
Application-aware Resource Sharing using
Software and Hardware Partitioning on Modern

GPUs
Theodora Adufu ∗

Department of Computer Science
Sookmyung Women’s University

Seoul, South Korea
theoadufu@sookmyung.ac.kr

Jiwon Ha †

Department of Computer Science
Seoul National University

Seoul, South Korea
jwh0245@snu.ac.kr

Yoonhee Kim ‡

Department of Computer Science
Sookmyung Women’s University

Seoul, South Korea
yulan@sookmyung.ac.kr

Abstract—Graphic Processing Units (GPUs) are known
for the large computing capabilities they offer users com-
pared to traditional CPUs. However, the issue of resource
under-utilization is becoming more apparent as more and
more applications are unable to saturate modern GPUs
which have even higher processing capabilities. While
concurrency mechanisms like hardware partitioning have
resulted in better utilization compared to deployments
without sharing, the issue of resource under-utilization still
persists even in deployment scenarios where applications
are executed on the smallest GPU partitions of modern
GPUs. Software partitioning on the other hand, does not
guarantee isolation during executions leading to issues
of interference and consequently limiting the number of
applications which can be run concurrently. Leveraging
both software and hardware resource partitioning schemes
in an effort to mitigate resource under-utilization issues
is yet to be fully explored. In this paper, we evaluate the
predictions of a proposed linear regression model relative
to actual executions. The results of our experiments show
that whilst our approach accurately estimates performance
for sharing differently-sized GPU partitions among diverse
applications based on each application’s characteristics, it
also improves utilization and reduces resource wastage.

Index Terms—Resource sharing, resource under-
utilization, concurrency, hardware partitioning

I. INTRODUCTION

Computing resources like Graphic Processing Units
(GPUs) are gradually becoming part of the mainstream
infrastructure in cloud environments [1]–[8], in response
to the demand for higher processing power for the execu-
tion of Artificial Intelligence (AI) and High Performance
Computing (HPC) applications amongst others. Modern
GPUs like NVIDIA A100 [9] and H100 [10] GPUs
promise to offer users higher computational capacities
through the enhanced compute and memory resources
they provide. However, they may not always be cost-
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effective in the absence of options for concurrent execu-
tions.

While there are applications which require lots of
GPUs [11]–[13] in order to complete execution in a
reasonable amount of time, most general purpose GPU
applications are unable to saturate the GPU resources
dedicated to them [14]–[22]. This results in resource
under-utilization at higher overall infrastructural costs to
the users who request for GPU cloud resources.

Concurrency mechanisms like CUDA streams [23]
[24], Hyper-Q, Multi-Process Service (MPS) [25] as
well as Multi-Instance GPU (MIG) [26] have been
introduced to implement concurrent executions on GPU
resources and hence improve utilization. However these
are implemented in isolation and do not consider the
characteristics of the applications being executed.

This paper seeks to investigate application-aware ap-
proaches to allocating resources to HPC applications
using a hybrid of concurrency mechanisms. We

• investigate resource utilization using an application-
aware resource allocation approach that leverages
sharing at both software and hardware levels

• provide a preliminary heuristic approach to select-
ing the set of applications to co-run on different
GPU partitions.

• propose a resource allocation policy using linear
regression modeling in a manner that maximizes re-
source utilization, reduces interference and reduces
wastage of GPU resources

The rest of the paper is organized as follows: in
Section 2, we briefly discuss some related works and
explain our motivations in Section 3. We then formulate
a performance model in Section 4. In Section 5, we eval-
uate our model with experiments using HPC applications
and conclude the paper in Section 6.



II. RELATED WORKS

Prior research works like [28]–[32] implement intra-
SM resource sharing approaches to improve SM utiliza-
tion. Chen et al. [33] leverage the compiler to construct
GPU tasks and allocate GPU resources uniformly at
each kernel launch per request. However, these require
modifying the underlying CUDA code of the application
and may not be suitable for cloud environments.

Dhakal et al. [17] and Choi et al. [34], determined
the share of GPU resources to allocate to each of the
two inference models they were co-locating on each
GPU using the idea of diminishing marginal returns.
Li et al. [35], first share GPU resources using MPS
to determine the required SM resources per application
and estimate the optimal MIG partition required for the
execution of a mix of jobs. Arima et al [36] propose a
performance model to optimize resource partitioning, job
allocations and power efficiency for HPC applications
on MIG-enabled GPU devices. They considered the
application’s run time characteristics and the influence of
power caps in their selection of co-running applications
in a manner that improves performance. However, they
focus on power allocations and do not consider software
partitioning.

