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Abstract
Container based virtualization is an innovative technology that accelerates software development by providing portability

and maintainability of applications. Recently, a growing number of workloads such as high performance computing (HPC)

and Deep Learning(DL) are deployed in the container based environment. However, GPU resource management issues

especially the GPU memory over subscription issue in container-based clusters, which brings substantial performance loss,

is still challenging. This paper proposes an adaptive fair-share method to share effectively in container-based virtualization

environment as well as an execution rescheduling method to manage the execution order of each container for acquiring

maximum performance gain. We also proposed a checkpoint based mechanism especially for DL workload running with

TensorFlow, which can efficiently solve the GPU memory over subscription problem. We demonstrate that our approach

contributes to overall performance improvement as well as higher resource utilization compared to default and static fair-

share methods with homogeneous and heterogeneous workloads. Compared to two other conditions, their results show that

the proposed method reduces by 16.37%, 15.61% in average execution time and boosts approximately by 52.46%, 10.3%

in average GPU memory utilization, respectively. We also evaluated our checkpoint based mechanism by running multiple

CNN workloads with TensorFlow at the same time and the result shows our proposed mechanism can ensure each

workload executing safely without out of memory (OOM) error occurs.

Keywords GPU resource sharing � GPU management � GPU scheduling � GPU virtualization

1 Introduction

Recently high performance computing (HPC) applications

and deep learning (DL) applications play key roles in many

different research fields. The common feature exists in

these applications is that all of them require massive

computation power, which is in accordance with the high

parallelism characteristics of the graphics processing unit

(GPU).

A GPU is a specialized electronic circuit designed to

rapidly manipulate and alter memory to accelerate the

creation of images in a frame buffer intended for output to

a display device [1]. However, due to their powerful

structure which supports massive and energy-efficient

parallelism as well as high computational bandwidth, they

have been recently utilized more for intensive-parallel

computing than for general-purpose CPUs.

In the last decade, the increment of problem size and

model complexity of HPC and DL applications has led to

deploy GPUs in a wide range of platforms such as cloud
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computing, large-scale distributed computing environ-

ments. To efficiently deploy these workloads, virtual

machine (VM) has then emerged, offering various options

for users to choose, which helped to maximize their

applications’ performance. For example, one of the most

popular container-based virtualization solution: Docker [2]

which is an open-source virtualization technology of con-

tainer is adopted as an alternative. Each docker container

encapsulates an application and can be run on different

machines on the top of a docker engine. In addition, it

isolates each independent container running on the same

instance of operating system by making use of Linux

kernel features like cgroups and namespaces to control

CPU time, memory, and network bandwidth individually.

However, GPU had not been available in any virtualization

environment for a long time. Recently, NVIDIA has pre-

sented the NVIDIA Docker [3], to share GPU drivers from

host to containers without having them installed on each

container individually. However, NVIDIA Docker simply

assigns the whole physical GPU to a single container to

prevent any performance degradation since the allocated

GPU is freely available. The problem occurs when multiple

containers trying to share the same GPU at the same time.

Since the NVIDIA Docker is not aware of how GPU

memory is used by the application inside the container,

concurrent allocating of GPU memory by different appli-

cations, leading to an out-of-memory(OOM) error due to

exceeding total GPU memory amount. Several works for

providing virtualized GPU(vGPU) in virtualization envi-

ronment has been proposed, such as GViM, gVirtus and

vCUDA, However, they are not support a container-based

virtualized environment and required to use a specific

device, which does not meet the concept of container based

virtualization. As mentioned above, however, effective

methods to improve the utilization of GPUs and to share

them properly in the virtualized environment is required.

In this paper, we proposed an adaptive fair sharing

algorithm that can determine GPU memory for each con-

tainer at the initialization time. We also proposed a

scheduling method based on the profiling ,which manage

the execution order of each container to avoid OOM error

occurs. Our proposed approach has been compared with the

original method provided by NVIDIA-Docker and static

fair share method in the evaluations.

Besides, We also proposed a solution that share the

physical GPU among containers that running Machine

Learning workload on TensorFlow [4] in container-based

virtualized environment. Our proposed system contains

two major parts: (1) A check-point module that intercepts

the GPU memory allocation calls transfer them to the

scheduler. It also checkpoint current containers contents

that in the GPU memory to Host memory to claim the

occupied space and then bring them back when it is

necessary. (2) A scheduler that make a decision of whether

approve each GPU memory allocation request or reject it

by the intercepted GPU memory allocation calls from each

check-pointer and current system status. We apply and

implement the techniques on TensorFlow in Linux Kernel

v4.4.

Our experiment results show that the proposed

scheduling method reduces average execution time by

16.37%, 15.61% and boosts approximately by 52.46%,

10.3% in average GPU memory utilization. In addition, our

checkpoint based methods enables multiple containers that

running DL workloads with TensorFlow share the GPU

safely without OOM error occurs. Specifically, this paper’s

contributions are as follows:

– We analyzed the GPU memory over subscription

problem in the current Docker container based virtual-

ization system.

