
Cluster Comput
DOI 10.1007/s10586-014-0371-2

Towards effective science cloud provisioning for a large-scale
high-throughput computing

Seoyoung Kim · Jik-Soo Kim · Soonwook Hwang ·
Yoonhee Kim

Received: 29 September 2013 / Revised: 25 February 2014 / Accepted: 15 March 2014
© Springer Science+Business Media New York 2014

Abstract The science cloud paradigm has been actively
developed and investigated, but still requires a suitable model
for science cloud system in order to support increasing scien-
tific computation needs with high performance. This paper
presents an effective provisioning model of science cloud,
particularly for large-scale high throughput computing appli-
cations. In this model, we utilize job traces where a statisti-
cal method is applied to pick the most influential features to
improve application performance. With these features, a sys-
tem determines where VM is deployed (allocation) and which
instance type is proper (provisioning). An adaptive evalua-
tion step which is subsequent to the job execution enables our
model to adapt to dynamical computing environments. We
show performance achievements by comparing the proposed
model with other policies through experiments and expect
noticeable improvements on performance as well as reduc-
tion of cost from resource consumption through our model.

Keywords Science cloud · High-throughput computing ·
Job profiling · Cloud provisioning · PCA (Principal
components analysis)

S. Kim · J.-S. Kim · S. Hwang
National Institute of Supercomputing and Networking, KISTI,
Daejeon 305-806, Korea
e-mail: sssyyy77@kisti.re.kr

J.-S. Kim
e-mail: jiksoo.kim@kisti.re.kr

S. Hwang
e-mail: hwang@kisti.re.kr

Y. Kim (B)
Department of Computer Science, Sookmyung Women’s University,
Seoul 140-742, Korea
e-mail: yulan@sookmyung.ac.kr

1 Introduction

Cloud computing nowadays enables numerous scientists to
earn advantages by serving on-demand and elastic resources
whenever they desire resources. This science cloud para-
digm has been actively developed and investigated to satisfy
requirements of the scientists such as performance, feasi-
bility and so on. However, allocating and provisioning vir-
tual machines effectively are still considered as a challenging
issue for scientists using high throughput computing, since it
determines whether they can earn benefits from economy of
scale in clouds or not. Moreover, allocating the “right” cloud
resources (i.e., virtual machine type, cloud service site) on an
optimal data center is very important as performance can vary
widely depending on where and under what circumstances it
actually runs. For these reasons, an appropriate and suitable
model for science cloud which can support increasing scien-
tists and computations is required. Fortunately, job profiles
which potentially involve status of resources where jobs are
executed as well as properties of applications can lead us
to devise performance-optimized provisioning scheme with
meaningful factors through an appropriate processing of the
traces.

In this paper, we present a Profiling Historical factor
for Allocation and Provisioning on Science cloud (PHAP)
model which is an allocation and provisioning model of sci-
ence cloud, especially for high throughput computing appli-
cations as well as many task computing. In this model, we
utilize job traces where a statistical method is applied to pick
the most influential features for improving application perfor-
mance. With the features, the system determines where VM is
deployed (allocation) and which instance type is proper (pro-
visioning). An adaptive evaluation step which is subsequent
to the job execution enables our model to adapt to dynami-
cal computing environments. We show performance achieve-

123

Cluster Comput

ments by comparing the proposed model with other poli-
cies through experiments. Finally, we expect improvement
on performance as well as reduction of cost from resource
consumption through our model.

The rest of this paper is structured as follows. Sect. 2
discusses related work and Sect. 3 presents introduction of
the proposed system model where application model will be
introduced. We discuss allocation and provisioning model in
details in Sect. 4, while Sect. 5 discusses experiment and its
results. Finally, we conclude this paper and discuss future
work in Sect. 6.

2 Related work

With increasing attentions to clouds in several science com-
munities, a lot of efforts have been made to provide optimized
and facilitated virtual environments on science clouds. More-
over, almost science applications typically involve long-term
computer executions, huge dataset processing and large-scale
computations requiring the availability of abundant com-
puting infrastructures. Therefore, it is important to identify
requirements of users and their applications, and to allocate
adequate quantities of resources. Here, we are going to intro-
duce several related works focused on two aspects; (1) cloud
provisioning and resource allocating issue (2) utilization of
job traces.

Wang et al. [1] had investigated cloud modeling for scien-
tific applications and evaluated their model using two kinds
of workloads-MTC (Many Task Computing) and HTC (High
Throughput Computing). The model adopted a policy which
is based on the ratio of waiting jobs to total available VM
in order to lease VM. Another work, [2] proposed a control-
ling system which allocates appropriate resources through
monitoring and analysing current workloads of applications.
In [2], a virtual server is operated on a group of physi-
cal machines and each server is responsible for particular
application on the heterogeneous machines. In addition, the
system predicts future workload through analysing resource
utility and real-time requirements of applications and sched-
ules virtual machines using the predicted information. In this
way, diverse physical machines can be maintained in optimal
status.

