
Profiling Dynamic Data Access Patterns
with Bounded Overhead and Accuracy

SeongJae Park∗, Yunjae Lee†, Yoonhee Kim‡ and Heon Y. Yeom§

∗ † § Department of Computer Science and Engineering, Seoul National University
‡Department of Computer Science, Sookmyung Women’s University

Seoul, South Korea

Email: ∗sj38.park@gmail.com, †yjlee@dcslab.snu.ac.kr, ‡yulan@sookmyung.ac.kr, §yeom@snu.ac.kr

Abstract—One common characteristic of modern workloads
such as cloud, big data, and machine learning is memory inten-
siveness. In detail, such workloads tend to have a huge working
set and low locality. Especially, the size of working sets is rapidly
growing so that cannot be fully accommodated by a DRAM
based main memory. Worse yet, the cloud computing systems,
which has been pervasive since few decades ago, are continuously
reducing the size of DRAM per CPU and encouraging memory
overcommitment. Consequently, efficient and effective out-of-core
memory management is becoming more important.

Though a number of memory management mechanisms for
such situations have proposed, manual analysis and optimization
are still required for optimal performance of each workload due
to the wide variety of data access patterns. However, existing
tools for memory access analysis are not appropriate to be used
here because those are not designed for extraction of the dynamic
data access pattern of modern workloads. When those tools are
used for the purpose, those incur unacceptably high overheads
for unnecessarily accurate analysis results.

To mitigate this situation, we introduce a tool that is designed
for the purpose. Basically, the tool employs a memory access
tracking technique based on page table entry access bit, which
incurs only minimal overhead. It also provides a technique for
an effective tradeoff between profiling overheads and accuracy
of the output by dynamically adjusting number of tracking
regions. By adopting the technique, this tool can control the
level of overheads and output accuracy in bounded range that
user specified regardless of the size of target workloads. The
overhead can be lowered even enough to be used for online target
workloads while still providing useful quality of the extracted
data access pattern.

The main contributions of this paper are: 1) introduce of the
data access patterns profiler tool designed for modern memory-
intensive workloads, and 2) empirical memory access pattern
analysis of various realistic workloads.

Index Terms—data access pattern, memory-intensive work-
loads, profiler, performance, optimization

I. INTRODUCTION

For the last decades, data-intensive workloads including

cloud, big data, and machine learning workloads have widely

spread around the world. Such workloads commonly tend to

have a low locality and a huge working set [8]. In many

cases, those huge working sets are unable to be fully accom-

modated in DRAM-based main memory because the capacity

improvement speed of DRAM devices has been slower than

that of working set size increases. The difference between

tendencies of main memory per CPU ratio on virtual machines

and host physical machines also gives evidence of this trend.

Since a decade ago, the ratio has continuously increased on

virtual machines (indicates an increase of the size of working

sets) while it consistently decreased on physical machines [11]

(indicates a decrease of the DRAM capacity). Furthermore,

cloud providers recommend to overcommit RAM [6].

Fortunately, both the speed and capacity of storage de-

vices have continuously improved for the last decades as

the size of working sets has increased. Nowadays, high-

end storage devices show DRAM-comparable speed [3] and

HDD-comparable capacity [5], though those are still slower

and smaller than DRAMs and HDDs, respectively. These

trends on software and hardware indicate that hierarchical

memory architectures configured with heterogeneous memory

devices (DRAM-based main memory and high-end storage

based auxiliary memory) will be widely adopted in the near

future to solve the capacity problem. Nevertheless, because

such memory devices are still slower than DRAMs, placement

strategy of each data item on each layer memory becomes

important for the performance of given workloads.

Traditionally, locality-based data access pattern specula-

tion mechanisms have been widely used. Least-Recently-Used

(LRU) is one such mechanism most widely adopted and other

improved mechanisms also proposed [7], [9], [10]. However,

such locality-based speculations cannot provide high accuracy

for modern workloads because those workloads normally show

low locality as aforementioned [8]. Especially, such estimation

becomes even harder if the given workload has complex

data access pattern. Thus, knowing data access patterns of

given workloads is essential to make ideal placement decision

because if the patterns are known, systems can place data items

to be frequently used in faster memory devices while placing

items to be rarely used in slower memory devices.