– We proposed an algorithm to share GPU memory

effectively for GPU containers

– We design and implement a GPU sharing solution for

DL workloads running in TensorFlow to solve the GPU

memory over subscription problem that based on

checkpoint module and scheduler.

– We demonstrate our proposed solution can efficiently

solve the GPU memory over subscription problem

through our evaluation results.

The organization of this paper is as follows: ‘‘Background

and motivation’’ describes the background and motivation.

‘‘Design and Implementation’’ presents the design of our

proposed algorithm, checkpoint based mechanism, and

running scenario of each case. ‘‘Evaluation’’ shows the

experimental results and ‘‘Related Work’’ discuss the

related work and lastly, ‘‘Conclusion’’ concludes the paper.

2 Background and motivation

2.1 GPU virtualization and containerization

Virtualization is a combination of hardware and software

solutions that support the creation and operation of virtual

versions of devices or resources, such as servers, storage

devices, networks, or OS [5]. The virtualization platform

such as Virtual Machines allows one to divide the physi-

cally unified hardware system into a logical set of inde-

pendent computing resources [6]. And virtualization of

computing resources allowed to solve the problem of

increasing the efficiency of scheduling in cluster comput-

ing systems [7].

As HPC or DL tasks usually involve GPU resources in

their solution, there are many attempts that have been made

to introduce virtualized GPU into the virtualization
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environment. For example, there are such approaches

including GViM [8], gVirtuS [9], and vCUDA [10] that

are based on creating copies of the CUDA API for virtu-

alizing GPU and providing them to virtualization envi-

ronment [5] and in case of rCUDA solution [11], it

proposed the technology of remote GPU usage. However,

the above approaches degrade the performance of the GPU

during the virtualization process [12]. There is another

approach such as NVIDIA GRID [13] to virtualize the

GPU at the hardware level. However, the solution can be

adapted for a specific type of GPU like NVIDIA GRID K1

and K2 [14].

On the other hand, containerization technology such as

Docker provides a run-time environment for the applica-

tion at the OS level, reducing the overhead compared to the

virtualization [15]. In detail, the container provides virtu-

alization solutions: each guest OS uses the same kernel

(and in some cases other parts of the OS) as the host server.

Therefore, they much more in common with the host ser-

ver, so that they are smaller and more compact than vir-

tualization approaches [5].

2.2 NVIDIA Docker

Docker container is widely used because it can provide

both hardware and software encapsulation on the same

system at the same time. However, there exists a problem

when using specialized hardware such as NVIDIA GPUs

that require kernel modules and user level-libraries. The

previous way to handle this problem is to fully install the

NVIDIA drivers inside the container, however it will

drastically reduce the portability of containers, which

weakening the most important advantage of docker. To

solve the problem mentioned above while enabling the

portability, NVIDIA provides the NVIDIA docker, a pro-

ject that can easily share GPU driver from host to con-

tainers without installing NVIDIA drivers individually.

Nevertheless, the above solutions for GPU container-

ization and orchestration are still attempted to virtualize

GPU entirely wich is opposed to the original concept of the

container.

2.3 TensorFlow

TensorFlow is an open source software library for

numerical computation using data flow graphs.The graph

nodes represent mathematical operations, while the graph

edges represent the multidimensional data arrays that flow

between them. This flexible architecture enables you to

deploy computation to one or more CPUs or GPUs in a

desktop, server, or mobile device without rewriting code.

Especially for machine learning applications, it uses

CUDA extension to help them perform general operations

on the GPU. Even the applications are not written in

CUDA, it is still possible to operate them with TensorFlow

on GPUs without code modification. However, if the

applications are executed without specifying specific GPU

memory range, TensorFlow will allocate most of the GPU

memory for the application and cause lacking of GPU

memory when other applications need to be executed. On

the other hand, with the option

config.gpu_options.per_process_gpu_memory_fraction,

GPU memory can be allocated for each application.

2.4 HPC & DL workload execution pattern

We select HPC and the TensorFlow applications provided

by NVIDIA GPU cloud (NGC),which is a GPU-accelerated

cloud platform optimized for scientific computing, to

understand the GPU resource usage pattern during con-

tainer execution time. The applications we selected to be

analyzed are LAMMPS, GROMACS, QMCPAC that

belong to HPC application and CNN (convolution neural

network)-MNIST that belongs to TensorFlow application.

Nvidia-smi is used to moitor the resource usage every 5 s,

and using the result to analyze the GPU resource usage

variation over the time.

2.4.1 LAMMPS

LAMMPS is a classical molecular dynamics code with a

focus on materials modeling. It’s an acronym for Large-

scale atomic/molecular massively parallel simulator.

