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Abstract
RDMA is increasingly becoming popular not only in HPC but also in data centers where high throughput and low latency

are critical requirements. RDMA supports several types of transports, each of which has different characteristics, so that

users can choose the right one to meet their requirements. Reliable connected (RC) transport has advantages on usability

but disadvantages on scalability while unreliable datagram (UD) transport is scalable but hard to use. Dynamically

connected (DC) transport has been newly introduced to address these limitations when using one of the existing transports

while delivering both usability and scalability. However, despite all of these merits, DC transport is not yet generally

adopted in the related fields due to hardware dependency. To eliminate the hardware dependency, in this paper, we design

and implement SoftDC, a totally software-based DC transport. SoftDC uses the basic RDMA primitives to emulate the

behavior of DC transport; UD transport for connection and RC transport for data transfer. We build and evaluate a SoftDC

transport-based application to prove its effectiveness compared with RC transport-based one. Our experimental results

show that our scheme has potential to provide the advantages of both RC and UD transports although our prototype has

large connection establishment costs that can be amortized across a large data transfer.

Keywords RDMA � Queue pair � DCT

1 Introduction

Interconnect speed among the nodes in a cluster has been

an important factor in high-performance computing (HPC),

especially for cluster architecture. In such environment,

remote direct memory access (RDMA) is the key to high

performance with low CPU overhead, moving the respon-

sibility of transferring data between nodes from the CPU to

the network adapter. Since new standards, such as Internet

wide-area RDMA protocol (iWarp) and RDMA over

Converged Ethernet (RoCE), were developed to work with

the commodity Ethernet switches and routers, RDMA has

become widely used from HPC to datacenters.

Current RDMA implementation provides several com-

munication transports with different characteristics.

A TCP-like reliable, connection-oriented (RC) transport

and a UDP-like connectionless unreliable datagram (UD)

transport are most commonly used. The strengths of the

former lie in high performance with full communication

support while the latter has advantages on scalability.

Since both transports have each advantages and disad-

vantages, there has been several efforts to apply a hybrid

approach of them in application level [2, 3]. MVAPICH-

Aptus [2] is a multi-transport MPI design that dynamically

A preliminary version [1] of this article was presented at the

6th International Workshop on Autonomic Management of

high performance Grid and Cloud Computing (AMGCC’18),

Trento, Italy, Sep. 2018.
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chooses one out of the transport pool based on the defined

rules, considering the message size and the number of

ranks in the MPI job. Jithin et al. [3] have designed and

implemented a hybrid RC/UD transport in the Unified

Communication Runtime (UCR) [4], which is designed for

HPC and big data middleware. It preferentially uses RC

transports until the specified threshold is reached, then uses

UD transports to limit the memory footprint. However, all

their approaches require significant changes in the design

of applications.

To provide a scalable high-performance RDMA trans-

port, Mellanox has recently introduced dynamically con-

nected (DC) transport, which takes the best of both RC and

UD transports. Since DC transport is a transport itself

unlike the aforesaid approaches, it is easier for the existing

RDMA applications to enjoy the high functionality and

performance of the RC transport and the scalability of the

UD transport only with small changes in the application.

This is like the case where the TCP-based application can

be much simpler to implement than UDP-based one.

Despite its superiority, however, DC transport has not yet

entirely replaced the existing RDMA transports due to one

major reason; vendor-specific hardware is required to use

DC transport. Currently, only Mellanox Infiniband adapter

card ConnectX-IB and Ethernet adapter cards above Con-

nectX-4 support DC transport.

In order to make DC transport generally available to all

RDMA-based solutions, in this paper, we design and

implement SoftDC, a totally software-based DC transport,

eliminating hardware dependency. SoftDC utilizes both RC

and UD transports to emulate the behavior of DC transport:

UD for connection, RC for RDMA/atomic operations and

data transfers. We have built a SoftDC prototype as an user

library based on the user-level RDMA libraries such as

librdmacm and ibverbs.

To prove the effectiveness of SoftDC, we conduct sev-

eral experiments to test the overhead of it, comparing with

RC QP. The results show that although connection estab-

lishment cost of SoftDC can be problematic for small data

transfer, there are some trade-offs to alleviate this over-

head, allowing SoftDC to provide the advantages of both

RC and UD transports.

Our contributions are fourfold as follows:

– We show that DC transport can be implemented in

software without vendor-specific hardware support

while providing the same functionality as hardware

DC transport.