However, the above two studies mainly focused on the
proper resource management and utilization without consid-
ering performance issue.

On the other hand, there also exist some researches using
job histories. One of them, [3] had proposed predicting appli-
cation runtime and queue wait time. In [3], genetic algorithm
had exploited to search similar jobs among job histories.
This study predicts two metrics by mining historical work-
loads corresponding to job execution time and wait time in
queue. It firstly searches the most similar job among the his-

tories based on genetic algorithm considering characteristics
of both applications and resources. With the discovered one,
it predicts two metrics (application runtime and queue wait
time using instance-based learning techniques). However, the
main focus of the [3] do not lie on resource managements,
but only runtime predictions.

Meanwhile, Bhuvan et al. [4] also exploited application
profiling in shared resources to offer guaranteed perfor-
mances as well. Their method for analysis, on the other
hand, is different with ours since they consider only an aspect
among various features.

An allocation and provisioning model we present focuses
on the followings: First, selection of a cloud site which serves
optimal performance without bursty workloads and results
in efficient resource allocation. Secondly, a proper virtual
machine provisioning which contributes to satisfy require-
ments of both user and application. To determine the above
two, our model utilizes three representative factors through
profiling job traces. It is performed adaptably by evaluat-
ing profiled results and allows to adapt to current status of
resources regardless of failure or overloading on systems.

3 System model

3.1 Target application model

Our model mainly focuses on two kinds of application types;
High throughput computing (HTC) and many task comput-
ing (MTC) [5] are generally found in most of workloads
from various scientific applications. These kinds of work-
loads which are also referred as ‘Bag-of Tasks (BoT)’ have
several characteristics in common as the followings:

– Massively Paralleled
– Loosely coupled or uncouple in each task
– Adoption of ‘throughput’ as a main metric (over a fixed

period of time)

Assume that a job(ji) is submitted by some user and has n
number of tasks(tx+1, tx+2, . . . , tx+n , here x is arbitrary job id)
using parameter sweeping. The running time of each task is
associated with overall total makespan of a job(ji). ‘through-
put’ indicates the number of completed tasks in a fixed period
of time and so we can induce a throughput of ji as the fol-
lowing (Eq. 1).

throughput (ji) = n

makespan(ji)
(1)

To increase throughput of ji , we have to reduce its makespan
where every n number of tasks should be completed since
n is fixed by user when he submits the job. However, it is a

123

Cluster Comput

hard work to predict makespan even though duration of one
task is given, since each of them can have dynamic execu-
tion time by varying parameter value with independent opera-
tions. Hence, it is essentially required to recognize properties
of the submitted job (i.e. tasks).

Here we adopt two representative applications as an exam-
ple of such a case to verify the superiority on such workloads
and to explain about how to support them. The applications
are Autodock [6] and Madgraph5 [7].

Autodock is a suite of automated docking tools used in
Pharmaceutical research domain for new drug discovery by
simulating protein docking.

Madgraph5 is a matrix element generator (simulation tool)
in High Energy Physics for simulating QCD (Quantum chro-
modynamics) strong interation of fundamental particles at
hadron colliders. This application is based on Monte-Carlo
simulation which is considered as ‘embarrassingly parallel’
and is split into smaller uncoupled sub-jobs with no commu-
nications on distributed environments.

All of these applications usually have a large number of
computations (a target protein of 3CL-pro of SARS with 1.1
million chemical compounds for protein docking and 5 mil-
lion particle collisions resulting in tens of millions of inter-
actions for QCD simulations) and require substantial amount
of computing time.

In the following section after system model, we will
explain full-cycle with examples of these practical applica-
tions.

3.2 System model

Figure 1 shows an abstract architecture where proposed
PHAP method is applied. It consists of five layers in total
and the third one (‘Profiling and Provisioning Layer’) is the
layer where the proposed method is actually implemented.

Fig. 1 Abstraction of overall system model

Once users desire to compute their application, the system
takes their requests through the first layer denoted as ‘User
request Layer’. The made requests in the first layer are sent
to the next layer, ‘Job Management Layer’. This layer is
responsible for taking requirements from the above layer and
process them by producing job description files. In a practical
environment, it is possible to apply the existing integrated
middleware framework (such as HTCaaS) over the second
layer and to operate the proposed allocating and provisioning
cycle in accordance with the cycle of middleware.

In accordance with the described information, a set of
tasks for a job is produced and their information are recorded
on database. Then the third layer referred as ‘Profiling and
Provisioning Layer’ prepares job submissions through deci-
sions of a cloud site to be submitted and an instance type
using profiling services (Factor Extract and Factor Decision
Service).