LAMMPS has potentials for solid-state materials (metals,

semiconductors) and soft matter (biomolecules, polymers)

and coarse-grained or mesoscopic systems. It can be used

to model atoms or, more generically, as a parallel particle

simulator at the atomic, meso, or continuum scale.

LAMMPS runs on single processors or in parallel using

message-passing techniques and a spatial-decomposition of

the simulation domain. Many of its models have versions

that provide accelerated performance on CPUs, GPUs, and

Intel Xeon Phis. The code is designed to be easy to modify

or extend with new functionality.

Figure 1 shows the GPU and its memory utilization

when a single container runs on one physical GPU. As the

Fig. 1 LAMMPS-1GPU, 1 container
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figure shows, average GPU memory usage is 1.7GB and

GPU utilization is in average is 23.8%. After 1180 seconds

of execution, the GPU memory usage reaches to 8.3GB and

the GPU utilization rapidly increased to 100%, at last the

execution time is 19 min and 55 s. Figure 2 illustrates the

GPU and its memory utilization when two containers

running on one physical GPU. In this case, the maximum

GPU memory usage is 11.4 GB and the maximum GPU

utilization is 100%. In addition, The memory usage

increased rapidly after executing 1615 s and an OOM (out-

of-memory) error occurs after the applications executed

1625 s. This is caused by the overlapping of sharply

increased GPU memory requirement by executing two

containers at the same time. As a result, the whole exe-

cution time is 27 min and 10 s with only one application

terminated normally.

2.4.2 GROMACS

GROMACS is a versatile package to perform molecular

dynamics, i.e. simulate the Newtonian equations of motion

for systems with hundreds to millions of particles. It is

primarily designed for biochemical molecules like proteins,

lipids and nucleic acids that have a lot of complicated

bonded interactions. in our experiment, a water molecule

data set with the size of 1536 KiB has been tested.

Figure 3 gives out the GPU and its memory utilization

when running a single application container on a physical

GPU. As the figure shows, the maximum GPU memory

usage is 539 MB and the whole execution time is 715 s.

Figure 4 show the results of experiments where deploying

2 containers on single GPU respectively.

In the case of Fig. 4 the maximum GPU memory usage

is 1743 MB and the whole execution time is 2480 s. As a

result, the execution time increases in proportion to the

number of containers when one GPU is shared by several

containers, revealing the fact that running multiple con-

tainers on a single GPU simultaneously do not have the

benefit of concurrent execution.

2.4.3 QMCPACK

QMCPACK is an open-source,

high-performance electronic structure code that imple-

ments numerous Quantum Monte Carlo algorithms. Its

main applications are electronic structure calculations of

molecular, periodic 2D and periodic 3D solid-state sys-

tems. Figures 5 and 6 demonstrates the experiment result

of running one and two QMCPACK containers on a single

physical GPU. In the case of Fig. 5, the total execution

time is 190 s with the maximum GPU memory usage of

5389 MB, and under the circumstance of Fig. 6, the total

execution time reached to 385 s while the maximum

memory usage increased to 10,768 MB. From the experi-

ments, We can draw a conclusion that running multiple

containers sequentially is as same as running them con-

currently on a single physical GPU. The reason is even we

launched two QMCPACK application concurrently, due to

its high GPU core usage, the contention of GPU cores will

give a huge impact on the concurrent performance.

2.4.4 CNN-MNIST

CNN-MNIST is an image analysis algorithm for composite

images. CNN consists of an input and an output layer, as

well as multiple hidden layers. The hidden layers of a CNN

typically consist of convolutional layers, RELU layer i.e.

activation function, pooling layers, fully connected layers

and normalization layers. Figure 7 shows the result of

runing TensorFlow workload in 4 containers on 1 GPU.

During the execution on TensorFlow, if GPU memory

Fig. 2 LAMMPS-1GPU, 2 containers

Fig. 3 GROMACS-1GPU, 1 container

Fig. 4 GROMACS-1GPU, 2 containers

Fig. 5 QMCPACK-1GPU, 1 container
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address space is not specified, the maximum GPU memory

used is almost 8518 MB and the execution time comes to 3

min and 24 s. However, if we limit the GPU memory to

2207 MB, then the execution time will still maintain to 3

min and 42 s. As a result, reducing unnecessary GPU

memory usage of containers will increase GPU resource

utilization while not give an huge impact on the

performance.

2.5 Motivation

GPUs can accelerate the performance of many applica-

tions; however, the capacity of device memory on GPUs

limits the size of data that can be processed. Therefore,

GPU memory is one of the most important GPU resources

that needed to be shared in a proper manner. However, as

mentioned above, existing solutions for GPU container-

ization and resource management still virtualize GPU

entirely. Therefore, they can cause over subscription

problem if clients’ request exceeds the available GPU

memory.

