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Abstract
Graphics Processing Units (GPU) are widely used for high-speed processes in the computational science areas of biology,

chemistry, meteorology, etc. and the machine learning areas of image and video analysis. Recently, data centers and cloud

companies have adopted GPUs to provide them as computing resources. Because the majority of cloud providers allocate

the GPU resource to users in an exclusive access method, the allocated GPU resource may not be all used. Although the

method of allocating a GPU resource to multiple users for sharing can increase the resource utilization, performance

degradation may occur in individual jobs because of interference between different jobs. It is difficult for a cloud provider

to predict or control the performance of various applications executed on various cloud resources by considering their

characteristics heuristically. Therefore, an intelligent job placement technique is required to minimize the interference

between different jobs and increase resource utilization. This study defines the resource utilization history of applications

and proposes a reinforcement learning-based job placement technique, which uses it as an input. For resource utilization

history learning, a deep reinforcement learning model (DQN) is used. As a result of learning, the current resource’s state is

not exceeded, and the resource is still provided by predicting which commonly placed jobs will have less impact on the

total performance when executed simultaneously. This approach prevents the performance degradation of applications with

diverse execution characteristics and increases the resource utilization by executing the applications while sharing the

resources. The superiority of this study is demonstrated by using the proposed learning method and other methods to

analyze workloads with various resource utilization characteristics. Through the experiments, it is proven that the proposed

method facilitates a reduction of the total execution time and the effective use of resources, while the maintaining

performance.

Keywords GPU � DQN learning � Interference prediction � Multiple job placement

1 Introduction

A Graphics Processing Unit (GPU) consists of thousands of

processing cores and performs parallel procession opera-

tions at a high level. Based on the advantage of highly

accelerated processing of computing tasks, general-purpose

GPUs (GPGPUs) are broadly used in diverse areas such as

machine learning (ML) and high-performance computing

(HPC) applications. Hence, cloud and server infrastructure

providers provide GPU servers to users for the execution of

various applications. Many large cloud providers, such as

Amazon EC2 [1], Nimbix [2], Microsoft Azure [3], and

Alibaba [4] provide GPU services. When a user requests a

GPU, these service providers (e.g., Kubernetes [5], Mesos

[6]) grant exclusive access rights to the user instead of on-

demand access. Such an exclusive access right can reduce

the total system throughput as it blocks access to the whole

GPU resource for other jobs, when the waiting time for an

application is already long [7]. As a result, the GPU may

not be used for sufficient amounts of time, and the provider

ends up with an idle computing resource.

The objectives of computing infrastructure providers are

the attainment of a high resource usage and a reduction in
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operating costs. To accomplish these objectives, the

majority of existing the computing infrastructures are

facilitating the efficient sharing of resources such as CPU

and memory [8]. Among various resources provided in

physical/virtual cluster systems, the process of using the

GPU resource increases the cost and energy use [9].

Therefore, the GPU resources should also be shared for the

economic benefits of the operation. The operating cost can

be reduced by securing a minimum number of GPU

instances and sharing the GPU across multiple systems

[10, 11]. Furthermore, GPU prices are expensive, but GPU

resources can be provided less expensively if multiple

users share it. In addition, GPU resource utilization is

increased whenever many applications are executed toge-

ther by sharing a GPU. Recently, NVIDIA has provided a

Multi-Process Service (MPS) [12] that executes multiple

applications in one process by GPU sharing. However, this

technology can be helpful for performance improvement if,

and only if the kernel pattern of the application is known.

There are studies on the scheduling of co-execution tasks

of applications in GPU resources: the co-placement method

of applications is based on monitoring [13–15], and a

weight-based placement method using the GPU use pro-

filing information of applications [16].

However, although resource utilization can be increased

by placing several applications together on a server, per-

formance degradation may occur in the total performance

due to the competition which occurs for the shared

resources when several jobs are executed simultaneously.

Furthermore, performance prediction becomes more diffi-

cult as interferences can occur between different applica-

tions to ensure they are each receiving sufficient resources.

This is because all applications share and use basic

resources such as cache, streaming multiprocessor (SM),

and I/O as well as the resources (CPU, GPU, and memory)

usually considered by the scheduler [17, 18]. Nevertheless,

in reality, various characteristics of resource use exist as

well as the complex environment and interactions. There-

fore, it is difficult to predict the interference and the per-

formance just by the resource usage of a job.

This paper proposes a reinforcement learning-applied

data placement method based on the job history of HPC

and ML applications in the GPU cluster environment. The

job history is defined according to the resource, for which

most of the resource competition occurs, and using the

history as input, reinforcement learning-applied data

placement is performed to reduce the execution time and

increase the resource utilization. Furthermore, this paper

analyzes the execution time and training overhead by job

when co-placement is performed, and as a result, each job’s

performance and the total performance show less degra-

dation. The major research contents of this paper are as

follows.

– The execution characteristics of various applications

are described, and the relationship between the perfor-

mance and the resource usage is shown, with interfer-

ence occurring when the applications are executed

together.