The decisions are made by ‘dispatcher’ and it periodi-
cally interacts with ‘Factor decision service’ to get profil-
ing information and ‘Monitoring service’ to check status of
virtual machines as well as running tasks on them. ‘Moni-
toring Service’ collects status of virtual machines and tasks
and records dynamic information of each cloud site. Job pro-
file repository stores job profiles by mining some important
information as a form of profile schema whenever every tasks
in each job are completed.

Profiling evaluator and controller manage the stored pro-
files by evaluating with credit and controlling profiles with
add/remove commands. VM image repository is a storage to
keep VM backup images and its instances can be created by
using the stored snapshots. Virtual Machine layer which is
located below the third layer represents virtual machine pool
where VMs have diverse properties.

The fifth layer named ‘Physical Machine Layer’ includes
several cloud sites, since we assume that there are multiple
cloud sites (also denotes data center) which are located on
geographically distributed area. Each cloud site is connected
to the other ones with WAN (Wide-Area-Network) and users
can access them only through a cloud service provider. Each
site updates their monitoring information such as total num-
ber of jobs, number of failed jobs, etc. to central DB server
using Monitoring service.

In fact, we are processing to implement this model on
an existing framework, HTCaaS [8] which is adopting an
agent-based multi-level scheduling mechanism and it can be
applied on the second layer as a job management framework.
Hence, some modules such as Dispatcher, Monitoring ser-
vice are able to be integrated or replaced into modules with
same roles in HTCaaS. For example, Agent manager and
Job manager which are components of HTCaaS can handle
respectively deployment of VM instances and submission of
jobs instead of Dispatcher. Thus, when an event for job sub-
mission is occurred, a virtual machine having agent (an agent

123

Cluster Comput

requires only one core) is deployed to the chosen site and this
agent pulls a task.

The details of job submission will be explained on the next
section together with allocation and provisioning algorithms.

4 Allocation and provisioning model

4.1 A processing cycle

Overall procedure of PHAP is classified into the three main
categories; (1) Profiling, (2) Allocating and Provisioning,
(3) Evaluating.

The first phase derives principal information by analysing
job traces. Before performing the analysis, two requisite con-
ditions should be accomplished. One is checking whether
enough profiles exist and the other is mining information
from collected traces in a scheme as defined. After that, in
the second step, decisions for allocating and provisioning are
made using principal factors extracted. Once all executions
for a request (job) are completed, evaluation is performed
by calculating a difference between referred profile and new
records of job just completed in the third step. Here, more-
over, it is assumed that budget and hardware conditions for
resources are not considered. It is only focused on overall per-
formance. The details of above three steps will be presented
on the next subsections in order of sequence.

4.1.1 Profiling

As mentioned previously, our model exploits kernel infor-
mation by refining job profiles. Exploiting job profiles has
a lot of advantages in diverse aspects such as estimating or
predicting job runtime, measuring performance of comput-
ing resources and exploring system errors, etc. Above all,
it potentially involves status of computing resources where
jobs run as well as application properties which are essen-
tially needed for execution. Meanwhile, these traces typically
exist in a large-scale and they requires to be processed and
refined properly in order to pick out useful features. This
section discusses how to perform the job profiling and apply
the resulted kernel data to Clouds through practical examples
above mentioned.

To analyse and explore features from tasks, we employ
PCA (Principal Component Analysis) [9] which is one of
the well-known statistics technique for simplifying large-
scale multivariate data. As sorting dimensions in order of
importance, we can extract important information which are
called Principal Components (PC) and can discard low sig-
nificance dimensions with minimal effort. Particularly, we
use the technique to pick the most powerful one among the
factors describing a task. Before applying the analysis, we

need to define factors which are able to describe a task and
which have strongly related to performance.

Factors to be determined are categorized according to two
aspects; Application and Resource.

As application factors, several arguments or inputs used
during runtime can be considered, since they have high pos-
sibilities to affect directly the execution time of the appli-
cations. The determined application factors must be able to
distinguish sub-jobs (tasks). For a resource aspect, physical
features which have a large impact on duration of jobs are
included such as CPU and network related factors (e.g., the
number of cores, CPU power, network bandwidth, comput-
ing resource location [distance] etc). It typically depends on
information which are monitored on each cloud site the sys-
tem targets. Table 1 and 2 show the defined factors for the
above mentioned practical applications.

Table 1 Factor decision for autodock, Ex1

- Factor name Category Property

f a1 LIGANDS id -

f a2 PROTEIN id -

f a3 ga_num_eval Application -

f a4 ga_run factor -

f a5 ga_pop -

f a6 ga_generation -

f a7 num_run -

f r1 Distance Static

f r2 Reliability Dynamic

f r3 # cpu Resource Static

f r4 Network cost factor Static

f r5 Avg.waiting time Dynamic

f r6 Agent reliability Dynamic

f r7 Execution time

Table 2 Factor decision for madgraph5, Ex2

- Factor name Category Property

f a1 f 1 Scale

f a2 f 2 Application Param

f a3 ebeam factor -

f a4 tot#_events -

f r1 Distance Static

f r2 Reliability Dynamic

f r3 # cpu Resource Static

f r4 Network cost factor Static

f r5 Avg.waiting time Dynamic

f r6 Agent reliability Dynamic

f r7 Execution time

123

Cluster Comput

In the first example (Ex1, Table 1), which is for auto-dock
application, we handle seven application-factors which are
adopted as arguments or input properties (f a1, . . ., f a7).
Among them, f a3 to f a7 are treated as common variables
for parameter sweeping.