Generally, GPU memory is one of the most important

GPU resources that needed to be shared. Lacking of GPU

memory when containers try to allocate memory usually

causes out-of-memory error. Figure 8 depicts the details.

Suppose GPU container 1 has already allocated certain

amount of GPU memory. Meanwhile another GPU con-

tainer is started and trying to allocate its own GPU mem-

ory, however, as the Fig. 8 shows, within the part being

used, the amount of GPU memory that required by the

second GPU container exceeds the size of physical GPU

memory thus resulting in the second container gets a out-

of-memory error and being stopped by short of memory,

running counter to the original purpose that sharing the

GPU resources among containers. As the problem shows in

the figure, currently it is still difficult to share the GPU

memory among several containers within appropriate ratio.

Even though the creation of container is aimed to fully

utilize the restricted resources while providing accept-

able performance, how to share the GPU resources effi-

ciently is still a problem need to be taken into

consideration.

To solve these issues, We proposed an adaptive fair-

share method for HPC workloads and a check point based

mechanism for DL workloads running with the TensorFlow

in the GPU containerization environment.

3 Design and implementation

In this section, we introduce the design and implementation

of our proposed mechanisms. The overall design is aiming

at sharing the GPU resources especially the GPU memory

resource among several containers. The proposed system

consists of three main components, The checkpoint module

captures each GPU memory allocation call transfer it to the

scheduler. Then it waits for the signal from the scheduler

to continue allocating in the GPU memory or transferring

the corresponding container’s GPU contents to CPU host

memory.In addition, it also uses profiled information to

manage GPU resources and GPU memory while the other

one is the monitor, which surveillance GPU resource in

run-time and using the information to adjust the scheduling

algorithm. Basically, this scheduler keeps checking GPU

resources used by each application and their memory limit

to determinate the execution order of them.

3.1 System design

Figure 9 demonstrates the overall system design. As the

figure shows, for those DL workloads that running on

TensorFlow that inside a container, since the TensorFlow

platform provides the option to partially use the GPU

memory, we designed the check point module inside the

platform by using this feature to solve the GPU memory

subscription problem. On the other hand. due to the fact

that nvidia-docker does not support GPU memory

Fig. 6 QMCPACK-1GPU, 2 containers

Fig. 7 CNN-1GPUs, 4 container

Fig. 8 Out-of-memory error occurs when multiple containers share

the GPU
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isolation, we designed a profiled based pause/restart solu-

tion to solve the problem mentioned above.

In the case of DL workloads, when they send a GPU

memory allocation call to our customized TensorFlow

framework that running in a container, it redirect the

command to the scheduler that located in host through

TCP/IP request. The docker essentially forbidden the inter-

process communication(IPCs) between containers and host,

we proposed to use TCP/IP socket to establish the con-

nection between container and host. The alternative ways

have considered are using shared file between container

and host or choosing UNIX socket. However, our proposed

system are aiming at solving GPU virtualization problem in

a cluster environment thus using TCP/IP socket will be the

most suitable one.

3.2 Customized TensorFlow platform

Generally, The machine learning workload that running on

TensorFlow needs to allocate all the GPU memory at once

during the initialize time. However, the workload does not

need to use whole GPU memory at a time, as a result, GPU

memory are supposed to be shared among containers under

certain conditions. The TensorFlow recently supports the

option –allow_growth, which attempts to allocate only as

much GPU memory based on run-time allocations, it starts

out allocating very little memory, and as sessions get run

and more GPU memory is needed. The TensorFlow also

supports option –per_process_gpu_memory_fraction,

which is a value between 0 and 1 that indicates what

fraction of the available GPU memory to pre-allocate for

each process. We applied both of these options to our

customized TensorFlow platform in order to increase the

potential utilization. For each container, we also profiled its

run-time resource utilization, and use this information to

determine appropriate per_process_gpu_memory_fraction

for each container.

We also customized the BFC Allocator, which is the

standard memory allocator part in TensorFlow by adding

our checkpoint module into there. This module commu-

nicated with scheduler via the TCP/IP socket and the

details will be described in the next subsection. We

modified the original BFCAllocator class, adding TCP/IP

socket information into it. During the class initialization, it

connects to the scheduler and store the socket_fd, and they

will won’t be destructed until the class’s destructor is

called.

3.3 Checkpoint module

TensorFlow platform uses CUDA API to communicate and

control NVIDIA GPU. Among these APIs, cuMemAlloc is

used to allocate device memory and cuMemcpyDtoH,

cuMemcpyHtoD are used to transfer data between CPU and

GPU. To manage and schedule containers and handle the

GPU memory over-commit problem, capturing these APIs

is needed. We implement them in the checkpoint module.