III. MOTIVATION

A. GPU Resource Under-utilization

Prior research works observed resource under-
utilization when executing Deep Learning (DL) applica-
tions [14]–[17] on full GPUs using recent concurrency
mechanisms like MPS and MIG. In our previous research
on GPU sharing among HPC applications [37], [38], we
confirmed through case study based experiments with
selected HPC applications from CUDA samples [39],
Rodinia [40] and Polybench [41] benchmarks, the issue
of resource under-utilization.

Fig. 1. Resource under-utilization of selected HPC applications

We present in Figure 1, the peak SM
Activity(SMACT) and DRAM Activity(DRAMA)
of some selected applications when executed in solo

on the least sized MIG partition(1 GPC) of the
NVIDIA A30 GPU. We observed that, with the default
execution, partitions(chunks) of GPU resources are not
allocated based on each application’s resource needs
thus there was resource under-utilization even in the
smallest hardware partition(1 GPC) of the NVIDIA
A30 GPU. Moreover, different applications utilize GPU
resources differently and thus the amount of resources
which become waste or fragmented [42] varies across
applications.

B. Analysis of HPC Application Sensitivity to Resource
Allocations

We investigated the performance of different HPC
applications when various allocations of GPU resources
are allocated to them at the software and hardware
levels. We executed each application in solo for different
allocations of GPU resources at both the software (MPS)
and hardware level (MIG).

Fig. 2. Resource sensitivity for different software level GPU alloca-
tions

Fig. 3. Resource sensitivity for different hardware level GPU partitions

We observed in Figure 2 that with software par-
titions, apart from LavaMD [40] which is a heavy-
compute intensive(Ch) application, the performance of
other applications did not change significantly with the



Fig. 4. Application’s responsiveness to different resource allocations for different inputs

allocation of more resources. Light-compute intensive
(Cl) applications like Heartwall [40] for instance had
a "sweet-spot"(40%) beyond which additional resources
did not significantly improve performance presenting
opportunities for GPU sharing. Unscalable (US) ap-
plications like Gaussian [40] also did not respond to
increased resources and so could share resources with
other applications. With hardware partitions (Figure 3),
applications perform differently on different allocations
of GPU partitions. For instance, LavaMD did not run on
1 GPC allocation(least-sized GPU partition on NVIDIA
A30) since it required more memory and cache re-
sources than the resources provisioned in the partition.
We observed however that this was dependent on the
input arguments used during the execution. We thus
investigated the impact of different input sizes for some
applications.

We observed in Figure 4 that, Memory intensive(M)
applications like StreamCluster and Light-compute in-
tensive (Cl) applications like Heartwall had similar re-
sponses to resource allocation for different input sizes
indicating that the input size had negligible impact on
performance. Heavy-compute intensive (Ch)applications
like LavaMD however were seen to respond more sensi-
tively to resource allocations indicating that for larger
inputs, resources should be fully dedicated to such
applications. With the observed changes in the sensi-
tivity to resource allocations for different input sizes,
we considered input sizes, resource sensitivity, resource
utilization, application’s profiled characteristics and re-
source allocations as factors which affect performance.

IV. OPPORTUNITIES FOR CO-SHARING GPU
PARTITIONS

In a previous study [37], [38], we observed that, by
co-scheduling applications with different characteristics
in different GPU hardware partitions, more applications
could be scheduled and the GPUs overall resource uti-
lization improved. However, deciding which applications

to co-run on the GPU partitions requires a consideration
of each application’s characteristics.

A. PROBLEM FORMULATION

We extend an optimization problem [36] that enables
us to estimate the performance of applications to be co-
run using software level sharing on various hardware
partitions(chunk). Given a Batch of applications, the
hardware partitions(chunk) of the GPU and a fairness
parameter (α), we maximize the throughput of the sys-
tem with regards to the set of applications co-run on the
chunk, subject to a fairness constraint as follows:

given Batch(App1, App2, ..., Appn), chunk, α
max T(Appset1 , Appset2 , ..., chunk, Appx)
s.t. Fairness(Appset1 , Appset2 , ..., chunk) > α

Output Appseti , chunki
Our proposed model takes into account the different

possible configurations or hardware partitions (chunkn)
available on different GPU architectures and each appli-
cation’s characteristics(Appx) obtained through profiling
and converted into a vector using basis functions. It then
outputs the best chunki and Appseti which maximize
throughput as well as optimize resource utilization. In
this experiment, each Appseti contains only two (2)
applications though with current software level concur-
rency mechanisms, more applications can be co-run per
chunki.