It can be helpful to utilize a memory access monitoring

tool to extract the data access pattern for optimization of

the data placement for such huge and complex workloads.

There are many memory access introspection tools [2], [4],

[13] that could be used for the analysis of the data access

pattern. However, existing memory access introspection tools

focus on general and precise monitoring of every memory

200

2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)

978-1-7281-2406-3/19/$31.00 ©2019 IEEE
DOI 10.1109/FAS-W.2019.00054

access. Their precise and general monitoring outputs can be

used for a wide range of purpose including correctness check,

rather than only data access pattern detection. This precise

and general monitoring incurs overhead which is unnecessary

and even unacceptably high for data access pattern detection.

Because the overhead becomes even higher when it is applied

to the modern workloads having huge working set and high

complexity, such tools cannot be used for lightweight data

access pattern analysis.

Therefore we propose a memory access monitoring tech-

nique that is optimized for fast and accurate data access pattern

tracing. It provides minimal tracing overhead by utilizing page

table entry access bit manipulation based access monitoring

instead of binary instrumentation, which is widely used by

existing tools. One main property of this technique is its

support of tradeoff between quality of the traced output and

the tracing overhead. This is achieved by splitting the entire

address space of given workload into small number of memory

regions and sampling pages in each region instead of fully

monitoring every page. Furthermore, it continuously splits and

merges memory regions so that only useful regions exists

while keeping the number of memory regions in a bounded

range. Owing to this property, our technique can keep the

tracing overhead and the quality of the output in a bounded

range regardless of the size of a given working set.

For evaluation of the technique, we implemented a tool that

traces the data access pattern of given workloads utilizing the

technique and call it “Daptrace”. We apply the tool to a few

realistic workloads and provide visualizations of those tracing

outputs, which clearly shows the data access patterns of those

workloads.

II. DAPTRACE: DATA ACCESS PATTERN TRACER

The main procedure of our data access pattern tracer can

be simplified as a loop which runs while a user wants to keep

tracing. Simplified pseudo code for the loop is illustrated in

Listing 1. Following sections will describe each major parts

in detail.

A. Region-Based Sampling of Memory Accesses

One widely used memory access monitoring technique is

based on the program instrumentation [4]. It hooks every

memory access instruction in a given workload via binary

reverse engineering or source code modification and records

every memory access in the hook while it runs. Though this

technique ensures the precise record of entire accesses so that

could be used for correctness check of each and every access,

it incurs excessively high overhead for time and space. For

example, our evaluation for the adoption of a widely-used

instrumentation based memory access monitoring tool [4] to

a realistic workload [1], which has few hundred megabytes

working set and about 10 minutes runtime, consumed more

than 24 hours of monitoring time and more than 500 gigabytes

of storage space. Because the overhead becomes even greater

as the scale of a given workload grows, it cannot be applied

1 whi le (t a r g e t w o r k l o a d r u n n i n g ()) {
2 f o r e a c h r e g i o n (r) {
3 t r a c k r e g i o n (r) ;
4 i f (l a s t t o u c h e d (r) &&
5 t o u c h e d (r))
6 s p l i t (r) ;
7 n = r−>n e x t
8 i f (l a s t u n t o u c h e d (r) &&
9 un touched (r) &&

10 l a s t u n t o u c h e d (n) &&
11 un touched (n))
12 merge (r , n) ;
13 }
14 i f (now () − l a s t a g g r
15 >= a g g r i n t e r v a l) {
16 e x t r a c t t r a c k () ;
17 l a s t a g g r = now () ;
18 }
19 s l e e p (s a m p l e i n t e r v a l) ;
20 }

Listing 1. Main loop of our data access pattern tracing technique

to modern workloads that commonly equips huge workloads

and complex execution.

Though only instrumentation based monitoring technique

can provide 100% precise tracking of every memory access,

such detailed tracking is not necessary for data access pattern

tracing. Moreover, because we are focusing on accesses to

DRAM and lower layer memory only, memory accesses that

complete with CPU cache rather than touching DRAM are not

needed to be tracked. In other words, instrumentation-based

memory access monitoring incurs unacceptably high overhead

for unnecessarily high-quality output.