Specifically, this checkpoint module is implemented in

BFC allocator. As we described above, the BFC allocator is

in charge of host and device memory allocation in Ten-

sorFlow. We use the checkpoint module to store the con-

tents in the GPU memory of previous containers into CPU

memory and make empty space for the subsequent running

container. The checkpoint module should make sure that

the stopped container could resume its execution just as it

has not been stopped. We implemented our checkpoint

module in BFC allocator. In original BFC allocator,

cuMemAlloc is called to allocate GPU memory according

to applications’ requirements. In our proposed checkpoint

module, we capture each cuMemAlloc call before it is

executed and transfer the GPU memory size that needed to

be allocated to the Scheduler. Then the current process will

be in a wait state until receiving reply from the scheduler.

There are two kinds of replies from the scheduler, one

approves the GPU memory allocation and another denied

it. In the first case, after the checkpoint module received

the reply, it executes the cuMemAlloc as it does in the

original version. However, in the second case, where the

allocation request is declined, the checkpoint module firstly

allocate a new memory space in the host memory, then it

transfer the contents stored in GPU memory to host

memory by calling cuMemcpyDtoH, meanwhile it records

the current region size and its corresponding host memory

address. Lastly, it free its occupied GPU memory by call-

ing cuMemFree and put the container itself info a wait

state. When the subsequent containers has finished its

execution, the previous suspended containers get the

chance to continue its unfinished execution, if this

requirement is approved, the checkpoint module should

bring back the contents that moved to host memory via

cuMemcpyHtoD according to previous stored region size

and its address.

Fig. 9 Overall system design
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3.4 Scheduler

The containers should be scheduled based on the profiling

running pattern based on its GPU memory usage. The

Scheduler is written in C programming language. It runs

on host machine and communicate with the checkpoint

module in each container through TCP/IP socket, which is

implanted in the container. The scheduler decides whether

the containers should execute, reject or delay its GPU

memory allocation according to the profiled information

collected by the profiler and the current GPU resource

utilization collected by the monitor. After current execu-

tion is finished, the scheduler also makes a decision about

which waiting container should be brought back into

running.

The scheduler traces every GPU memory allocation of

each container as well as the current GPU memory uti-

lization. As a result, the scheduler can be aware of how

much free memory that can be allocated to a certain con-

tainer. If there is no sufficient GPU memory to allocate, the

scheduler will send a rejection reply to the container, and

the container will be suspended after its checkpoint module

transferred its GPU memory contents. There might be

multiple suspended containers and each of them will be

waited until the scheduler send them a continue reply. The

scheduler also tracks every successful GPU memory allo-

cation with their allocated size, and use this information to

calculate the total GPU memory usage.

After the checkpoint module detects the application has

finished its execution, it sends a signal to scheduler to

notify its completion. Then the scheduler remove the stored

stopped information of container and select a new candi-

date that could be executed from all the waiting containers.

3.5 GPU memory allocation algorithm

The Adaptive Fair-Share (after denoted as Adaptive F-S)

algorithm for GPU-memory allocation that we have pro-

posed in our previous work [16]. is used to determines

GPU memory allocation for each container at the initial-

ization time.

3.5.1 Adaptive fair-share algorithm

As opposed to the conventional way, allowing all active

containers to be given the fixed size of GPU-memory one

by one that leads a specific container to monopolize the

whole memory, our proposed method primarily takes

account of sharing the memory among the multiple con-

tainers evenly. Giving all active containers relatively equal

access to the memory might not always be best, because

the containers considered as more important might need to

be given more resources than others. In addition, the degree

of importance can even fluctuate depending on the prop-

erties of jobs running inside the container or the current

global workload status.

For that reasons, our Adaptive Fair-Share method aims

to serve the different amount of memory to the containers

according to their importance which can be determined by

the count and average input size of jobs. The importance of

each container is periodically adjusted by local and global

updates in order to adapt the state of both overall system

and applications to the scheduling (Table 1).

Adaptive F-S method basically follows these abstract

steps: (1) collecting jobs’ information in the queue (2)

categorizing them to multiple groups by the common

properties (3) deciding the ratio and assigning the memory

to each group by the fair share scheduling formulation (4)

assigning the memory to the groups according to the dis-

tribution rate and rebuilding applications in accordance

with the distributed memory (5) evaluating jobs and

updating the formulation. Details of Adaptive F-S’s pro-

cedure will be explained below with its algorithm.

Algorithm 1 describes the abstract procedure of the

adaptive fair-share method. For a set of incoming jobs(ðJÞ)
the count of which is denoted as window, it categorizes

them into multiple groups depending on their properties

(line 2). In general, the grouping can be made depending

on the application name, input size, parameter types or user

id, etc. Usually, we defined the group according to the user

id, because the applications launched by the same user will

have potential locality. After grouping, it calculates

memory distributions according to the properties such as

the number of jobs per group or input size, etc. (Fig. 10).