– With extensive experiments, we show that SoftDC has

potential to have good balance between performance

and scalability.

– We demonstrate that SoftDC transport can be easily

ported to existing RDMA applications with little effort.

– We propose a new use case of DC transport to extend

the separation of control and data plane to the existing

RC QP-based applications in the proxy architecture.

The rest of the paper is organized as follows: In Sect. 2, we

provide the background information of RDMA. In Sect. 3,

we explain the design and implementation of our scheme.

In Sect. 4, we introduce the use case of SoftDC. We

evaluate our prototype in Sect. 5. Section 6 discusses

related works. We conclude and discuss future work in

Sect. 7.

2 Background

RDMA enables direct memory access from the memory of

a host into that of a remote host without the involvement of

CPU. In this section, we introduce the background of the

RDMA communication model and RDMA transports. We

also perform a simple RDMA benchmark test to see the

relationship between the number of queue pairs (QPs) and

the performance.

2.1 RDMA communication model

In RDMA, a queue pair (QP) is conceptually similar to

TCP/UDP socket which represents endpoints for sending

and receiving messages. QP consists of Send Queue (SQ)

and Receive Queue (RQ). When a user post send/receive

work requests (WR) into QP, these WRs are placed into

SQ/RQ depending on the request type and then they are

processed by RDMA-enabled NIC (RNIC). In order to

receive the message, a buffer has to be posted to the

receive-side QP before sending messages to that QP. A

shared Receive Queue (SRQ) allows for buffers to be

posted to a single receive queue and to be shared by

multiple QPs, thus preventing wasting memory on the

receive buffers that would have been prepared for incom-

ing messages on every QP.

There are two types of RDMA operations (also called a

verb): channel semantic (two-sided verb) and memory

semantic (one-sided verb). Two-sided verbs (SEND and

RECV) require the involvement of the CPU at both sides

(receiver and sender), providing traditional send/receive

semantics. On the other hand, for one-sided verbs (READ,

WRITE, and ATOMIC) the receive-side CPU is not aware

of the operation once memory regions are registered by the

receiver to be remotely accessible.

2.2 Default transport types

In RDMA, there are three transports depending on relia-

bility and connection orientedness: Reliable Connection
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(RC), Unreliable Datagram (UD), and Unreliable Con-

nection (UC). We will discuss only the first two transports

because UC transport is rarely used. Table 1 summarizes

the characteristics of each transport type.

2.2.1 Reliable connection transport

RC transport is the most widely used one due to its rich

functionality and ease of usability. Using RC transport, one

can send any message whose size is smaller than 2 GB

(depends on RNIC) without worrying about message seg-

mentation and reliability. Large messages are automati-

cally fragmented into MTU-sized packets and reassembled

to original one by RNIC. Additionally, RC is the only

transport that fully supports one-sided verbs including

READ, WRITE, and ATOMIC, which enable ultra-low

latency by bypassing the remote CPU.

As it is connection-oriented, a connection between two

QPs must be exclusively established to communicate with

each other. This one-to-one requirement of RC transport

greatly limits the scalability for large cluster. When a

thread wants to communicate with N remote nodes, it has

to create N QPs for each remote node. Figure 1a shows an

example where three clients communicate with one server

using RC QP. For this case, the server needs three RC QPs

in total. Due to the limited memory of RNIC to cache QP

states, using too many QPs can cause cache thrashing,

leading to performance degradation [5].

2.2.2 Unreliable datagram transport

Compared with RC transport, UD transport supports fewer

features. Since maximum message size is limited by MTU

and there are no reliable packet delivery guarantees in UD,

message segmentation and reliability must be handled in

application level, thus leading to more programming effort.

Furthermore, none of the one-sided verbs are supported in

UD transport, unlike RC transport.

However, despite all of these shortcomings, UD is

superior to RC when it comes to scalability. Unlike RC

transport where every QP has an address vector that

describes the routing information to the remote node, the

address vector in UD transport is defined in every send-

request. To send messages to the remote QP, UD requires

remote QP number (QPN) and remote QP key (QKEY) as

well as address handle (AH) that is the implementation of

an address vector. This makes it possible that one UD QP

can communicate with multiple remote UD QPs, resulting

in much better scalability. Figure 1b shows an example

where three clients communicate with one server using UD

QP. For this case, the server needs only one UD QP in total.

