Runtime overhead sensitivity to workload size

Fig. 9 Storage overhead comparison. Class C input types are used

Table 3 Memory size of workloads by input class. We used virtual

memory size averaged by time as memory size

Workload Class A Class B Class C

(MiB) (MiB) (MiB)

429.mcf 104 261 1680

433.milc 16 92 667

458.sjeng 179 179 179

462.libquantum 8 9 72

470.lbm 417 417 417

bt 428 727 1888

cg 277 752 1429

ep 313 326 329

sp 408 654 1606

Ferret 463 492 532

Freqmine 55 89 580

Streamcluster 91 98 200

Vips 112 112 144

9 264 22 22 93

fft 202 779 12,299

lu_ncb 18 42 510

Raytrace 51 51 51

Volrend 16 17 53

Water_nsquared 15 19 38

Geomean 85 128 364
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possible to lock the entire hot memory area, we lock only a

portion of the hot memory area. Locked areas in each

workload are explained in Table 4.

Figure 10 shows the performance improvement of

optimized workloads. Under memory pressure, the speedup

varies by workloads from 1.08 9 (sp) to 2.55 9 (cg) and

shows 1.58 9 on average. We also measure the overhead

of optimization under no memory pressure (Fig. 11). The

overhead is 7.2% (ferret) at maximum and 0.9% on

average.

This overhead and performance improvement show high

potential for the application of Daptrace in out-of-core

memory management; such high speedup is obtained by

locking only some hot areas in memory statically during

runtime. We expect that more speedups can be achieved

with dynamic memory management using Daptrace. Sim-

ilar cases such as heterogeneous memory are considered

beneficiaries of Daptrace as well.

5 Related works

The high overhead of memory tracing is a critical issue in a

wide range of fields such as profiling and development,

thus it has been considered an important problem to reduce

the overhead.

Spindle [7] has efficiently reduced the overhead incur-

red during instrumentation-based memory access tracing,

using the static analysis of a workload that extracts pre-

dictable memory access patterns. The predictable patterns

are exploited during dynamic analysis to reduce the num-

ber of instrumentation points. Compared to a well-known

instrumentation-based tool, Pin [6], Spindle achieves 61 9

speedup on average. However, the need for compile-time

analysis limits its range of applications. memTrace [26] is

also a memory tracer, and it targets a lightweight tracing of

9 86 workloads. It focuses on the mismatch where a large

portion of 9 86 workloads is running on 64-bit processors,

which results in a surplus of hardware registers. The tracer

utilizes these registers for tracing 9 86 workloads with

runtime cross-ISA translation and achieves a low tracing

overhead, 1.97 9 on average. The work has a clear limi-

tation in that it can only be applied to 9 86 applications

running on 9 64 processors, but it is quite impressive to

get help from hardware with no additional hardware sup-

port. These two works show relatively small overheads,

however, the overheads are still easily observed because

they interfere with the execution of workloads directly.

Xiao et al. [27] have studied page coloring-based cache

management, with a memory tracing technique based on

access bit tracking. Their cache management scheme col-

ors hot pages identified by memory tracing. Because full-

page access bit tracking incurs high overhead, it exploits

spatial locality to reduce the number of pages to track.

Their sampling-based tracking technique induces over-

heads of 7.1% with 10 ms sampling interval and 1.9% with

Fig. 10 Performance of workloads (70% memory)

Fig. 11 Performance of workloads (full memory)

Table 4 Memory areas locked

for optimization
Workload Locked area

433.milc Upper hot area

462.libquantum Half of hot area in the middle

470.lbm Half of whole area

cg Bottom hot area

sp Hottest bottom area and hot area in the middle

Ferret 75% of hot area at the top

Water_nsquared 40% of hot area in the middle

fft Two large hot areas at the top and the middle

Volrend Small hot region at the top and lower portion of warm area in the middle
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100 ms sampling interval. However, their sampling tech-

nique does not guarantee that the number of pages to be

tracked has an upper limit; it can increase as a program size

grows. Moreover, the technique relies on memory access

locality, which means the sampling technique might be

inaccurate with modern computing workloads [1–3].

6 Conclusion

Due to the characteristics of modern computing workloads,

huge working sets and low locality, memory pressure is

becoming more prevalent. On the other hand, the capacity

of memory devices has been growing at a much slower rate

than that of CPU and storage devices. These two trends

have led to main memory becoming the performance bot-

tleneck of a system.

Several memory schemes have been proposed to miti-

gate this problem, which utilize various type of memory

devices to give an illusion of large and fast main memory.

The performance of these schemes relies on how effec-

tively it identifies hot data, which can be obtained from

memory tracing. However, the high overhead of memory

tracing prevents using the tracers.

This paper presents Daptrace, a lightweight memory

tracer which keeps the overhead in a limited range,

regardless of the size of a workload. Our evaluations show

that Daptrace incurs very small overhead (1.95%) and

efficiently identifies hot data in memory. We also con-

ducted a case study on out-of-core memory management,

and Daptrace is observed to have high potential for appli-

cation in such cases.
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