– The resource utilization history of the application to be

used for learning is defined (GPU application prior

information, GPU application profiling information,

and cluster environment information).

– A reinforcement learning-based job placement method

is proposed, which uses the defined resource utilization

history as input.

– The performance of the proposed method is evaluated

through experiments by comparing it with the perfor-

mance of other methods.

This paper is organized as follows. Section 2 shows the

characteristics of the applications and their relationships

with the performance when the resource is shared. Sec-

tion 3 describes the reinforcement learning-based job

placement method which uses job history. Section 4

describes experiments performed based on the proposed

data placement method and the analyzes of the results.

Section 5 summarizes the studies on the resource sharing

method and the reinforcement learning-applied data

placement method, and comparatively analyzes them with

the study described in this paper. Lastly, Section 6 pro-

vides the conclusion.

2 Background and motivation

This section describes the resource utilization characteris-

tics of HPC and ML applications and explains the rela-

tionship between the sharing of the resource and the

performance degradation occurring when applications are

executed together in a GPU cluster environment. Through

this, the need for reinforcement learning for job placement

is shown, especially regarding the performance prediction.

2.1 GPGPU applications’ characteristics

As GPUs have been widely used in the HPC and ML areas,

their functions have expanded to those of GPGPU. These

applications of GPUs show various resource utilization

characteristics in the GPU cluster environment. In the case

of applications in the two areas, GPU is used for massive

data processing, but they have different characteristics

from each other. In the case of ML applications, the exe-

cution time varies depending on the size of the data set, the

number of layers, and batch size, but the GPU resource is

used consistently during execution [19]. Figure 1 shows

the GPU and GPU memory utilization patterns when the
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ML-applied vgg16 and resnet50 of the TensorFlow

benchmark [20] are executed. Except for during the loading

of the data set onto the GPU memory at the beginning of

execution, the GPU and GPU memory utilization are

almost constant during the learning and the patterns are

maintained until termination is reached.

In the case of HPC applications, there is a subordinate

process that has to be executed for scientific application

analysis. HPC applications have various GPU resource

utilization patterns because they are executed according to

different preprocessing processes and the analysis process

of each application differs as well. Figure 2 shows the

resource utilization patterns of LAMMPS [21] and

QMCPACK [22] which are among the HPC applications.

For the LAMMPS application, the average GPU utilization

is about 40% during execution. The GPU memory uti-

lization increases gradually to about 363 MB - 8,499 MB,

and 100% of the GPU is used when the GPU memory

utilization is at its peak. In the case of the QMCPACK

application, GPU utilization increases in steps of three

stages. The GPU memory is not used until the middle of

the application execution, and after the middle (about 95 s),

it shows a sharp increase to about 5,135 MB.

The ML applications have consistent resource utilization

patterns during learning and analysis, and the HPC appli-

cations have various resource utilization patterns depend-

ing on the execution stage. Therefore, the next section

analyzes the relationship between the resource and the

performance when multiple applications are co-executed.

2.2 Performance vs resource usage
with interference

When multiple applications are executed and using the

resources in the GPU cluster environment, it is difficult to

predict the performance due to the different resource uti-

lization patterns of the applications. Furthermore, even if

all applications are provided with sufficient resources, they

can interfere with each other [23]. This is because, other

resources, like core and I/O bandwidth are shared and used

in addition to the resources usually considered by the

scheduler (CPU, GPU, and memory) [7].

In this study several applications are placed together for

jobs and compared according to the performance by con-

sidering the shared resources during execution. The com-

parison results show that the performance may be affected

by a sharing of resources, and that these results are not

Fig. 1 Examples of resource utilization patterns for the ML applications of vgg16 and resnet50
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sufficient for accurate performance prediction. For the

comparison, we used three deep-learning applications

(CNN, vgg16, googlenet) of TensorFlow benchmark

showing similar resource utilization characteristics and two

HPC applications (LAMMPS and GROMACS) of NGC

(Nvidia GPU Cloud) [24].

Fiure 3 shows the execution time and GPU memory,

core, and I/O usages when two applications were placed

and executed together. For example, as the red color

becomes darker in the diagram of the execution time, the

execution increases. In contrast, the darker the green is, the

higher the usage in the diagram of the GPU memory usage

level, which is drawn on a scale of 0 to 5. In the case of

applications (LAMMPS, LAMMPS), (vgg16, CNN),

(CNN, vgg16), and (vgg16, vgg16), memory shortage

occurs and consequently, affects the execution time.

However, except for these cases, it is difficult to ascertain

the co-execution performance of applications through the

usage of GPU memory, core, and I/O. For example, in the

case of (googlenet, vgg16), the performance degradation

level of the execution time is 4, but for the usage level of

GPU memory, it is 3, while that of the GPU core and I/O

are 2 and 1, respectively. This indicates that when exe-

cuting several applications simultaneously, the shared use

of each resource leads to complex interactions and conse-

quently, they affect the performance in complicated ways.