2.3 Vendor-specific transport

Mellanox has introduced DC transport to provide the reli-

ability of RC transport as well as the scalability of UD

transport. As of now, DC transport is only supported in

Mellanox network adapters.

2.3.1 Dynamically connected transport

As the name indicates, DC transport allows a QP to

dynamically (re)connect to the remote QP when needed

and disconnect after data transmission has been completed.

Since DC transport internally uses reliable type QPs, all

one-sided verbs can be used when using DC. Additionally,

the dynamic connectivity of DC transport makes the size of

the cluster irrelevant to connection resource usages needed

for communications, thus achieving similar scalability as

UD transport.

There are two new different QP types in DC transport:

DC initiator (DCI) and DC target (DCT). A single DCI can

send messages to multiple targets like UD QP, and a DCT

can receive messages from multiple DCIs at the same time.

The usage model of DC is very similar to UD except that

DC distinguishes between an initiator QP and a target QP.

DC usage model is as follows. A user creates a DCT using

DC access key which is defined by the user then creates

DCIs depending on the needs of concurrency of data

transmission. AH, DCT number, and DC access key are

(a) RC Scalability (b) UD Scalability

Fig. 1 Scalability

Table 1 The characteristics of each QP type

Characteristics UD UC RC DC

SEND O O O O

RDMA WRITE X O O O

RDMA READ X X O O

RDMA ATOMIC X X O O

Connection type 1:N 1:1 1:1 1:N

Maximum message size MTU 2GB 2GB 2GB
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required to identify the target DCT when sending messages

using DCI.

In spite of its superiority, DC transport has not been

generally adopted yet in RDMA-based software solutions.

The need for vendor-specific hardware remains a

limitation.

3 Software-based dynamically connected
transport

SoftDC is a totally software-based DC transport for Eth-

ernet, allowing the existing RDMA-based solutions to

enjoy high performance and scalability of DC transport

without any hardware support. Theoretically, every Ether-

net network adapter can use RDMA without hardware

support owing to the existence of Soft RoCE, which is a

software implementation of RoCE included in the upstream

kernel. (Note that DC transport is not currently supported

in Soft RoCE as well.) To completely eliminate hardware

dependency, we focus on how to design a software layer on

top of the given RDMA primitives. In this section, we

explain the system components and the overall process of

SoftDC.

3.1 System components

SoftDC consists of four parts: (1) DCI and DCT as RDMA

primitives, (2) Automatic connection handler to handle

new connections, (3) Connection table, which is an in-

memory key-value store to store connection information.

(4) APIs to be used for building a SoftDC-based

application.

3.1.1 DC Initiator and DC target

Like the existing DC transport model, SoftDC uses DCI to

initiate data transfer and DCT to handle incoming data.

SoftDC exploits the existing UD and RC transports to

imitate the DC transport.

Each of DCI and DCT is composed of UD and RC QPs.

To give software the illusion of using connectionless

transport with full RDMA operation support, UD is the

base QP to be exposed to users while RC QPs are com-

pletely hidden from users. In SoftDC, UD QP is only used

to exchange the connection messages when a connection is

needed, whereas RC QP is used to transfer the actual

messages given by the user. In other words, any messages

from the user are not delivered via UD QP but RC QP.

Note that because UD is connectionless transport we can

send connection messages to any remote UD QP if and

only if we have AH, QPN, and QKEY of the target UD QP.

Additionally, since the actual data transfer goes through

RC QP all one-sided RDMA operations are freely used in

SoftDC. DCI and DCT internally maintain and manage the

buffers and other RDMA primitives to be used for the

implicit connection handling.

3.1.2 Automatic connection handler

DCT in SoftDC creates an automatic connection handler

thread at initialization that is a background thread to handle

the incoming connection invitations. Connection invitation

contains the information to reach the sender and only the

receiver of the connection invitation can connect to the

sender.

This thread polls the completion queue (CQ) of the UD

QP in DCT, waiting for the connection invitation from the

remote DCI. When it receives an invitation, it creates a

new RC QP, then connects to the sender using the infor-

mation contained in the invitation. After the connection has

been established, the related information is stored in the

connection table to be reused later.

3.1.3 Connection table

Connection table is a simple key value store to store the

connection information as key-value pairs in memory. It is

created with the initialization of a DCT and shared by

multiple DCIs and the DCT. A key is a combination of

Global Unique Identifier(GID) and the UD QPN of the

target DCT to uniquely identify to which remote DCT we

have connected while a value consists of the local RC QP

connected to the target RC QP and its connection state to

be used for data transfer.