We determine the applications in each Appseti heuris-
tically [28] based on the application’s characteristics. We
evaluate the Turnaround Time(TT) for a possible pair
of applications(TTAppi and TTAppi+1 ) in the Batch, to
determine which applications can be co-run and which
ones should be run in solo per Appseti .

The Turnaround Time [28], for consecutive solo-runs
on the least GPU partition (1 GPC) is

TTsolo= (TTAppi
+ TTAppi+1

)

and that for co-execution scenarios is

TTco= max(TT ′
Appi

, TT ′
Appi+1

).



Using the Average Normalized Turnaround
Time (ANTT) [28], [43], we determine that
ANTT(TTco/TTsolo) less than one (1) indicates
better throughput from co-sharing Appi and Appi+1

thus both applications can be evaluated for performance
as an Appset using the proposed performance model.
By so-doing, we account for interference between the
applications to be co-shared.

We maximize the Throughput, T of co-running the
applications on each chunki under a fairness constraint
Fairness > α. Throughput, T here, is obtained using
the weighted speed-up (WS) [36], [44] of all the pairs
of applications (Appseti ) run on various chunks of the
GPU (chunki) as follows:

T(Appset1, Appset2, ..., chunk, Appx)

= WS(Appset1, Appset2, ..., chunk, Appx)

=

i<n∑
i=0

RPerfAppseti
(chunki, Appx)

RPerfAppseti
(chunki, Appx) is the relative perfor-

mance of Appseti when executed on chunki normalized
to performance of Appseti when run on full GPU re-
sources.

The fairness constraint, Fairness > α, is to ensure that
Appseti with relatively similar performance are co-run.
We define Fairness as:

Fairness(Appset1, Appset2, ..., chunk, Appx)

= min[RPerfAppseti
(), ..., RPerfAppsetn

()]

B. PERFORMANCE MODEL

We estimate the performance of the applications in
the Batch with consideration to the computing resources
chunki allocated to each Appseti and the characteristics
(Appxseti) of the applications. This makes up the first
term A(chunki) · B(Appxseti) of our model. The first
term also includes a consideration of the possible in-
terference caused by co-running applications within the
same chunki when applications are selected heuristically
for each Appseti based on their ANTT.

Additionally, though hardware partitions guarantee
resource isolation between chunks, modern GPUs have
the option of sharing memory resources. In such a case,
configured chunki are prone to interference. For such a
configuration [36], we generalize the relative interference
with the second term. We do this with reference to the
characteristics of the applications in the Appsetn.

We model the relative performance of a set of ap-
plications executed on the chunk using linear regres-
sion performance modeling [36], [45], [46] as follows:
RPerfAppseti(chunki, Appx)

= A(chunki)·B(Appxseti)+
∑
i ̸=n

C(chunkn)·D(Appxsetn)

As in [36], the coefficient vectors (A, C) are obtained
independently using the Least Square Method (LSM).
The vectors B(Appxseti) and D(Appxsetn) on the other
hand are obtained through conversions with pre-defined
basis functions.

V. EXPERIMENT AND EVALUATION

A. Experimental Set-up

We conducted our investigations using selected HPC
applications taken from CUDA samples [39], Rodinia
[40], Polybench [41] and Tango [50] benchmarks on the
NVIDIA A30 GPU.

The applications in Appsetn are co-run on the chunkn
based on the possible MIG profile configurations on
the NVIDIA A30 GPU [26]. This can be modified
for the various architectures which have GPU hardware
partitioning available (e.g. NVIDIA A100, H100).

TABLE I
MODIFIED PERFORMANCE COUNTERS AND FUNCTIONS [36]

Performance Counters and Resource Utilization Definitions
Appx1= SMACT Appx2= DRAMA Appx3= SMOCC Appx4=
Compute Throughput [%], Appx5= Memory Throughput [%],
Appx6= L2 Cache size[MB], Appx7= Device to L2 Data
Writes[MB], Appx8= Tensor (mixed) [%], Appx9= Tensor (dou-
ble)[%], Appx10= Tensor (integer) [%] Appx11= L2 Hit Rate
[%], Appx12= Turnaround time(solo) [s], Appx13= Turnaround
time(corun) [s]

Basis Functions B(Appxseti), D(Appxsetn)
B1(memory/compute ratio) = Appx5/Appx4, B2(Resource sen-
sitivity) = (δ utilization / δ Resource allocation), B3(Cache
Utilization) = Appx7/Appx6, B4(ANTT) = Appx13/Appx12 B5
= const, B6(tensor compute intensity) = (Appx8 + Appx9 +
Appx10)/100, B7(non tensor compute intensity) = Appx4/100 -
B6
D1 = Appx11/100 (access pattern related), D2 = const.