Scheduling that predicts the performance by using a con-

ventional heuristic method through the usages of each

resource is an NP-hard problem. Therefore, the perfor-

mance should be predicted by considering the character-

istics of all applications and the status of the resource.

3 DqnGPU design

This section introduces the reinforcement learning-based

job placement method for multiple jobs of GPU applica-

tions in the GPU cluster environment. First, detailed job

history items are defined for each resource the application

used, for learning. The reinforcement learning-based job

history learning model is described, and the resource

sharing job placement service model is explained.

3.1 Resource utilization history items of GPU
application

When applications are placed and executed together, not

only does performance degradation occur, but it is also

Fig. 2 Examples of a resource utilization pattern for HPC applications of LAMMPS and QMCPACK
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difficult to manage the execution according to the complex

computing system environment. Reinforcement learning,

which observes the environment and determines an optimal

policy based on the observation results, is suitable for such

a cloud and cluster computing system [25, 26].

The resource utilization history items of applications to

be collected for reinforcement learning were defined.

Table 1 shows the items of the job history for GPU

applications in the GPU cluster environment, and they are

classified largely into three categories. First, prior infor-

mation of GPU applications is the information that a user

submits to the system to execute the application, and it

requires the application name, application type, input file

size, and input parameters. Second, the profiling informa-

tion of the GPU application shows the information col-

lected online when an application is executed. It includes

the resources used during the execution of the application

and the execution time. The collected resources are the

items that can cause performance degradation when mul-

tiple GPU applications are executed together, because then

resource competition occurs. The profiling information of

the resources includes GPU, GPU memory, GPU core, and

PCIe usages. The usage of each item is collected by

monitoring for a certain time duration periodically. Third,

the cluster environment information is the information of

each resource used for the execution of jobs. The GPU

application profiling information and the environment

information collected every hour are used to prevent

Fig. 3 Comparison of the

relationship between the

performance and the resource

usage when applications are

placed and executed together

Table 1 The resource utilization history items of GPU applications

Category Attribute

GPU application prior information Application name

Application type

Input file size

Input parameter

GPU application profiling information GPU utilization

GPU memory usage

GPU core usage

PCIe throughput

Execution time

Cluster environment information Node name

GPU card

GPU architecture

GPU memory

GPU core size

PCIe bandwidth
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excessive placement on the resources when multiple jobs

are placed.

3.2 DqnGPU model

The goal of reinforcement learning is to learn a strategy

that takes better decisions through direct interaction with

the system [27]. Reinforcement learning has the advantage

that a strategy can be applied without prior knowledge

because it learns repetitively which action is performed in a

certain situation. However, the conventional reinforcement

learning techniques have limitations in storing numerous

input data in a table format and solving problems. DQN is a

technique introduced first by the DeepMind team which

developed AlphaGo [28], and uses Deep Neural Network

(DNN) as a function approximator to resolve the problem

of reinforcement learning.

The learning model of this paper was constructed by

modifying a conventional DQN model-based job place-

ment model deepRM [29]. The conventional deepRM (1)

generates a virtual job, and (2) the virtual job targeting the

CPU and memory resources has certain resource usages

only. Furthermore, (3) only the execution of a single job

placement is considered in the learning result. Therefore,

this study proposes a multiple job placement technique

through a DQN model that reflects various resource uti-

lization characteristics targeting real application jobs. (1)

Targeting real GPU HPC and ML applications, (2) the

applications’ changing resource utilization histories of

GPU, GPU memory, GPU core, and PCIe are learned. (3)

The multiple job placement technique is considered by

generating virtual job slots of real applications. (4) The

policy parameters are modified for a smaller distribution

deviation.

3.2.1 Action space

Figure 4 shows the overall DQN structure, in which the

agent interacts with the environment and repeats learning,

rewarding, and observing. At step t, the agent observes the

current st and receives a request to perform an action a.

After performing the action, the state transitions to stþ1 and
the agent receives the reward rt. Here, because the state

transition and the reward are affected only by the action

that the agent performed, they have the Markov property.

The goal of an agent is to maximize the cumulative dis-

counted reward while repeating the learning process. The

cumulative discounted reward is expressed as JðhÞ ¼
maxE½

P1
t¼0 C

trt� and the discount factor c has a value

between 0 and 1. Here, the action is selected based on the

agent’s policy, and for the policy, p: pðs; aÞ ! ½0; 1�;
pðs; aÞ is expressed as a propability of action a being

executed in the state s. However, as mentioned earlier, it is

difficult to store numerous state,action values in a table.

Therefore, a function approximator DNN is used to obtain

the policy parameter h. Accordingly, the policy can be

expressed as phðs; aÞ.

rhJðhÞ ¼ Eph

X1

t¼0
rhlogphðs; aÞQphðs; aÞ

" #

ð1Þ

h hþ a
X

t

rhlogphðst; atÞðQphðst; atÞ � VphðstÞÞ ð2Þ

Therefore, the final goal of DQN is to maximize the

expected cumulative discounted reward Qphðs; aÞ when

action a is performed in the state s according to the policy

ph (Eq. 1). Here, in the reinforcement learning, the policy

parameter h is updated by using the gradient descent [37] to
reduce the deviation of the Q value distribution. The con-

ventional gradient descent method uses only the empirical

cumulative discounted reward V obtained according to the

policy instead of Q which can be biased toward an incor-

rect value. This study predicts the gradient descent value

by subtracting the empirical cumulative discounted reward

Vph obtained according to the policy from the predicted

cumulative discounted reward Qph for the policy parameter

having lower distribution (Eq. 2).