Another widely used memory access monitoring technique

relies on page table access bit manipulation. Every page table

entry has additional bits representing the status of corre-

sponding page frame including permissions, present, dirty,

and access. When the CPU accesses a page frame in the

DRAM, it automatically sets the access bit of the page table

entry for the frame. Because the CPU only sets the bit but

never reset, the page table access bit manipulation based

memory access tracking technique periodically checks and

reset the bit for target page frames. Though this technique

cannot track every memory access in detail because of the

page frame sized tracking granularity and miss of accesses

during the check interval, it is sufficiently detailed to extract

the data access pattern of the data-intensive workloads. Also,

it incurs a significantly smaller overhead compared to the

instrumentation-based technique.

That said, the overhead should be still carefully controlled

because the monitoring overhead grows as the number of

pages to be tracked increases. If the number of pages to be

tracked can increase without any limit, the time required for

monitoring can exceed the time for each data access pattern.

Such a situation will result in an output of unacceptably low

quality. Worse yet, if the monitoring occurs too frequently,

monitoring task might interfere with the target workloads so

201

that the performance of the target workload degrades. For

the reason, we divide the address space of given workload

into multiple regions constructed with page frames having

similar access frequencies. Then, we track accesses to each

region by tracking a page inside the region which is randomly

selected, with the access bit manipulation technique. Before

the beginning of the main loop (Listing 1), we randomly select

the page for each region and unset its access bit. After that,

we check the access bit and increment the number of accesses

to the region in the current aggregation interval inside the

update_nr_accesses() function. After that, we again

randomly select a page in the region to be checked at next

sampling and unset its access bit.

In this way, we bound the trace overhead and the quality

of the traced output to an upper limit. Keeping the balance

between the number of regions and the access frequency

similarity of pages in each region is the key. To make the

balance, we dynamically merge and split regions as described

in the following section.

B. Dynamic Identification of Effective Memory Regions

We guarantee the monitoring overhead and quality of traced

results to be in a bounded range by keeping the number

of regions in a bounded range while also maintaining each

region to be constructed with page frames with similar access

frequencies. For this, we continuously split and merge regions

(lines 4–12 of Listing 1) based on the continuous activeness

of each region.

Before the start of tracing, users can set a corresponding

attribute, maximum number of the memory regions to manage.

When the tracing starts, we first construct initial memory

regions based on the memory mapping of given workload.

If a region has detected to be accessed for two consecutive

monitoring, it splits the region into two regions because con-

tinuously accessed region may have different access patterns

inside. Else, if no access to two adjacent regions is perceived

for two consecutive monitoring, it determines the regions as

having no frequent access and just merges the two regions

into one region. If the total number of regions reaches the

maximum number of regions, which users set at initial time,

it stops splitting more.

C. Implementation

We implement the Daptrace on the top of the Linux v4.20

kernel as a set of two components which resides in the kernel

space and the user space, respectively. The overall architecture

of our work is illustrated in Figure 1 depicts.

The relationship between the kernel space component and

the user space componen is similar to that of policy and

mechanism.

Kernel’s obligation is implementation of the mechanism.

Almost every main functions are implemented in the kernel

space component, which is implemented as a form of an

independent kernel module. It implements core functions in-

cluding setting of the process id of the tracing target workload,

initialization and cleaning of memory regions, check of the

Fig. 1. Implementation of the Daptrace.

access to each region (The merge and split of regions will

be executed inside this function), and extraction of currently

aggregated sampling results. It implements dedicated system

calls for these functions and export the interface to the user

space component.

On the contrary, the userspace works as a policy maker. It

also works as an intermediate layer between a user and the

kernel component. It receives a target workload, transforms

the user input to a form that the kernel can easily understand

and sends the request to the kernel module via the dedicated

system calls. After the workload finishes, it stops tracing and

extracts the remaining tracing output in the kernel buffer via

the dedicated system calls. It also provides a visualization

feature that converts the traced data access patterns into a

graph showing the data access pattern in a human-friendly

way.

III. EVALUATION

A. Evaluation Setup

Our evaluation of the Daptrace aims to answer to following

three questions:

1) How much overhead does it incurs?