In the second example (Ex2, Table 2), which is for mad-
graph5, there are four application-factors (f a1, f a2, f a3 and
f a4) for sweep values.

In case of resource for both examples, a set of elements
(f r1, . . ., f r6) are extracted from monitoring information of
each cloud site. These factors are classified into two types;
static or dynamic. Static factors typically correspond to
unchangeable properties since the site is registered as avail-
able data center. “distance, # of cpu and network cost”
belong to such a type. On the other hands, there exist argu-
ments such as “reliabili t y, avg.waiting time and agent
reliability” that dynamically change, since they are depend-
ing on the current status of jobs on each cloud site as time
passed. Here reliabili t y is a rate of the number of success-
ful tasks over all, and distance is the number of hops from
submission site to the chosen site.

In addition to common factors as previously mentioned,
we supplemented with two additional factors: agent reliabil-
ity which means the rate of the number of successful things
over total submitted agents, and (agent) waiting time which
is waiting time from submission of a job to beginning of the
first task. Both metric are measured by HTCaaS. Each value
(score) of the determined factors is determined in different
ways. In case of application factors, it uses the values which
are specified by user at submission.

For resource factors, on the other hands, we adopt rank
score which derives from ranking them respecting propor-
tion relation with execution time and arranging values in
ascending order of rank. In other words, a site having the
topmost rank will score a high grade. The element which has
the lowest rank becomes to get ‘−1’ instead of ‘0’. In case of
distance, each site gets initial score according to the number
of hops from submission site, and then converts the score
with respect to rank between them.

Table 3 An example monitoring information of cloud sites in Amazon
EC2

Name f r1 f r2 f r3 f r4 f r5 f r6

Virginia 1 0.61 8 5 2 0.45

Oregon −1 0.20 3 5 −1 0.91

California −1 1.00 6 5 8 0.75

Ireland 2 0.91 7 4 5 1.00

Singapore 3 1.00 4 2 3 1.00

Sydney 3 0.99 3 3 6 0.98

Tokyo 4 0.96 5 −1 7 0.99

Sao-paulo 1 0.61 −1 5 4 0.86

Table 3 shows an expression example of resource fac-
tors for cloud sites in Amazon EC2 [10] where distance
and #cpu, network cost and avg. waiting time(2nd, 4–6th
columns) are expressed with the rank score as mentioned
previously.

Overall processes of the profiling is carried out as follows:

(1) Construction of the Input Matrix: firstly, construct (n x d)
input Matrix M (Eq. 2) with n number of profiles where
each row is a task vector (tid) having d number of factors
(as notated on Table 7).

M =
⎡
⎢⎣

t1,1 · · · t1,d
...

. . .
...

tn,1 · · · tn,d

⎤
⎥⎦ (2)

(2) Quantile Normalization: secondly, apply the quantile
normalization to M. It intends to make identical range
of data using quantile ranking.

(3) Principal Components Analysis: carry out PCA by cal-
culating a correlation matrix C of input matrix M. Subse-
quently, calculate eigenvalues and eigenvector sets which
exist as much as the number of factors.

(4) Election of 1st PC and Calculation of PCA score:
the highest eigenvalue becomes the 1st PC and PCA
scores are calculated using eigenvector corresponding
with eigenvalue of 1st PC. Among the results, a profile
having the highest PCA score becomes a representative
job profile.

Here, we make use of ‘eigenvalues’ and ‘eigenvectors’
which are respectively variances of the objects on each PC
and the rotation vectors from the PC space back to the land-
mark shape. Thus, calculating the following equation,

[eigenvectors ∗ normali zed_scores + consensus]
gives us a shape model from a particular point in the PC
shape space. With time, profiles accumulate more and more
in a determined scheme.