Algorithm 1 shows the overall DQN model training

algorithm with the modified parameters.

3.2.2 State space

The application’s resource utilization history defined in

Table 1 of Sect. 3.1 is used as input for the DQN model

learning for the co-placement of jobs. As shown in Fig. 4,

the model’s input state s ¼ ðj;RÞ includes the job vector j

and the cluster’s resource vector R. Through the cluster’s
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resource environment history items, a cluster resource can

be shown using a four-tuple set, as shown in Eq. 3, and it

indicates the usable resource amount of each resource of

the cluster. The job j is the profiling history information of

the resource collected at every timestep T for each job. ji
has the information of the resource usage changing at every

timestep Tj of the corresponding application APP and can

be expressed by Eqs. 4 and 5.

R 2 fRgpu;Rgpumem;Rgpucore;Rpcieg ð3Þ

ji 2 fAPPid; Tj; rj:gpu; rjg ð4Þ

rj ¼ ðrj:gpu; rj:gpumem; rj:gpucore; rj:pcieÞ ð5Þ

In the state space, the cluster environment’s currently

allocated resources and the resource profiling history of the

job in a reserved and waiting state are shown in separate

images. Figure 6 shows examples of the system’s state

space. A cluster’s image consists of four images for each

resource, and shows the allocation of each resource for the

reserved jobs at an interval of time T. A job image shows

the resource usage at an interval of step T based on the

application’s profiling history collected online. For exam-

ple, the purple-colored job in Fig. 6 shows the resource

requirements for the following five time intervals, respec-

tively: 0, (1, 1, 0, 1), 1, (2, 3, 2, 1), 2, (3, 0, 2, 1), 3, (0, 0, 3,

1), 4, (0, 0, 0, 1). Based on this, an image for each resource

of a job is constructed as a table composed of 0 s and 1 s.

When there is a resource used at step T, a job’s image is

expressed using a table filled with 1 s for the amount of

resources used and 0s for the remaining amount. As such,

cluster images are constructed based on the images of

multiple jobs to be placed together, and here, the following

conditions should be satisfied:

X

j

rj:gpu�Tj�Rgpu;
X

j

rj:gpumem�Tj�Rgpumem;

�
X

j

rj:gpucore�Tj�Rgpucore;
X

j

rj:pcie�Tj�Rpcie:

Therefore, as shown in an example in Fig. 5, a cluster

Fig. 4 Proposed DNN-based

DQN structure

Fig. 5 Examples of state space for the proposed method’s four

resources and waiting job slots
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image and three job image tables can be expressed for the

PCIe resource.

Because it is desirable to express the inputs of a neural

network in the fixed state, as many inputs as the number of

job image slots M are used. As shown in Fig. 5, if three job

image slots exist, three jobs can be used as inputs for

learning. The result obtained in learning is used to deter-

mine a next action a. The action space is expressed as

a ¼ 0; 1; . . .;M. When a ¼ 1, it means that the job allo-

cated to the first job slot is to be executed. When a ¼ 0, it

indicates that the action is pending and there is no available

space in the cluster image for the job image. Therefore,

while proceeding in an interval of step T, an appropriate

job a is decided and executed, and as the resource’s cluster

image is updated, the process is repeated. The information

regarding the job after M is included in the backlog com-

ponents of the state space. If an empty job slot exists, it is

filled with the job taken from the backlog. In the above

method, however, only one job can be executed according

to the result a. Therefore, jobs cannot be placed together

and executed.

In our study, an input space of the neural network was

constructed for multiple job placements. Virtual job image

slots are generated according to the number of job image

slots M. For example, suppose three job image slots exist in

the state space and the jobs of a, b, and c exist in each slot.

Then, a virtual job image slot is composed of a, b, c, ab, ac,

bc, and abc, seven in total, and a table is generated

according to the resource usage of the composed jobs. The

learning is performed using the virtual job image slot as

input. As a result of learning, jobs a and b are placed

together and executed in the case of an action a= ab.

Therefore, for the input into the neural network learning for

co-placement, a virtual job image slot is constructed with
PM

r¼1 MCx ¼ 2M � 1, the combination of M job image

slots, is used. As a result of learning, one case among the M

combinations of applications is generated, and based on

this, the jobs to be co-placed are determined and executed.

3.3 DqnGPU model-based job placement
method

Figure 6 shows the structural diagram of the proposed

learning-based job placement service model. This paper

targeted the GPU computing container for the infrastruc-

ture and used kubernetes for the orchestration platform.