2) How precisely and human-readably does the Daptrace

extracts data access patterns of realistic workloads?

To answer these questions, we use a server utilizing an Intel

Xeon E7-8837 processor, 128 GB DRAM, and an Intel Optane

SSD as a swap device. The server operates on the Ubuntu

18.04 LTS Server version and the Linux kernel v4.20.

Also, we set the sampling interval, the aggregation interval,

and the maximum number of regions to 100 milliseconds, 1

second, 1, and 256, respectively. The values are chosen for

minimum sampling overhead based on our experience.

B. Capturing Overhead

To know the overhead of the Daptrace itself, we measure the

runtime of each workload when it runs alone and when it runs

along with the data access pattern tracing. Nonetheless, under

our default configuration which is described in Section III-A,

every workload shows only neglectable differences in the

runtime. This workload-independent and near-zero overhead

comes from the fact that the Daptrace controls the total

number of memory monitoring operations per each step in

202

bounded range, which is adjustable with the attributes of the

intervals and the bounded range. Thus, we could conclude

that the Daptrace can control the overhead in a bounded range

regardless of the size and characteristics of given workloads.

C. Visualized Data Access Patterns

Figure 2 shows the visualized data access pattern of each

workload. Each region in each graph represents when and how

frequently corresponding memory region has been accessed.

Y-axis represents the virtual address space of each workload

while X-axis represents the time from the start to the end of

the workload runs. Darker shade means more frequent access

and vice versa.

Roughly speaking, the virtual address space of each process

in the Linux can be divided into three big regions: the

uppermost (higher address) big region including stack which

grows downward, the lowermost big region including heap

which grows upward, and the middle big region including

memory mapped regions. Because the gaps between these

three big regions are usually large enough to dominate the

visualized space and no access will be made into the gap, our

visualization simply omits the gap area. In other words, each

graph has three X-axis lines dividing the uppermost, middle,

and lowermost big regions.

Based on these visualized results, we can easily divide

the execution of each workload into multiple phases each

containing similar data pattern. In the case of 433.milc, for

example, would be able to be divided into 9 phases. In even-

numbered phases, a memory region in the uppermost part

becomes hot, while it is not so much in other phases. For

another example, 403.gcc also could be divided into multiple

phases depending on the hotness of the lower memory region

and upper memory region. There are also a few workloads

showing no dynamic change. For example, 470.lbm shows

almost uniform access to the entire middle big memory region.

We also analyze source code of a few workloads including

433.milc, 470.lbm, and 429.mcf to confirm whether the visu-

alized results make consistency with the source code. After

the comparison of the results from the source code and the

visualized results, we confirm that the visualzied data access

pattern fits well with the source code. We do not describe the

comparison in detail due to the page limit.

IV. RELATED WORKS

Wang et al [13] found that it is almost impossible to monitor

memory accesses of a huge workload with conventional tools

such as PIN [4], which slows a workload up to 2000x. They

reduced the number of accesses needs to be profiled in a dy-

namic analysis by pruning predictable memory access patterns

which is obtained by static analysis. The technique reduced

slowdown from PIN by 61x on average. However, the tool

requires a source code to profile the memory access pattern

of a workload, it can not be applied directly to executable

binaries. Also, it only supports programs written in C.

A miniature cache simulation technique [12] evaluated

various data replacement policies on hundreds of real-world

storage block traces with up to 200x smaller spaces and up

to 10x faster runtime. The technique reduced space/time over-

head of simulation by efficient sampling on data access stream

and cache size. The authors of the work also showed that high

accuracy can be achieved with sampling-based simulation.

The work proposed a great idea that reduced the overhead

of simulation, but the domain of the work is limited to cache

simulation. Moreover, the down-scaling of a cache could be

more efficient if hotness information of regions in the cache

is combined.

V. CONCLUSION

A few kinds of workloads including cloud, big data, and

machine learning, which has been prevalent during the last

decades, commonly have memory intensive characteristics

and huge working sets. Because the evolvement trend of

hardware and software for such widely spreading workloads

implicates requirements of an efficient hierarchical memory

system, which is constructed with fast but small DRAM and

slow but large storages, efficient and effective data placement

will become a key for optimal system performance. For

optimal data placement, knowing the dynamic data access

pattern of a given workload is essential. Though existing

memory monitoring tools could be used for data access pattern

extraction, those incur unacceptably high overhead mainly

because those are not developed for the purpose.