PC =< f aprin, f r prin, Jprin, credit > (3)

PC (Principal Component) which is denoted on Eq. 3 has
four elements which are two major factors for application
and resource, a set of representative tasks and credit. A credit
value is decisioned initially as -1 and will be controlled during
‘Evaluation step’(details are in Sect. 4.1.3)

Table 4 presents a set of accumulated profiles for Ex1.
Values for the resource factors are determined depending on a
monitoring information (Table 3) and each resource element
will be converted into a set of scores as described on Table
5. In case of t276(a task profile that id is 276) cf. the first row

123

Cluster Comput

Table 4 Example profiles of autodock application

id App factors of tid r s vmid Texec(id)

f a1 f a2 f a3 f a4 f a5 f a6 f a7 f r7

276 1 1 300,000 50 150 270,000 50 Sydney Done m3.xlarge 150

277 2 1 300,000 50 150 270,000 50 Oregon Failed m1.small 126

· · · · · · · · ·
572 3 1 600,000 50 150 27,000 100 Tokyo Done t1.micro 290

573 4 1 600,000 50 150 27,000 100 Tokyo Done m1.large 232

Table 5 Converted profiles of the above example

id App factors of tid Res factors of tid s vmid Texec(id)

f a1 f a2 f a3 f a4 f a5 f a6 f a7 f r1 f r2 f r3 f r4 f r5 f r6 f r7

276 1 1 300,000 50 150 270,000 50 3 0.99 3 3 6 0.98 Done m3.xlarge 150

277 2 1 300,000 50 150 270,000 50 −1 0.20 3 5 −1 0.91 Failed m1.small 126

· · · · · · · · · · · ·
572 3 1 600,000 50 150 27,000 100 4 0.96 5 −1 7 0.99 Done t1.micro 290

573 4 1 600,000 50 150 27,000 100 4 0.96 5 −1 7 0.99 Done m1.large 232

Table 6 Applying PCA to profiles

id App factors of tid Res factors of tid Texec(id)

f a1 f a2 f a3 f a4 f a5 f a6 f a7 f r1 f r2 f r3 f r4 f r5 f r6 f r7

276 − 6.6 2.5 6.6 6.7 6.7 6.6 6.6 2.5 2.5 6.7 6.6 6.69 6.6

277 − 6.7 2.5 6.6 6.7 6.7 6.6 6.6 2.5 2.5 6.7 6.6 6.71 6.6

· · · · · · · · · · · ·
572 − 6.7 6.7 6.7 6.7 2.52 6.71 6.71 6.7 6.7 6.7 6.1 6.7 6.7

573 − 6.7 6.7 6.7 6.7 2.52 6.71 6.71 6.7 6.7 6.7 6.1 6.7 6.7

Eigen - −9.55E 0.58 2.79 4.74 1.27 0.02 0.997 1.54 0.28 0.067 4.32E −2.67E 0.72

Value −16 −15 −15
Rank - 6 4 2 1 3 5 2 1 4 5 6 7 3

in Table 4, it shows that the task was executed on the site
located on Sydney. Based on Table 3, it is converted into six
values as depicted on (1st row) Table 5.

When the analysis is being performed, the values in pro-
files are converted to a normalized form by quantile normal-
ization. The final results can be shown on Table 6 and Fig. 2
as scree plot graph. In Fig. 2, X-axis represents each factor
(being aligned according to size of eigenvalue) and Y-axis is
corresponding to eigenvalue of each of them.

As a result, we can notice that application and resource
factor having the highest eigenvalue among each category
are f a5 and f r2, respectively (both have rank 1 as depicted
in bold underline on Table 6). Accordingly, the result leads to
the fact that principal factor for application (f aprin) is f a5

and resource’s one (f r prin) is f r2. Moreover, eigenvector of
a factor (e.g., f a5) which has the highest eigenvalue among
all factors of both categories is used for provisioning. In this

example, EigenV ector5 is such eigenvector (Eq. 4) and
is composed of 13 values (the number of total factors, d)
(Table 7).

EigenV ector5 = (.017,−.011, .073, . . . , .412, .205) (4)

PCscore_t1 = 0.017 × t1,1 + · · · + 0.205 × t1,13 (5)

= 1.634

Using the vector, we can compute PCscore for all tasks
(n tasks) and an example for one task is presented on Eq. 5.
After applying Eq. 5 to all tasks (i.e., n times), PCscores
are calculated for all the tasks and the results can be plotted
as shown on Fig. 3. X-axis of it is score obtained from cal-
culating Eq. 5 using 1st principal factor’s eigen vector and

123

Cluster Comput

Fig. 2 A scree plot of analysis

Table 7 Notations for PHAP model

- Property Description

Pid [tid , vmid , r, Texec(id), s] A profile tuple

tid (f a1, · · · , f an , f r1, · · · , f rm) task vector include

-ing tid ’s parameters

vmid vmid ∈ { Instances } vm instance type

r r ∈ {us − east, · · · etc.} Cloud site name

s s ∈ { done, failed Status of a task

cancelled, waiting}

Fig. 3 Plots of PCA scores

Y-axis is that obtained from same equation using 2nd’s one.
On Fig. 3, it is shown that ten clusters are formed and each
of them consists of tasks having similar properties of factors,
such as VM instance type. Among the clustered tasks, the
one which has the highest score (existing on the right-most
part of Fig. 3) is included to Jprin in Eq. 3.