The proposed service model provides the job placement

service that reflects the job history learning model pro-

posed in Sect. 3.2 and the learning results.

The job placement service places and executes the jobs

to be co-placed, i.e., the action values obtained according

to the system environment and the characteristics of the

applications inferred earlier; and monitors the status of the

system and jobs. Based on this, a job’s failure, termination,

etc. are identified and the next job is provided a place on

the resource as soon as it is available.

This study assumes that profiling information exists for

the GPU applications a user wants to execute. Furthermore,

it is assumed that the container image containing the

compiler and library of the application to be executed exist

in the registry, which is the image storage.

The algorithm in Algorithm 2 shows the overall flow of

placing jobs that will be co-executed, while reflecting the

status of the cluster resource and profiling information

history which the user has submitted based on the rein-

forcement learning model. The user submits an application

that he/she wants to execute (line 1). The submitted

application’s profiling data (ProfilingData) and the sys-

tem’s status data (ClusterStatus) are checked (line 2) and

the input data that will be used as input for the learning

model are set up (line 3).

ProfilingData ¼ Eq.ð4Þ0s ji 2 fAppid; Tj; rjg
ClusterStatus ¼ Eq.ð3Þ0s R
2 fRgpu;Rgpumem;Rgpucore;Rpcieg

Afterwards, by applying the reinforcement learning, this

algorithm decides the order of the jobs of the entire

workload queue and the jobs that will be co-placed (line 4).

The jobs are co-placed and executed according to the

inferenced order of jobs (line 6), and the status of the jobs

Fig. 6 The learning-based job placement service model
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is monitored (line 7). This is repeated until all the jobs are

placed (line 5–8).

4 Experiments

The experiment was conducted and the results were ana-

lyzed to evaluate the performance of the proposed method.

In this section, the experiment’s target applications and the

experimental environment are described, and the compar-

ison method is introduced. Lastly, the performed experi-

ment is described, and the results are analyzed.

4.1 Target applications and experimental
environment

The following HPC applications and ML benchmark

applications were used to verify the performance of the

proposed job placement method. For HPC applications,

four applications provided by NGC and seven TensorFlow

benchmark applications are used as the target applications

of the experiment. The names of the applications used in

the experiment are shown in Table 2.

Five workloads were generated for each workload

according to the resource utilization history of the appli-

cations mentioned above, for the experiment. A total of five

workloads were configured: GPU_heavy and GPU-light

workloads based on an average GPU utilization level of

40%; GPU memory_heavy and GPU memory_light work-

loads based on an average GPU memory level of 50%; and

a random workload, in which all applications were ran-

domly mixed. For each workload, a total of 30 applications

were generated randomly based on the configuration cri-

teria of the workload. Then, the total execution time,

average GPU utilization level, and average GPU memory

utilization level were measured.

For the experiment, a GPU-based container cluster

environment was constructed, and for the cluster environ-

ment, Kubernetes, a container orchestration platform was

used. Kubernetes is a Container as a Service (CasS) type of

cluster computing open source project, and provides a

service to automate the container’s placement, scaling, and

operation. Large companies such as Amazon, Alibaba,

Samsung SDS, baidu, Huawei, and IBM have adopted and

are using it for their cloud operations.

Kubernetes’ basic device plugin k8s was modified for

multiple job placements of a node. When the conventional

plugin is used, servers in the Kubernetes environment, i.e.,

multiple servers for the execution of multiple jobs are not

created. Furthermore, the co-execution of multiple jobs in a

single card of the node is not supported. Therefore, the

plugin was modified to facilitate the creation of multiple

servers and the execution of multiple jobs in the experi-

ment of this study. It was modified by using an open-source

Alibaba fake GPU [32] as a reference. Furthermore, the

jobs were executed by using a NVIDIA docker container

[33]. The specifications of the computing node used in the

experiment are shown in Table 3 below.

4.2 Experiments and analysis of the results

The performance of each workload is analyzed, and each

job’s speed degradation and training overhead are analyzed

comparatively in order to analyze the performance of the

proposed job placement method. For comparison with the

proposed method of this study, four job placement methods

are used: SJF, which is a single job placement method;

Tetris [34], which is a multiple job placement method; and

DeepRM Max and DeepRM Mean, which are placement

methods applying the reinforcement learning. The

descriptions of each job placement method are as follows:

– SJF: jobs are placed in increasing order of job execution

time

– Tetris: jobs are placed in a packing method according to

the applications’ job usage and resource availability

– DqnGPU: the proposed placement method of this study

– DeepRM Max: jobs are placed by applying the

reinforcement learning, in which the maximum

resource usage value of a job is used as an input

– DeepRM Mean: jobs are placed by applying the

reinforcement learning, in which the average resource

usage value of a job is used as an input

4.2.1 Execution result analysis by workload

In the experiment, the results of the execution using the

results of job placement inferenced through the proposed

learning model are compared with the results of the other

placement methods.