In this paper, we introduced a data access pattern tracing

tool, namely Daptrace, which is developed to meet such re-

quirements. The tool traces the dynamic data access pattern of

a given workload and provides visualization of the data access

pattern in human-friendly format with minimal overhead and

high quality. Moreover, it can provide a knop to keep the

overhead and quality of the tracing in a bounded range.

Our evaluations that conducted with eleven realistic work-

loads conclude that the tool imposes almost no overhead and

provides a high quality which is sufficient to be run online and

be adopted for performance optimization, regardless of the size

and characteristics of target workloads. We demonstrated the

correctness quality of the traces by manually analyzing their

source code and confirmed the consistent results.

ACKNOWLEDGMENTS

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MSIP) (NRF-2015M3C4A7065646 and NRF-

2016M3C4A7952587).

REFERENCES

[1] 433.milc, SPEC CPU2006 Benchmark Description. https://www.spec.
org/cpu2006/Docs/433.milc.html.

[2] About valgrind. http://valgrind.org/info/about.html.
[3] Intels new Optane SSDs are superfast and can even work as extra RAM.

https://www.theverge.com/circuitbreaker/2017/10/31/16582018/intel-
optane-p900-ssd-fast-dram-nand-flash-memory-desktop-computer.

[4] Pin - a dynamic binary instrumentation tool. https://software.intel.com/
en-us/articles/pin-a-dynamic-binary-instrumentation-tool.

[5] Samsung unveils worlds largest SSD with whopping 30TB of
storage. https://www.theverge.com/circuitbreaker/2018/2/20/17031256/
worlds-largest-ssd-drive-samsung-30-terabyte-pm1643.

203

(a) 402.bzip2 (b) 403.gcc (c) 429.mcf (d) 433.milc

(e) 445.gobmk (f) 456.hmmer (g) 458.sjeng (h) 462.libquantum

(i) 464.h264ref (j) 470.lbm (k) 482.sphinx3

Fig. 2. Visualized data access patterns of SPEC CPU 2006 workloads.

[6] Overcommitting CPU and RAM. https://docs.openstack.org/arch-design/
design-compute/design-compute-overcommit.html, 2018.

[7] Sorav Bansal and Dharmendra S Modha. Car: Clock with adaptive
replacement. In FAST, volume 4, pages 187–200, 2004.

[8] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the clouds.
In Proceedings of the international conference on Architectural Support
for Programming Languages and Operating Systems - ASPLOS ’12,
volume 47, page 37, New York, New York, USA, 2012. ACM Press.

[9] Zhan-sheng Li, Da-wei Liu, and Hui-juan Bi. Crfp: a novel adaptive
replacement policy combined the lru and lfu policies. In 2008 IEEE
8th International Conference on Computer and Information Technology
Workshops, pages 72–79. IEEE, 2008.

[10] Nimrod Megiddo and Dharmendra S Modha. Arc: A self-tuning, low
overhead replacement cache. In FAST, volume 3, pages 115–130, 2003.

[11] Vlad Nitu, Boris Teabe, Alain Tchana, Canturk Isci, and Daniel Hagi-
mont. Welcome to zombieland: practical and energy-efficient memory
disaggregation in a datacenter. In Proceedings of the Thirteenth EuroSys
Conference, page 16. ACM, 2018.

[12] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad, and Nohhyun
Park. Cache modeling and optimization using miniature simulations. In
2017 USENIX Annual Technical Conference (USENIX ATC 17), pages
487–498, Santa Clara, CA, 2017. USENIX Association.

[13] Haojie Wang, Jidong Zhai, Xiongchao Tang, Bowen Yu, Xiaosong Ma,
and Wenguang Chen. Spindle: Informed memory access monitoring. In
2018 USENIX Annual Technical Conference (USENIX ATC 18), pages
561–574, Boston, MA, 2018. USENIX Association.

204