By the function CALCULDISTS(array) (line 3), where it

applies the following Equation 1 for each defined group

i.where m is the count of the properties that are used for

classification, and n is the number of groups. Where C is

the weight of the properties calculated accordingly to the

number of properties, propki being the group i0 rank, being

proportional to the performances, in the overall ranking
Pn

j¼1 prop
k
j , representing the summary of scores through
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all the groups. For example, (m-1)th property score of a

group i can be defined as propm�1
i . During the first few

executions, C0 is set as 1 and the other coefficients

C1� x�m are 0 until it has enough profiles to analyze,

meaning only taking account of the count of jobs for the

first several executions. Once enough records are collected

in the system, all the coefficients C0� x�m become 1 / m

and they are adjusted by the procedure AdaptiveUpdate

which will be explained in detail with the next algorithm.

Regarding the decision of prop value, it is generated based

on the relative rank the group has. For instance, suppose

that the system generated five groups depending on three–

four kinds of properties which are application name, input

size, user id as well as job counts, as depicted on the left

part of the Fig. 11. In the group 1, 2, 5 cases, they include

four kinds of properties which induce all coeffi-

cients(C0� x�m) to 1 / m, that is 0.25.

Each group’s memory distribution ratio Seti (after sev-

eral executions) can be defined as shown on the right part

of Fig. 11. For the first group, the property scores are 12

(job counts), 1 (1st rank among two applications), 1 (1st

rank among three applications), 2 (among three applica-

tions), respectively. In the third group case, the coefficient

is 1 / 3, since it has only three properties, and it calculates

only for three properties. In this way, the system calculates

the distribution ratios for groups according to the weights.

For all the groups, it prepares to assign the jobs to the

container with the part of memory. Function AS-

SIGNJOBSTOCONTAINER(float, int ) (line 6) includes the fol-

lowing three steps; rebuilding jobs, creating & deploying

containers, launching jobs on the container. After deploy-

ing the containers and assigning jobs, it keep observing the

execution status of each containers and managing the

running order of them to prevent OOM occurs, (line 8). A

cycle of the whole processes in ADAPTIVEFS procedure

repeats itself within regular interval

3.6 Container scheduling example

In this section, we demonstrate how HPC workloads and

DL workloads being scheduled by our proposed system

respectively.

3.6.1 HPC workloads

According to the result of application execution pattern

introduced above, we designed an execution plan for

multiple containers to share a single physical GPU. As an

example, we supposed to deploy 2 LAMMPS containers on

a single GPU. In this situation, Both of the two containers’

memory usage spikes at the end of the entire turn. As

shown in Fig. 12, due to the lack of GPU memory, an

OOM error occurs and lead to a container execution fail-

ure. However, as shown in Fig. 13, We can suspend

Fig. 10 Equation 1 for each defined group i

Fig. 11 An example of grouping and scoring, the properties of each

group(left), the calculated dist. ratio(right)

Table 1 Notations
Notation Description

Seti Per-group memory distribution

SET A set of Seti (Set1:::n)

G A set of groups (group1:::n)

J A set of jobs

window The job count that J has

gi The number of jobs for each group

propmi The i th group’s weight in terms of a property propm (e.g., input size, application type)

GPU Current available GPU memory size for the noden

ER Error counts

eperf Threshold of performance

eworkload Threshold of workload

eerror Threshold of error count

C A set of coefficients, C0;C1; :::;Cm

interval An execution interval for the procedure ADAPTIVEFS
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container LAMMPS 2 before it starts to consume large

amount of GPU memory and keep container LAMMPS 1

running until it terminates. Then container LAMMPS 1

will deallocate the allocated GPU memory and container

LAMMPS 2 can be executed again. In addition, in the case

of HPC application, the GPU memory will be reserved

even the application is paused. Thus why we use the

adaptive fair sharing algorithm to determine a Max GPU

memory usage for each container to prevent the Deadload

occurs. By following this execution plan, multiple con-

tainers can be run simultaneously without restarting the

failed ones.

3.6.2 DL workloads

In this section, we use a particular scenario to describe how

the check point based mechanism deals the case when

multiple containers running DL workloads require to share

the GPU. As described in Fig. 14a, Container 1 and 2 are

running on the single physical GPU and then container 2

asks for more GPU memory that exceeds the physical

capacity of the GPU. At the same time, container 3 joins

with the system and waits for being scheduled. However,

container 3 cannot be scheduled at once since there is no

free GPU memory remained for its execution. As depicted

in Fig. 14b, the scheduler detects the request and makes a

decision to transferred container 2’s GPU memory contents

to host memory and reclaim its occupied space for con-

tainer 3. Then the container 3 starts execution.

After container 1 and container 3 have finished their

execution, as described in Fig. 14c, the size of free GPU

memory becomes available for container 2’s execution.

Then the scheduler awake container 2 and bring it back to

the GPU as shown in Fig. 14d.