A GPU_heavy workload consists of vgg11, vgg16, res-

net50, resnet101, resnet152, qmcpack, hoomd, and lammps

applications that show an average GPU utilization of 40%

or higher. Figure 7a shows the execution results of a

GPU_heavy workload. When jobs are placed using the SJF

method, the execution time is 4807 s, the shortest.

Table 2 The target applications in the experiment

HPC ML

LAMMPS googlenet resnet50

GROMACS [30] alexnet resnet101

QMCPACK vgg16 resnet152

HOOMD [31] vgg11
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However, the average GPU utilization is 70.50% and the

average GPU memory utilization is 36.44%, which are the

lowest values of this study. Among the methods of exe-

cuting multiple jobs, the method proposed in this study

shows the highest performance with 4891 s, and the aver-

age GPU utilization and the average GPU memory uti-

lization show high resource utilizations with 82.09% and

59.13%, respectively. In the case of DeepRM Mean, the

longest execution time is shown with 5530 s, which is due

to a memory problem (OOM: out of memory) occurring

when the GPU memory is used fully, and the failed

application is executed again.

A GPU_light workload consists of alexnet and gromacs

applications that show an average GPU utilization of less

than 40%. Figure 7b shows the execution results of a

GPU_light workload. For executing applications with a

low GPU utilization, the placement of the SJF method

shows the lowest performance (2295 s) and resource uti-

lizations. It seems because each application is placed alone,

the SJF method increases the execution time compared to

the other methods which are capable of co-execution. For

the application, gromacs, the execution time is longer than

that of alexnet, but because it uses less GPU memory, up to

three jobs can be executed simultaneously when it is

placed. The placement method proposed in this study

shows the highest performance with an execution time of

1214 s, GPU utilization of 89.31% and GPU memory uti-

lization of 88.42%, and based on the placement using the

reinforcement learning, the GPU memory can be used up to

a maximum of 11,755 MB.

GPU memory_heavy workload consists of vgg11,

vgg16, resnet50, resnet101, and resnet152 applications that

show the average GPU memory utilization of 50% or

higher. Figure 7c shows the execution results of GPU

memory_heavy workloads. For SJF, the execution time is

the shortest, followed by the execution time of DqnGPU. It

seems that the execution time has increased because when

the executed applications are co-placed, resource compe-

tition is induced due to their high GPU utilizations. How-

ever, when compared to the other co-execution placement

methods, it has the shortest execution time with 1214 s and

the highest resource utilizations with 89.31% and 88.42%,

respectively.

GPU memory_light workloads consists of alexnet,

googlenet, qmcpack, hoomd, gromacs applications that

show the average GPU memory utilization of less than

50%. Figure 7d exhibits the execution results of the GPU

memory_light workload, and the method proposed in this

study shows the highest performance in the aspect of

execution time. It has the shortest execution time with

3928 s. This is because gromacs and qmcpack applications,

which have low GPU memory utilization but a long exe-

cution time, have been placed and executed together based

on the learning results.

A random workload consists of all applications used in

the experiments. Figure 7e shows the execution results of a

random workload. When the method proposed in this study

is used, the execution time is 2481 s, the GPU utilization is

62.16%, and the GPU memory utilization is 20.45%.

Regarding the execution time aspect, it shows better per-

formance than the other co-execution placement methods.

However, the GPU utilization is lower than that of Tetris

and DeepRMMax when compared with the other workload

experiments, and the GPU memory utilization is similar to

that of SJF. From these results, it can be seen that when

multiple applications exist, the impact of resource com-

petition may be reflected in a variety of ways if they are co-

executed because various resource utilization characteris-

tics exist.

4.2.2 Speed degradation analysis of jobs

In order to evaluate the performance by using the random

workload used in the above experiment, the speed degra-

dation was analyzed for a total of 30 jobs with respect to

the four co-execution placement methods. The evaluation

was performed by classifying them into multiple cate-

gories—no speed degradation (2% error), less than 10%

speed degradation, greater than or equal to 10% and less

than 20% degradation, and greater than or equal to 20%

Table 3 The cluster

environment information
Node details

CPU (master) GPU (node)

Architecture Intel CoreTM i7-5820K Nvidia GeForce Titan Xp D5x

Core clock 3.30 GHz 1.58 GHz

Num of cores 6 3840

Mem. size 32 GB 12 GB

Threading API – NVIDIA CUDA 10.0

PCIe bandwidth – 32 GB/s

OS Ubuntu 16.04.6 LTS Ubuntu 16.04.6 LTS
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Fig. 7 Comparison of execution time, GPU utilization, GPU memory utilization between job placement methods by workload
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degradation based on the execution time of a single exe-

cuted application.

Figure 8 shows the speed degradation of each job for the

four methods for the execution of the random workload.