Because a single DCT must have capable of handling

concurrent incoming data transfers, we use the connection

table to internally maintain the connection state at least

until the data transfer is complete. By default, the con-

nection table can hold 16 entries, which means 16 con-

current data transfers are possible, while this can be

configure when initialized. Unlike the hardware DC

transport, SoftDC does not immediately disconnect the

connection after data transfer is complete, it rather keeps

connections open for reuse. The stored information could

accelerate the data transfer when a user wants to send

messages to the same target by eliminating the connection

time.

3.1.4 APIs

SoftDC provides a set of common APIs for applications to

utilize the software-based DC transport. Due to the simi-

larity between the APIs of UD and DC, we can easily

create the APIs of SoftDC by wrapping the APIs of UD

transport. Note that UD QP in SoftDC is exposed to user so
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that user can use it as if it is a connectionless transport with

full RDMA support.

Table 2 lists DC’s APIs and SoftDC’s APIs. SoftDC’s

APIs have their counterparts in the native DC APIs. They

are almost the same except that creating a DCI requires a

DCT to share the connection table included in the DCT

data structure. ibv_sdc_create_dct() and ibv_sdc_cre-

ate_qp() are used to create DCT and DCI respectively,

allocating the internal resources while ibv_sdc_de-

stroy_dct() and ibv_sdc_destroy_qp() are used to destroy

DCT and DCI respectively, cleaning up and freeing the

allocated resources. Using ibv_sdc_post_send(), users can

send any RDMA operations to the target including all one-

sided verbs with UD-like interface requiring only remote

AH, QPN, and QKEY.

We have added two new APIs into the our previous

work [1]. Having examined the end-to-end latency of

SoftDC when sending the first message from client to

server, which will be detailed in Sect. 5.2, we find that

most of the latency comes from creating an AH in server-

side, which is needed for reply. In general, however, ser-

vers already have AHs for clients in application-level, so

that servers reply back to the sender. Therefore, this

duplicate creation of AH can be avoided if there is an API

allowing user to create AH and automatically store it into

the connection table. ibv_sdc_create_ah() does the job

while ibv_sdc_destroy_ah() is responsible for destroying of

the created AH.

3.2 Overall process

No matter which RDMA operations users request, SoftDC

undertakes the responsibility of delivering them to the

target while providing scalability without complex appli-

cation design. Figure 2 shows the overall process of

SoftDC. The detailed explanation how it works is as

follows.

When a user posts a send request using the SoftDC send

API that additionally requires DCI, AH, QPN, and QKEY

as arguments, SoftDC first checks if the connection

between the local node and the target node has already

been made, looking up the connection table. If the

matching key exists and the connection is still alive,

SoftDC easily posts the user’s send request to the RC QP in

the corresponding value. If there is no connection found in

connection table, SoftDC simply creates a new RC QP.

After preparing the RC QP, SoftDC makes it listen and

then sends a connection invitation to the target DCT using

the given AH, QPN, and QKEY. Having waited for the RC

QP being connected, SoftDC stores the connection infor-

mation such as RC QP into the connection table for later

use and then post the original message that the user wants

to send to the RC QP.

Since SoftDC uses the UD transport for connection

messages, which is an unreliable transport, some connec-

tion messages may be dropped in a very congested envi-

ronment. Currently, SoftDC prototype does not guarantee

the reliable delivery of the connection messages but it can

be implemented in a SoftDC layer by resending the con-

nection messages if no replies are received from the target

after the specified timeout. We leave it for future work.

4 SoftDC use-case: proxy architecture

One-sided RDMA verbs supports the separation of the

control plane from the data plane by design. It involves

kernel only on the control path, but accesses the RNIC

directly from user space on the data path. For example, the

memory region has to be pre-registered by user to be

directly accessed by RNIC while data transfer is handled

by RNIC once user initiates the request. This characteris-

tics can be used to extend the separation of control and data

planes to the existing system that does not support such

separation.

However, one problem still remains; one-sided RDMA

verbs is only supported in connection-oriented transport

where user must explicitly establish and terminate the

connection. For example, using connection-oriented trans-

port, in a proxy architecture where a client communicates

with a server through a proxy, all data transfer between

client and server goes through the proxy if the protocol

dose not support the separation of control and data planes.