4 Evaluation

In this section, we demonstrate and analysis the evaluation

result of our proposed mechanism.

4.1 Experiment environment

Our experiments are conducted on the framework con-

sisting of two node clusters. Table 2 provides the details of

the clusters. In particular, the experiments are conducted on

the GPU containers.

4.2 Adaptive fair sharing algorithm

demonstrate the performance improvement. We compare

our scheduling method to two conditions:

1. Default, a baseline GPU memory distribution ratio

offered by state-of-art Nvidia-docker system.

2. Static fair-share, a static GPU memory distribution

ratio to each group in which all jobs have same

application characteristics (Set1:::n ¼ GPU=n, n is the

number of groups defined).

3. Adaptive fair-share, the proposed method.

In this experiment, we evaluate all scenarios on both ho-

mogeneous and heterogeneous workloads. We form the

homogeneous workloads using multiple copies of the same

application. For heterogeneous workloads, we make them

up by randomly selecting a number of applications out of

two applications. and build 10 kinds of heterogeneous

combination of parameters for each application. In total we

evaluate 40 homogeneous and heterogeneous workloads.

Fig. 12 Execution 2 LAMMPS containers

Fig. 13 Execution 2 LAMMPS containers with pause/unpause

Fig. 14 Scheduling example
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Overall, five thousand (5K) jobs are generated for each

experiment, and we’ve exploited an average result from

five times repetitions.

We set containers using TensorFlow [4] images for

experiments. TensorFlow is a numerical computation using

a data flow graph. It can use a python script without CUDA

code where the number of GPUs, GPU memory usage, and

etc can be specified and modified.

We employed two kinds of applications from represen-

tative domains, which are machine learning (ML) and

molecular dynamics (MD), that are actively utilizing GPUs

and that can generate different irregularity patterns. The

details of them are as follows.

Convolution neural network (CNN) [17]—MNIST [18]

is a composite product algorithm, mainly used for visual

image analysis. CNN is composed of several hidden layers

and is generally composed of convolution layers and

pooling layers. The MNIST dataset is a numeric hand-

written image. In this experiment, MNIST data of 60,000

numerical images consisting of 10 labels of 28 � 28 size

was studied through CNN model composed of 3 convolu-

tion layers using TensorFlow.

AMBER [19, 20] is a suite of programs for biomolec-

ular simulations in molecular dynamics(MD) field. It

includes the collection of numerous programs that work

together to setup, perform, and analyze MD simulations,

from the preparation of the necessary input files, to the

analysis of the results. Due to the specific characteristics

that are the computational complexity and fine-grained

parallelism of MD simulations of macro molecules,

AMBER started to support GPU-based execution and

include the adaptor program which helps to port from the

existing Fortran code to the GPU platform using NVIDIA’s

compute unified device architecture (CUDA) language. All

of the applications are executed use the default configura-

tion provided by their organizations In this experiment, we

employed its python module to carry it out with

TensorFlow.

With the conditions that are addressed above, Figs. 15

and 16 depice the comparative results in terms of execu-

tion time and GPU memory utilization, respectively. The

experimental environment is show in Table 2.

Fig. 15 Comparison of container execution time

Fig. 16 Comparison of GPU Mem. utilization

Table 2 Experimental setting
CPU GPU

Architecture Intel(R) Core(TM) i7-5820K Nvidia GeForce TItan Xp D5x

Core clock 3.30GHz 1.58GHz

Num of cores 6 cores 128 CUDA cores

Mem. size 32 GB 12 GB

Threading API – Nvidia CUDA 8.0

Compiler ICC (Intel compiler) Nvidia C compiler (NVCC8.0)

OS Ubuntu 16.04.3 LTS Ubuntu 14.04.5 LTS
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4.2.1 Execution time

Figure 15 depicts the comparison results in terms of exe-

cution time. With homogeneous workload, the result for

execution time allows us to realize (left group in the

Fig.15) that the default condition causes the long average

makespan time, since all jobs had to be carried out in

sequential way. In the fair-share condition, the result is

shorter than the Default condition (approximately 3376 s),

since the GPU memory could be sharable and so it is

possible to lead better performance than default one in this

condition. Our adaptive fair-share method produces the

shortest makespan time among the performed conditions,

about 2901 s. Overall, the proposed method could improve

the execution time by 16.37% compared to the static fair-

share condition in the homogeneous workload group.

The experimental results with heterogeneous workloads

(right group in the Fig.15) also show that the default con-

dition results in the longest average makespan time among

three conditions, mostly because of the waiting time

between jobs caused by the random placements of the

different applications to the identical container.

For both fair-share and adaptive fair-share conditions,

the results present huge improvements, especially on the

proposed method. The improvement in the proposed

method mostly seems to be possible because of the

grouping in similar jobs which induces rapid recycling of

the containers and the evaluation step from by the adaptive

update module.