4.1.2 Allocating and provisioning

Using the resulting factors, it offers proper allocation and
provisioning. The ‘proper’ allocation and provisioning is ulti-
mately getting optimal resource (location) and VM which
contribute to good performance. To do so, it uses applica-

tion and resource factor to extract principal factors through
relation between the factors and execution time, and gets
principal factors for two aspects. And then, for new task sub-
mission, it finally refers to one profile having same property
of principal application factor as new one’s and having high
scored resource. Once a job is submitted, it splits into mul-
tiple tasks having various arguments. Then system decides
which VM is proper and where the VM is deployed. To allo-
cate resource and provision virtual machine, first of all, it
checks the existence of PC as shown on Algorithm 1 (line 3).

If there is no PC yet, it carries out PCA with a list of the
determined factors and recent job traces (line 4). However,
if there are no traces yet, we select a cloud site according to
Round-Robin order until a system gets enough profiles.

If it has PC through the analysis, ProfileSelect function
is achieved (line 6) in order to choose appropriate profile to
be used for allocation and provisioning.

Algorithm 1 PHAP model
1: PC , tnew , PCselected = null
2: F={defined factors}, trecent is a set of w recent profiles.
3: if PC not exists OR PC.credit < −1 then
4: PC =PCA(F , trecent);
5: end if
6: Pselected =ProfileSelect(PC. f aprin , PC. f r prin , tnew)
7: rselected = Pselected .r
8: vmnew=vm(PC.Jprin ∩ Pselected)
9: // { here, Pselected = PC.Jprin ∩ Pselected }
10: if available vmnew on rselected not exists then
11: deploy vmnew on rselected
12: end if
13: Schedule tnew
14: Evaluate (Texec(new), Texec(selected));

It requires three arguments: f aprin , f r prin , requested task
vector (tnew) and the details are described on Algorithm 2. By
performing ProfileSelect function, it gets one or more pro-
files (Pselected) as well as their site information (rselected).
To decide a type of vm, it uses intersection tasks between
representative task set (Jprin) of the corresponding PC and
the resulted profiles (Pselected). A vm type for a new task
(vmnew) is decided by referring the intersection result’s one
(line 8).
Once a type of vm is decided, it examines the cloud
site(rselected) to check whether a vm being the same type
as vmnew is available or not (line 10). If it is available, it
schedules the task into the vm, otherwise, it deploys vmnew

to rselected (line 11) and vm will be pulling tnew from user’s
queue after launched. When the task is finished, it is eval-
uated by calculating difference of execution time between
the task (tnew) and the referred profile (line 14). By control-
ling the credit according to the above difference, it evaluates
the profile to be used by new task. The evaluation step is
indicated on Sect. 4.1.3 in detail.

123

Cluster Comput

Algorithm 2 Profile Select Algorithm
Require: f aprin , f r prin , tnew
1: Pcandidate, Pselected = null
2: F = { f a1, . . . , f an, f r1, . . . , f rm}where n + m = d

f aprin ∈ { f a1, . . . , f an}, f r prin ∈ { f r1, . . . , f rm}
3: P ∈ JobHistor y
4: repeat
5: each P In JobHistory
6: find P where P.t(f aprin) == tnew(f aprin)
7: Pcandidate = Pcandidate∪ P
8: until Puncheck == empty
9: Pselected =MIN(Pany .Texec)&&MAX(Pany .t (f r prin))

Ensure: Pselected

In Algorithm 2, it explores principal profile(s) which is
used for allocating and provisioning. For every existing pro-
files, it searches profiles whose principal application fac-
tor (f aprin) has the same value with the requested task’s
one and include the profile in a set of candidate profiles
(line 6–7). For Ex1, suppose that the resulting f aprin is
f a3and that one of the requested tasks has application argu-
ments tnew = [f a1, . . ., f a7] = [1, 1, 300,000, 50,
150, 270,000, 50]. Then, it searches profile having
‘300000’ of f a3 among entire traces. After getting candi-
dates, it elects profile(s) which has minimum execution times
and has resource value(r) having maximal value of princi-
pal resource factor among the candidate (line 9). Suppose
that principal resource factor is f r2(reliability), a location
having maximal score of principal resource factor would be
Cali f ornia or Singapore according to Table. 3. Finally,
it returns the satisfied profile(s) as Pselected into line 6 of
Algorithm 1.

4.1.3 Evaluating

When a task is completed, a new profile for the task (Pnew)
will be created and it should be put on evaluation step as
shown on Fig. 4.

First of all, it checks status of the task. If the status is
‘FAILED’, it controls stability of the site decreased and credit
of Pselected as well. If not, it calculates difference of execution
time between the task (Pnew) and referred one (Pselected). In
case of that the difference is higher than threshold, it subtracts
1 to the credit of the referred profile. If the gap between
two profiles is lower than T hreshold, it increases credit of
Pselected by 1 and includes the profile of new task into ‘(Job)
Profiling Repository’.