Table 2 DC APIs and SoftDC

APIs
DC API SoftDC API Explanation

ibv_exp_create_dct ibv_sdc_create_dct Create a DC target object

ibv_exp_destroy_dct ibv_sdc_destroy_dct Destory a DC target object

ibv_exp_create_qp ibv_sdc_create_qp Create a DC initiator object

ibv_destroy_qp ibv_sdc_destroy_qp Destroy a DC initiator object

ibv_create_ah ibv_sdc_create_ah Create an Address Handle object

ibv_destroy_ah ibv_sdc_destroy_ah Destroy an Address Handle object

ibv_exp_post_send ibv_sdc_post_send Post work requests to QP
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This results in unnecessary data movement and waste of

network bandwidth. Since the client is unaware of the

server’s presence in the proxy architecture, the client

cannot explicitly connect to the server.

Fortunately, DC transport supports one-sided RDMA

verb, being a connectionless transport (on the user’s point

of view). Having similar semantic to DC transport,

SoftDC can be used to provide the capability of separating

control and data planes to the existing RC QP-based

RDMA applications while minimizing modifications to

the applications. In the SoftDC-based design, only the

proxy needs to be modified to bidirectionally forwards the

information of the memory region to other sides on the

control path. On the data path, leveraging the forwarded

information without knowing whose information it is, the

client can directly access the remote memory region of the

server. Note that SoftDC automatically internally handles

the connection.

5 Evaluation

In this section, we evaluate the effectiveness of SoftDC. In

this work, we focus on the overhead imposed by SoftDC

because we do not have enough RNIC-equipped servers to

produce the scalability issue discussed in Sect. 2. However,

we believe that SoftDC would be scalable because it pro-

vides the dynamic connectivity like the native DC trans-

port, making the size of the cluster irrelevant to connection

resource usage.

Since our RNIC does not support the hardware DC

transport, we are unable to directly compare the perfor-

mance of SoftDC with the native DC. We instead compare

the performance of the SoftDC-based applications with it

of the RC-based applications to investigate its overhead.

5.1 System configuration

5.1.1 System setup

Unless specified otherwise, our experimental evaluations

are conducted on two servers each with two 12-core Intel

Xeon E5-2650 2.2 GHz, 160 GB of memory, Samsung 850

Pro SSD, and Mellanox ConnectX-3 40GbE RNIC, which

does not support DC transport. The machines are connected

via Mellanox MSX1012B-2BFS 40GbE Ethernet switch.

Since using RDMA in kernel-level is quite different

from using it in user-level due to their different APIs, we

write a user-level library and a kernel module for SoftDC.

The user-level library is based on librdmacm and ibverbs

libraries, whose version is 13-7.el7, which came with

CentOS 7.4 while the kernel module is built against Linux

kernel 4.12.4.

5.2 Micro benchmark

To measure the overhead imposed by SoftDC, we write a

simple user-level RDMA client-server application where a

client sends a message to a server and the server sends a

reply back to the client, repeating this process one more

time. Assuming that the client and the server already have

each other’s information to reach such as AH, QPN, and

QKEY, we measure the client-perceived latency that each

message exchange takes.

The application has three versions: RC, SoftDC, and

SoftDC-Opt. RC is the RC-based application while SoftDC

is the SoftDC-based one. SoftDC-Opt is the optimized

version of the SoftDC-based application that leverages the

new APIs for creating and destroying AHs, thus avoiding

the necessity of the duplicate creation of AH, as discussed

in Sect. 3.

Fig. 2 The overall process of

SoftDC
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5.2.1 Results

Figure 3a shows the results of the first message exchange

obtained by varying the message size. Note that we use log

scale on y-axis to show the wide range of latency for

various message sizes. We can see that the performance

gap between RC and SoftDC is rather huge for the first

message while the latency for the second message

exchange is almost the same for both RC and SoftDC

transports, as shown in Fig. 3b. This significant difference

comes from the fact that the RC-based one has established

a connection between the client and the server before the

time measurement while the SoftDC-based one defers the

connection until the data transfer really occurs. We find

that the results of two transports would be the same if we

included the first connection time in the latency measure-

ment. Once the first data transfer is complete, the SoftDC-

based one can simply look up the connection table for the

connected RC QP without generating overheads for

connection.