4.2.2 GPU memory utilization

Figure 16 shows the impact of the different conditions on

the GPU memory utilization. We can observe that the

default condition has the inferior results for both work-

loads. Because the different kinds of jobs generate diverse

kinds of containers, thus the average of utilization in

heterogeneous seems to be lower than the one with

homogeneous. We can also see that the fair-share condition

led to lower memory utilization results, while it achieved

relatively quite good execution time. Since multiple con-

tainers need to share GPU memory among groups and its

amount is not really even regarding jobs’ scale within each

container, it results in the waste of resources leading to low

utilization.

The adaptive fair-share condition shows higher GPU

memory utilization than the default conditions in both two

workload groups, and shows 67.43% and 22.54% higher

memory utilization when compared with two conditions in

homogeneous workload environment, 77% and 24.7% in

heterogeneous environment.

To sum up, the overall experimental results show that

the adaptive fair-share condition proposed in this paper is

superior to the other two conditions (default, fair-share) in

terms of execution time and GPU memory utilization in the

homogeneous group and the heterogeneous group.

4.3 Pause & restart based mechanism

Figure 17 shows the example that our container scheduling

method is applied. We run 12 CNN-MNIST, 1 LAMMPS,

2 QMCPACK and 1 GROMMAC containers on the same

time and keep tracking the GPU resource usage of each

container. From the Fig. 17, we can see that after executing

1400 s, the scheduler noticed that some container will

require a large amount of GPU memory that may exceed

the capacity, then it pause the containers that with lowest

priority and keep those with higher priority running. After

1600 s, the previous unpaused containers finished their jobs

and the scheduler then restart the previous paused con-

tainers to keep them running. Though our proposed

method, multi containers can run simultaneously on a

single GPU without OOM occurs, and the GPU resource

utilization is substantially increased.

4.4 Checkpoint based mechanism

As mentioned above, one of our designing goals in solving

the GPU memory over subscription problem for DL

workloads running with TensorFlow in container based

cluster. To see how our proposed checkpoint based

mechanism to prevent OOM error occurs during the time

when multiple containers launched on one single GPU, we

execute the containers that running CNN training workload

by using Alexnet model at 5 s interval to simulate the real

situation in a cluster environment. We choose the Alexnet

as the training model because it uses relatively fewer

resources, which can maximize the effect of concurrent

execution. We compared the average execution time on

each case where the number of containers differs, by using

our proposed mechanism to the cases that running with a

Vanilla solution. As demonstrated in Fig. 18, the average

execution time increased due to the contention of the GPU

cores, since a single container will consume almost 50% of

Fig. 17 Execution 12 CNN, 1 LAMMPS, 2 QMCPACKs and 1

GROMAC containers with pause/unpause
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the total GPU cores. We should notice that the Vanilla

solution can only enable 4 containers running on the GPU

concurrently when the 5th container tries to allocate GPU

memory, an OOM error occurs due to the exceed of GPU

memory capacity.

On the other hand, our proposed checkpoint based

mechanism can handle the GPU memory over subscription

problem very well. From the Fig. 18, we can tell the fact

that even there are 7 concurrently running containers, it can

still ensure all of them running safely.

5 Related work

There also exists various studies that handled GPU con-

tention issues in Cloud or multiprocessor environment.

Steran [21] suggested a high-level GPU distribution

mechanism rather than a distribution of GPU system

through low-level such as CUDA through SkelCL method.

It shows a mechanism for automatic data redistribution by

implicit movement between CPU and GPU memory

through a container that can be accessed by both CPU and

GPU. However, in applications such as machine learning,

redistribution between CPU memory and GPU memory

requires overhead to be resolved by proper distribution of

GPU memory per container. Kämäräinen [22] explained

the advantages of container by comparing the performance

of virtual machine configuration and container configura-

tion in GPU cloud gaming system. Contrary to a virtual

machine, a container does not require pre-allocated mem-

ory, but it can use resources efficiently because it requires

resources at a specific time of an application’s runtime.

Therefore, we propose efficient allocation of GPU memory

resources using the advantages of containers.

6 Conclusion

This paper proposes a method to share GPU memories

effectively in GPU-container clusters. The proposed

adaptive fair-sharing strategy helps to overcome the limi-

tation of sharing GPU memories among the containers

which causes fatal performance degradation. We analyzed

the problems that might happen in the GPU container

clusters and conducted several experiments to show its

performance degradation.

Our approach is compared with baseline and static fair

share method by the evaluations. According to their results,

it is able to improve the overall performances in terms of

execution time, both GPU and GPU memory utilization.

We also proposed a checkpoint based mechanism for DL

workloads running with TensorFlow in container based

environment to solve the GPU memory over-subscription

problem. our evaluation result shows our proposed mech-

anism can ensure multiple containers that running Ten-

sorFlow jobs to share one GPU safely.
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