The method proposed in this study showed that no speed

degradation occurred in a total of 20 jobs. Because the

learning was performed according to the resource utiliza-

tion, which changed with execution time, and the jobs were

placed in a range not exceeding the actual limit of

resources, the speed degradation caused by the resource

competition was small. However, the occurring speed

degradation implies that the characteristics, various con-

ditions, or the environment of the executed applications,

have an influence in addition to those of the resources,

which was not considered before the co-execution. In the

cases of Tetris and DeepRM Max methods, no speed

degradation occurred for 14 jobs. In the case of DeepRM

Mean, 12 jobs showed a speed degradation of 10% or

larger, corresponding to the largest number of jobs. In the

case of DeepRM Mean, because jobs are placed according

to the mean resource values, many jobs showed speed

degradations because of OOM problems occurring during

co-execution.

4.2.3 Comparison of training overhead

The random workload was used to comparatively evaluate

the overhead of training time spent in the total execution

time. The total execution time is compared after normal-

ization based on the SJF, which has the shortest execution

time. Assuming that all applications’ resource utilization

histories exist, the total execution time including the

training time for the first job placement is compared. In the

cases of DqnGPU, DeepRM Max, and DeepRM Mean

method, the training time is included because job

placement is performed based on the results obtained

through the reinforcement learning.

Figure 9 shows the training overhead results of the

respective placement methods. The normalized values of

the execution time for Tetris, the proposed method of this

study, DeepRM Max, and DeepRM Mean is approximately

1.294, 1.081, 1.303, and 1.346, respectively. The proposed

methods’ training time is approximately 0.054 and the

execution time minus the training time is 1.027. When the

result of the execution time is compared with that of SJF,

the difference in performance is small. This implies that

except for the first training time of job set, there is almost

difference of performance in the case of placing a next set

of jobs thereafter. This means that the performance of the

next job set can be improved because the accuracy as well

the resource utilization will increase when the training is

continually performed online while performing the jobs.

The training time of DeepRM Max is 0.048, and when only

the execution time is compared between Tetris (1.294) and

DeepRM Max (1.254), the latter is superior. Therefore, the

job placement method that applies the reinforcement

learning excluding the first training overhead is significant.

4.2.4 SJF vs DQNGPU about cost

Depending on the workload or executed application, the

performance may be better when it is placed and executed

alone. However, the earlier experiments confirm that co-

placement is superior for every type of workload in the

resource utilization aspect. This implies that there is an

advantage with respect to the operation of clusters. In order

to explain the advantage of co-placements of resources in

the user aspect, the cost was compared between the SJF and

DQNPGPU based on the GPU instance provided by a cloud

company. Because the cost of the GPU-sharing instance

does not exist, the instance costs were compared based on

similar GPU cards currently provided. Table 4 shows the

GPU instance costs provided by Amazon EC2. G3 instance

and G4 instance provide NVIDIA Tesla M60 and NVIDIA

Fig. 8 The speed degradation comparison of 30 jobs using the four

co-placement methods

Fig. 9 Comparison of training overheads
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T4 GPU cards, respectively. In the aspect of Cost 1:

Regarding the GPU memory resource, suppose

g4dn.4xlarge is the same as two units of g3.xlarge; then,

$0.602 can be saved when g4dn.4xlarge is shared. Fur-

thermore, in the aspect of Cost 2: Regarding vCPU and

memory resources, supposing g4dn.4xlarge is same as four

units of g4dn.xlarge 4; then, up to $0.301 in cost can be

saved when g4dn.4xlarge is shared.

The prices above were compared based on the cost of

executing the random workload. Figure 10 compares the

costs of SJF and DQNGPU. In the case of Cost 1, the cost

was reduced by about 29.86% when the co-placement

instance was used as compared with using a single place-

ment instance. In the case of Cost 2, the cost was reduced

by about 49.98% when a resource was shared as compared

with using a single instance.

5 Related works

This section describes the resource management method

based on resource sharing in the GPU cluster environment.

Furthermore, studies on various resource scheduling

methods using machine-learning are introduced, and their

results are compared with this study in Table 5.

5.1 GPU sharing

As GPUs have become increasingly widely used, cloud

providers are providing various kinds of GPU resources.

The conventional service method, which allocates just one

user to a node, can lead to resource waste of GPU node and

have a relatively high cost. Therefore, studies have been

conducted on methods of sharing and managing GPU

resources, with the goal of effectively using the resources

in the cloud and cluster environment.

Hong [16] proposed a system for fair sharing by cal-

culating the weight according to the GPU utilization

intensity of HPC application programs in a cloud envi-

ronment. When the GPU kernel execution request is short

and repetitive, an overhead of memory mapping I/O, etc.

occurs. This issue is solved by managing the queue without

lock by using the shared memory region between virtual

machines (VMs). However, the fairness management of the

resource use between VMs cannot be properly performed

when the number and length of the kernels are vary, as for

HPC applications. Diab [35] proposed a system that facil-

itated the simultaneous execution of jobs by sharing GPU

resources among different users in a cluster environment.

Using an openstack-based VM, each resource’s informa-

tion and executed application’s information were collected,

and based on these, an API was seized, and two GPU

kernels could be executed. Execution time and GPU

memory information was collected for the information of

the application, and in the experiment, the scheduling was

performed for only the machine learning applications

which have compute-intensive characteristics. However,

for the case of HPC applications, as they can have I/O

intensive characteristics, additional information of shared

resources and monitored resources is need.