To further investigate the main cause of the connection

overhead in SoftDC, we examine the end-to-end latency of

SoftDC when sending the first 1 KB message from client to

server. Given the latency breakdown shown in Fig. 4, we

can see that creating AH in server and establishing a

connection between RC QPs accounts for almost all the

first-time connection overhead of SoftDC. The cost of

creating AH in server, which contributes 35% of the total

latency, can be avoided if the application and SofDC

library can share the created AHs. With help of the new

APIs of SoftDC including ibv_sdc_create_ah() and

ibv_sdc_destroy_ah(), we could eliminate this avoidable

overhead. The result of SoftDC-Opt shows the result of the

optimization. The first-time connection overhead of

SoftDC-Opt is cut down to almost half of it of SoftDC. The

gain from the optimization decreases as the message size

increases because the relative proportion of the connection

overhead in the end-to-end latency becomes smaller

compared to the data transfer time. The connection over-

head is still quite huge even with SoftDC-Opt. Current

SoftDC prototype uses the RDMA Communication Man-

ager (CM) to establish communication between two ser-

vers. We may further optimize the connection

establishment process by directly exchanging the infor-

mation needed for QPs to be connected. We leave it for

future work.

5.3 FIO benchmark on NFS

In order to measure the overhead of the SoftDC kernel

module and to demonstrate that SoftDC can be easily

ported to the existing RDMA applications, we have applied

SoftDC into NFS server and client. Network file system

(NFS) is a distributed file system that allows a server to

share directories and files with multiple clients over a

network [6]. NFS is implemented in the kernel layer,

supporting only RC transport among RDMA transports.

Our SoftDC integration for NFS requires only about 50

lines of changes excluding SoftDC itself, showing its great

portability. The changes include the addition of the DCI

and DCT to the existing NFS data structures and the

replacement of the existing RDMA APIs by SoftDC APIs.

We use fio-3.12 [7], which is an open-source synthetic

IO benchmark tool, to measure the performance of the two

versions of NFS. Varying the I/O size, we run four work-

loads of FIO on the NFS volume: sequential read,

sequential write, random read and random write. Each of

workloads is ran with 8 threads, 16 I/O depth, direct I/O

mode and the libaio engine. Each thread generates 1GB

I/O.

5.3.1 Results

The results are shown in Fig. 5. Comparing RC and SoftDC

transport, we do not find much difference in the I/O per-

formance for all workloads. This is because the connection

1KB 4KB 8KB 16KB 32KB 64KB 256KB 1MB 4MB 16MB 64MB
RC 17 17 18 20 24 32 81 274 1002 3811 14879
SoftDC 4181 4275 4205 4188 4244 3999 4262 4671 5090 7846 19153
SoftDC-Opt 2465 2510 2508 2631 2596 2575 2717 2783 3805 6688 17579
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SoftDC-Opt 12 12 15 15 19 26 75 250 930 3686 14703
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Fig. 3 Latency of micro-benchmark
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between NFS client and NFS server is established when a

client mounts an NFS volume. Therefore, SoftDC acts like

RC when doing I/O, adding only negligible overhead to

look up the connection table.

We also add the result when using TCP(IPoIB) to com-

pare. For the read workloads, RDMA transports deliver

performance as high as twice that of the TCP(IPoIB) while

the write performance is almost the same. Since in RDMA

transports write requests are internally handled as RDMA

READwhich requiresmore round trip time than sending data

directly to the NFS server. Also note that although we use

direct I/O mode to bypass NFS client caching layer, NFS

server may still cache the file contents in the kernel page

cache. Since we mount the NFS volume with synchronous

mode theNFS server replies toNFS clients only after the data

has been written to the storage. These explain the higher

performance of the read workloads than the write workloads.

5.4 SoftDC use-case: proxy architecture

As discussed in Sect. 4, SoftDC can be used to extend the

separation of control and data planes in the proxy
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architecture, where a client communicates with a server

through a proxy. To demonstrate the effectiveness of the

SoftDC-based proxy architecture, we write a simple

benchmark where a client sends the information of its

memory region to a server and the server performs RDMA

WRITE to the memory region and notifies the client of

completion. The benchmark repeat this one more time like

the previous micro-benchmark. A proxy is between the

client and the server, forwarding the request and the reply

to other sides. The benchmark has two versions that sim-

ulate the RC QP-based and the SoftDC-based proxy sys-

tem, respectively. The overall process of each version is

shown in Fig. 6. We run this benchmark, varying the

amount of data transfer.