Once credit is subtracted, it examines whether the credit
value is under −2, or not. If it is, system performs PCA
again with the recent traces. If not, it just add new profile on
‘(Job) Profiling Repository’ and finishes the evaluation. In
this way, it adapts to the current status of dynamic computing
environments and offers reliability on overall processes of
this model.

Fig. 4 Adaptive evaluation

5 Experiments

5.1 Experimental setting

We performed this experiment based on measurements over
real system which provides management services of HTC
jobs and IaaS services, referring to HTCaaS [8]. HTCaaS
system offers Agent-based job execution service and we had
to adjust our scenario in accordance with its agent-based con-
cept in order to construct a proper experiment environment.
Agent in HTCaaS is a pilot-job which pulls tasks from indi-
cated queue and prepares to launch the tasks on submitted
site (resource).

For cloud infrastructure, in addition, we adopt Amazon
EC2 [10] which is one of the well-known commercial ser-
vices of public cloud. Accordingly, we configured a network
topology for the experiment based on data centers in Amazon
EC2. Figure 5 depicts the configured topology.

As described on below, we assumed that a service provider
is located on Korea (Daejeon) and that each site is connected
via WAN. A table under the figure shows distance values and
scores for all locations. The distance value refers to the num-
ber of hops from submission (Daejeon) and score denotes to
performance value as stated before. Here when we apply and
implement PCA to HTCaaS, Flanagan Scientific Library [11]
is exploited. We run two kinds of real applications which are
Autodock and Madgraph5 as previously addressed. In case of
Autodock, 10 targets for docking are used in this experiment.

5.2 Scenarios

For performance evaluation, we ran the experiment with sev-
eral scenarios and compared our model to four models on
each scenario. Each scenarios has different and various types
of workloads/properties as indicated on the following:

123

Cluster Comput

Fig. 5 Network topology of
Amazon EC2 Site

Fig. 6 Arrival patterns for all scenarios

– Scenario 1 uniformed workload (Fig. 6a)
– Scenario 2 synthetic workload consisting of uniform and

bursty patterns (Fig. 6b)
– Scenario 3 workload following DAS-2 [12]’s arrival pat-

terns (Fig. 6c)
– For all scenarios, randomly generated parameter com-

binations are applied.

The first scenario is to show an environment with simple
patterns of workload without any interferences and the sec-
ond one is an environment having unexpected and sudden
overloads for several times. On the third scenario, DAS-2
[12] workloads which is from GWA (Grid Workload Arhieve)
[13] is adopted and its arrival pattern shows increasing ten-
dency throughout the entire time. All patterns of the above
scenarios are depicted on Fig. 6a, b, c, respectively. For all of
above scenarios, randomly generated application arguments
are used for every examples.

We employed Baseline, Random, Round-Robin and Best-
Effort methods to compare with our model. Their details are
as follows:

– Baseline chooses a site in order of distance among avail-
able site, but if a task (or vm) is failed on a site, it skips
the site’s turn twice. It deploys vm in performance order.

– Random selects site and vm randomly
– Round-Robin (R-R) chooses a site in order of distance

and deploy vm in order of performance.

– Best-Effort (B-E) selects a site having the minimal tasks
among entire sites first and deploy a high performance
vm.

Among these policies, Baseline corresponds to a policy
which is currently used in HTCaaS for allocating and provi-
sioning vm. Random is to show the worst case, and Best-Effort
policy shows the best case in this experiment.

Overall, we ran ten thousand (104) number of tasks five
times for Ex1 and one million (106) tasks five times for Ex2
since many tasks are generated in one job in Madgraph5.
Then we’ve exploited an average of results for performance
evaluation. Performance metrics that are used for compar-
isons, we employ throughput , makespan time, waiting
time. In particular, we measured Agent waiting time for the
wait time in accordance with execution paradigm of HTCaaS.
It even implies how accurate the decisions are and might
include queuing time, preparation time of agent and extra-
time (overhead). The queuing time represents the duration of
wait from submission to task starting.

A supplementary experiment was performed to explore
appropriate size of profile(w) to be used for profiling.

5.3 Results

With respect to the addressed conditions, results of the eval-
uation are as follows. Figure 7 shows a set of results for
Autodock application (Ex1) and Fig. 8 depicts Madgraph5’s
results (Ex2).

123

Cluster Comput

F
ig

.
7

E
xp

er
im

en
ta

lr
es

ul
ts

(E
x

1)

F
ig

.
8

E
xp

er
im

en
ta

lr
es

ul
ts

(E
x

2)

123

Cluster Comput

In Example 1 with Scenario 1 having no burst workloads,
‘B-E’ has the best performance of makespan time (approxi-
mately 640 s on average) and ‘Random’ has the worst perfor-
mance resulting in approximately 810 s on average. Mean-
while, other three policies including our model have led to
around 700 s. In Example 2 where the number of tasks per
job has range from 500 to 1500, with the 1st scenario, B-E
resulting in the best performance took approximately 14 min
and Random took nearly 26 min on average. Other three poli-
cies (Baseline, PHAP, R-R) have brought on results ranging
from 15 to 16 min.