To evaluate the co-scheduling scenarios in the hard-
ware partitions, we first collected performance counter
values for the applications during a solo run on the
full GPU resource using Nsight Compute [48] with
some modifications to the setup in [36]. Additionally,
we collected metrics on the SM activity (SMACT),
the memory bandwidth utilization or DRAM activity
(DRAMA) and SM occupancy (SMOCC) every 100ms
using NVIDIA’s Data Center GPU Manager (DCGM)
[47] for both co-run and solo run instances as shown in
Table I.

We then classified the applications [30], [36] as shown
in Table II, into Heavy Memory intensive(Mh), Light
Memory intensive(Ml), Heavy Compute intensive(Ch),
Light Compute intensive(Cl), Unscalable(US), using
profiled information. Applications which had Appx3 =
0, or had Appx1 and Appx2 = 0 when executed on the
smallest hardware partition (1 GPC) were considered
Unscalable (US) as they did not utilize a significant
amount of the GPU (SM and DRAM) resources. An



TABLE II
APPLICATION CHARACTERIZATION

Application Appx1 Appx2 Appx3 Appx4 Appx5 B1 B3 Class

Histogram 0.091 0.053 0.086 45.65 94.62 2.07 2.80 Ml

Scan 0.572 0.506 0.536 13.05 79.29 6.08 1.14 Mh

Backprop 0.001 0.005 0.001 60.92 61.32 1.01 0.38 Cl

BFS 0.021 0.009 0.015 16.43 10.1 0.61 0.04 Cl

Gaussian 0 0.004 0 0.04 0.59 14.75 0 US

Heartwall 0.824 0.043 0.299 7.82 6.19 0.79 0.01 Cl

Hotspot 0.001 0.003 0 71.51 30.85 0.43 0.09 US

StreamCluster 0.27 0.244 0.242 22.76 77.13 3.39 3.01 Ml

GEMM 0.018 0.015 0.021 23.81 39.24 1.65 0.13 Cl

Jacobi 0.021 0.004 0.015 30.88 37.83 1.26 0.17 Ml

LavaMD(2GPC) 1 1 0.562 94.95 16.12 0.17 82.92 Ch

Fig. 5. Relative Performance Estimation Comparison Across Different Workloads

application was classified as memory intensive if the
memory throughput to compute throughput ratio (B1)
was more than one(1.0), and compute intensive other-
wise. Heavy Compute intensive applications were those
which scaled well with more SM resources and had high
SM resource utilization whilst Light Compute intensive
had lower resource utilization and were less responsive
to allocations. Similarly, Heavy memory intensive ap-
plications were those which had significant bandwidth
utilization whilst Light memory intensive had lower
bandwidth utilization. Applications whose cache utiliza-
tion was >1 were also expected to be allocated sufficient
resources. In this evaluation, we did not consider Ten-
sorCore intensiveness due to the selected benchmarks
used for the study however this could be included by
evaluating related performance counter statics Appx8,
Appx9, Appx10 obtained during profiling.

After characterizing the applications, we heuristically
[28] selected the sets of applications in the Batch, esti-

mated the relative performance and executed them on the
available chunks in our experiments. We however gave
higher priority to applications characterized as Heavy
Memory Intensity(Ch) or Heavy Compute Intensity(Ch)
and the least priority to Unscalable(US) applications.

B. Experiment Evaluation

We begun by evaluating the model’s estimation of
relative performance (RPerfAppseti

(chunki, Appx)) for
Appseti through co-running a combination of the first
10 applications

(
10
2

)
(Table II) on a chunk(1GPC) as

shown in Figure 5. For clarity in the graph, we repre-
sented each Appseti with their characteristics.

Our proposed model estimated the relative perfor-
mance of applications on GPU chunks well with respect
to the application characteristics of all the application’s
within the Appseti thus we evaluated the model for it’s
estimation of throughput for different configuration of
chunks and for different workloads in isolated chunks.