5.4.1 Results

Figure 7a shows the client-perceived latency of the first

request. Note that we use log scale. For a data transfer

smaller than 16 MB, similar to the micro-benchmark

test, SoftDC-based system takes longer latency for the

request to be handled due to the first-time connection

overhead, which offsets the benefits gained by elimi-

nating unnecessary data movement. However, since this

connection overhead is rather constant, regardless of the

data size, the situation is reversed for larger data

transfer. The gains from the reduction in data move-

ments become larger than the cost of the connection

establishment.

Figure 7b shows the client-perceived latency of the

second request. As we expected, SoftDC-based system

shows better latency for every size of data than RC QP-

based system because the connection between the client

and the server has already been established at this

point.

6 Related work

6.1 One-sided verbs versus two-sided verbs

Different design choices among one-sided verbs and two-

sided verbs have been explored in several works [5, 8–10].

FaRM [5] exploits one-sided RDMA verbs to build a dis-

tributed shared memory system with transaction support.

HERD [8] used a hybrid of unreliable one-sided verbs and

two-sided verbs to keep fewer network round trip for all

requests, avoiding RDMA READ operations. FaSST [9]

chose to use two-sided verbs rather than one-sided verbs

for a fast scalable all-to-all RPC system, assuming that

packet drops are extremely rare. This design helps reduce

the software complexity and increase scalability. Maomeng

et al. [10] introduce a new RDMA paradigm called Remote

Fetching Paradigm (RFP), where a client uses RDMA

WRITE to send a request to a server and RDMA READ to

fetch the result from a server while the request processing

is done in server-side. RFP can be faster than a totally

server-bypass model because it avoids ‘‘bypass access

amplification’’ problem. Anuj et al. [11] present a guideline

for building RDMA-based systems, which can be applied

to our work to further optimize. SoftDC does not limit the

type of RDMA verbs, allowing both one-sided verbs and

two-sided verbs. The designs proposed in above works can

be implemented with SoftDC.

6.2 Hybrid transport

Multi-transport design using RC transport and UD trans-

port has already been proposed in some works [2, 3].

MVAPICH-Aptus [2] is a multi-transport MPI design

where there exist multiple communication channels of RCs

and UDs and one of the channels is selected when sending

a message according to the defined rules. Jithin et al. [3]

present a hybrid transport model, which takes both

strengths of RC and UD transport, and layer Memcached

(a) RC QP-based Proxy System (b) SoftDC-based Proxy System

Fig. 6 Latency of proxy system benchmark
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[12] on top of the hybrid transport. It allows active

switching between RC and UD transports transparently to

users, limiting the maximum number of RC connections.

Above two works are different from our work since UD

and RC have different roles to play in SoftDC: connection

handling and data transfer respectively. Furthermore, their

works focus on the design of RDMA application using RC

and UD transports whereas SoftDC is an RDMA transport

itself like RC transport.

6.3 Hardware-based solutions

There are some works that require hardware support.

DrTM [13] exploits advanced hardware features such as

RDMA and a hardware transactional memory (HTM) to

build an order of magnitude faster transactional system

than state-of-the-art systems. In contrast, our work does not

rely on hardware support. Hari et al. [14] shares their

experience with designing an MPI library using Dynami-

cally Connected (DC) Infiniband transport. Although their

work is based on the hardware implementation of DC

transport, we believe that their MPI library can be easily

rebuilt on top of our SoftDC transport with only a few

changes.

7 Conclusion

This paper presents SoftDC, a totally software-based DC

transport for any commodity Ethernet NIC. SoftDC utilizes

the existing RDMA primitives such as RC QP and UD QP

to provide the high functionality and performance of RC

transport and the scalability of UD transport at the same

time. Using the various benchmarks, we show that the

software implementation of DC transport can deliver the

similar performance to the hardware one in some cases. As

shown in the example of NFS, we also demonstrate that

SoftDC can be easily applicable to the existing RDMA

system without many efforts. We believe that SoftDC has a

potential to be the default transport for RDMA applica-

tions, replacing RC transport.

For future work, we plan to use UD QP for small

messages whose size is less than MTU as well as con-

nection messages and RC QP for large messages. This

optimization would improve the performance of small

message transfer. We will also investigate the feasibility of

SoftDC in the existing MPI implementations.
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