5.2 System management using ML

Machine learning studies have been actively performed for

system operations in diverse areas such as purpose classi-

fication of load balancing, traffic routing, and patch files

[36]. Various past and current data such as environment,

application information, and environmental change

according to executed application can be received as

inputs, and based on these, the results such as interference

between applications, job placement, and resource man-

agement can be obtained through learning. Hence, interest

is increasing in the application of machine learning to

cluster operation [37], and studies have been carried out to

improve job and resource management [38–42].

Rossi [38] proposed a resource management technique

capable of auto-scaling based on the reinforcement learn-

ing among the machine learning methods. Optimal hori-

zontal scaling and vertical scaling of the next job container

are decided by using the dynamic-Q in the reinforcement

Table 4 Amazon EC2’s GPU

instance costs
Name GPU vCPU Mem.(GB) GPU Mem. (GB) GPU cores Cost ($)

g3.xlarge 1 4 30.5 8 2048 0.75

g4dn. xlarge 1 4 16 16 2560 0.528

g4dn. 4xlarge 1 16 64 16 2560 1.204

Fig. 10 Cost comparison: SJF vs DQNGPU
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learning. The learning was performed based on the CPU

occupancy history of applications with the goal of strate-

gically minimizing the runtime cost. Mao [39] proposed a

resource management technology based on the Deep

Q-Networks (DQN) reinforcement learning. The CPU and

the memory were divided into certain slot units according

to the execution time, and they were used as input values to

perform the learning. Based on the learning, the resource

provision for the next job are generated as a reward value,

and this is reflected in the environment. However, because

the above studies conducted the learning based on the CPU

resource history, additional resources (GPU memory, PCIe,

etc.) should be considered when executed on the GPU

resource.

Bao [40] proposed a job placement framework using

deep reinforcement learning (DRL) in the GPU cluster

environment. The learning model learns a total of three

inputs: user, CPU, and GPU resources. Based on this, jobs

that will be simultaneously executed on the server are

placed. The goal of the reward is to minimize the average

job completion time. The study of [40] states that jobs are

placed with a low level of interference when different types

of machine learning applications exist. However, the CPU

and GPU histories of applications are not adequate enough

to reduce the effects of interference, and more inputs are

needed for other resources, on which interference may

occur. Ukidave [41] proposed an interference-aware

scheduler for applications based on a machine learning

model through the history values of applications executed

on the GPU. The lengths of kernels were changed to

investigate the histories of interference with each other, but

it was proven that they were not actually applicable to the

applications. Accordingly, the histories, in which interfer-

ence may occur between applications, were defined, and

learned through Random Forest (RF) and Linear Regres-

sion (LR), which are regression models. However, because

the histories defined in the paper were learned by focusing

on the length of the kernel, they were suitable only for the

machine learning applications having a certain kernel

execution pattern. The study of [42] proposed an interfer-

ence-aware scheduler for co-execution of applications on

the GPU-based cluster and cloud server. Only simple his-

tories are profiled online, and the prediction is performed

based on the empty Single Value Decomposition’s (SVD’s)

table values using collaborative filtering (CF). However, in

the case of collaborative filtering, the result can converge

to an incorrect prediction value. Furthermore, this method

is appropriate in the case of an application having a certain

characteristic but it may not be appropriate for an appli-

cation for which prediction is impossible.

6 Conclusion

This study proposed a reinforcement learning DQN-based

job placement method that reflects the job history of

applications in the GPU cluster environment. Reinforce-

ment learning performs the learning through the DNN

which reflects the job history, including changing resource

utilization, and obtains the multiple job placement action

values. Based on the proposed data placement method, co-

placement and resource sharing were facilitated targeting

the applications with various characteristics. The work-

loads classified by the characteristics were generated and

the comparison target methods, i.e., a single placement

method, multiple placement methods, and the reinforce-

ment learning-applied multiple placement method were

compared. The experimental results confirmed that the

proposed method constituted a significant improvement, as

it achieved low performance degradation and better

resource utilization. Furthermore, the training overhead

that might occur was analyzed and the results proved that

its impact on the total performance was small. In addition,

the benefits of GPU sharing placements were explained by

comparing the GPU resource cost between a single place-

ment and the sharing placement. In a future study, a cluster

resource environment will be added, and the resource

environment of executed applications will be changed in

order to consider the changed job history in the rein-

forcement learning. Furthermore, the method will be

expanded to include offline job placement for the first

Table 5 ML-based scheduling features comparison

Features [39] [40] [42] [41] DqnGPU

ML method DQN DRL CF RF, LR DQN

Target resource CPU GPU GPU GPU GPU

Target apps. Virtual job ML ML ML ML & HPC

Execution/non-execution of multiple apps. x o (multi-apps) o(3 apps) o (2 apps) o (multi-apps)

Consideration/non-consideration of interference-related detailed x x x o o

Cluster Computing

123

Author's personal copy



placement in order to reduce the training overhead when

first executed.
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