TABLE III
RESOURCE UTILIZATION COMPARISON ACROSS DIFFERENT WORKLOADS FOR DEFAULT MIG AND THE PROPOSED APPROACH

Batch Hardware partition MIG Default Execution (1:1) Proposed approach (MIG + MPS)
Applications SMACT SMOCC DRAMA Applications SMACT SMOCC DRAMA

B1 1 -1g.6gb Scan 0.578 0.538 0.509 SCAN + StreamCluster 0.625 0.577 0.551
2 -1g.6gb StreamCluster 0.273 0.244 0.247 GEMM 0 0 0.001
3 -1g.6gb Gaussian 0 0 0.004 Gaussian 0 0 0.004
4 -1g.6gb GEMM 0 0 0 FREE RESOURCE

B2 1 -1g.6gb Heartwall 0.761 0.281 0.037 Heartwall + Hotspot 0.862 0.316 0.043
2 -1g.6gb BFS 0.022 0.017 0.01 BFS 0.023 0.017 0.008
3 -1g.6gb Histogram 0.089 0.085 0.052 Histogram 0.09 0.085 0.052
4 -1g.6gb Hotspot 0.001 0 0.003 FREE RESOURCE

B3 1 -2g.12gb(1st run) LavaMD 1 0.562 0.435 LavaMD 1 0.562 0.086
2 -2g.12gb(1st run) Gaussian 0.005 0.004 0.003 Scan + Jacobi 0.517 0.472 0.451
1 -2g.12gb(2nd run) Jacobi 0 0 0 Gaussian 0 0 0.003
2 -2g.12gb(2nd run) Scan 0.511 0.467 0.446 FREE RESOURCE

We evaluate the proposed approach for three (3)
Batch of applications B1(Scan, StreamCluster, Gaus-
sian, GEMM), B2(Heartwall, BFS, Histogram, Hotspot)
B3(Scan, LavaMD, Gaussian, Jacobi) submitted to a
GPU with homogeneous chunks of MIG 1g.6gb and
2 MIG 2g.12gb respectively. We also compared the pro-
posed approach to the default MIG execution(1 Appx: 1
chunk). With the proposed approach, the maximum pos-
sible window of applications in each submitted Batch is
(2 * num_chunk), however, we choose a window of four
(4) diverse applications per Batch for the evaluation.

OBSERVATION 1: IMPROVED THROUGHPUT
WITH CO-SHARING

Fig. 6. Throughput Comparison Across Different Workloads

From Figure 6, the normalized throughput of the
default MIG and the proposed approach showed perfor-
mance improvements of approximately 43.7% and 32%
for B1 and 148.6% and 146.3% for B2, respectively,
compared to sequential execution. For B3, both the
default MIG and the proposed approach showed a per-
formance reduction of 20% and 6.22% respectively. The
relatively lower throughput obtained for B3 was due to
the fact that our proposed approach suggested dedicating
a chunk to heavy applications. Consequently we dedi-

cated a chunk(2 GPC) to the Ch application(LavaMD)
and run the third application immediately after the exe-
cution of the first Appset. Compared to the default MIG
partitioning however, the proposed approach performed
better by about 13.78%.

OBSERVATION 2: IMPROVED RESOURCE UTI-
LIZATION WITH CO-SHARING

We also observed (Table III, Figure 6) that, our
proposed approach reduced the number of chunks used
during the execution per Batch compared to default
MIG (1 Appx:1 chunk) approach thus freeing resources
for use by other applications. From Table III, SMACT,
SMOCC and DRAMA utilization improve when co-
running applications in chunk as we were able to
pre-determine which set of applications when executed
together would improve turnaround time on fewer re-
sources. This suggested that, in scenarios where there are
more applications than available resources, our proposed
approach would be able to improve the number of
executions with fewer resources.

VI. CONCLUSION AND FUTURE WORKS

This paper investigated application-aware resource
sharing using a hybrid of software and hardware GPU
sharing mechanisms. Our proposed model takes into
account characteristics of the applications and the possi-
ble hardware partitions (chunk) per GPU to determine
the Appset to co-run using software partitioning. From
evaluations, our model is able to accurately estimate
relative performance of an Appset, reduce the number
of resources used for each Batch and improve utiliza-
tion. Next, we intend to investigate dynamic resource
scheduling based on decisions made using the proposed
approach.
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