In Scenario 2 which has several burst loads, results of
Example 1 show that overall increments of makespan time
have occurred on almost policies except ‘PHAP’ in which
a mean makespan time is shorter than other policies with a
maximum of 260 s. It seems to attribute relatively short wait-
ing time to the above result as depicted on Fig. 7b. Example
2’s results show much more increments comparing to Exam-
ple 1. For Example 2, the average number of tasks per one
job is higher than those for Example 1, and it appears that the
obtained result was driven by the effect of the amplification of
overload (the worst is Random which had resulted in nearly 3
times more of scenario 1’s). According to an analysis of logs
for these experiments, the increments were mainly caused by
problem of heavy concentration on a specific site (i.e., high
density on a specific site). Results of waiting time for other
four policies(Baseline, Random, R-R, B-E) also show pro-
longed durations which are caused by accumulated waiting
requests on specific sites (Fig. 8b).

On the 3rd scenario which has gradually increasing pat-
tern of workload, Example 1’s results turn out increments of
the time than the second scenario on almost policies except
two policies, PHAP and B-E. In case of B-E, according to
analysis of logs, it is shown that it had an optimized perfor-
mance on the first half of the entire period and had delays on
the latter part caused by accumulated loads.

In Example 2 on the third scenario, overall durations
on all policies tend to decrease more than the second sce-
nario’s unlike Example 1 and PHAP model led to the short-
est makespan time among them. Similarly, the result presents
that there have been no delays (Fig. 8a) nor re-submissions
on PHAP model in contrast with other policies (Baseline,
Random, R-R, B-E). Accordingly, ‘Agent waiting time’ has
resulted in similar patterns with makespan time where B-E
led to minimum waiting time and Random has the longest
waiting time (Figs. 7b, 8b). Furthermore, it is able to reduce
waiting time relatively as well as overhead, as shown on Fig.
8b. When it targets the higher number of tasks like Example
2, it could reduce the waiting time since it has been utilizing
more traces and contribute to more clear results. Therefore,
our PHAP model can contribute to overall performances by
reducing waiting time as well as optimizing makespan time
which is able to lead to better throughputs as described on

0 100 200 300 400 500 600
0

50

100

150

200

ta
sk

1
an

al
ys

is

Fig. 9 Optimal window size for autodock(Ex1)

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

3000

ta
sk

1
an

al
ys

is

Fig. 10 Optimal window size for madgraph5(Ex2)

Figs. 7c and 8c. It turned out that it has more throughput than
B-E(which is best case) of 0.12 in Example 1 and of 11 in
Example 2.

In conclusion, we demonstrated that our proposed model
is highly efficient on varying patterns of workloads as well as
computing models in which numerous tasks are generated.

Additionally we ran a supplementary experiment in which
w size is controlled. w refers to the number of recent pro-
files that we will use in analysis. By carrying out the exper-
iment, the optimal range of (window) size in profiles can be
grasped. The results are depicted on Figs. 9 and 10 and show
that appropriate profile size to be used in analysis is approx-
imately 100 in Example 1 and 1200 in Example 2 where
the system affords to cover maximum number of tasks in an
analysis. By making use of the measured size, it can result
in reliable analysis for this model.

6 Conclusion and future work

This paper proposed PHAP model which is an adaptive cloud
model for allocation and provisioning using historical fac-
tor analysis. The model can effectively construct a scientific

123

Cluster Comput

cloud infrastructure for HTC. To analyse the profiles of jobs,
we applied PCA technique as a statistical method to elect the
effective factors. They are employed for selecting cloud site
and deciding proper virtual machine type.

The performance evaluation is achieved on HTCaaS sys-
tem which is an agent-based multi-level scheduling system
and its results shows that our model can improve overall per-
formance of high throughput computing applications com-
pared with other policies such as Random, Round-Robin and
Best-Effort. The results turned out that our model is capable
of improving overall throughput by reducing makespan time,
and that it is more beneficial on an environment which has
varying pattern of workloads and deals with plenty of tasks
in general.

In the near future, we will implement our PHAP model
in the HTCaaS completely and report performance analysis
based on diverse computing infrastructures and scheduling
policies. In addition, we will improve this model to reduce
overall cost for public cloud by adding a cost factor.

Acknowledgments S.Y Kim thanks S.-h. Nam for useful comments
and supports. This research was supported in part by Basic Science
Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT and Future Planning
(NRF-2013R1A1A3007866)

References

1. Wang, L., Zhan, J., Shi, W.: In cloud, can scientific communities
benefit from the economies of scale? TPDS 99, 1 (2011)

2. Wang, X.Y., et al.: Appliance-based autonomic provisioning frame-
work for virtualized outsourcing data center. In: Proceedings of the
Fourth International Conference on Autonomic Computing, p. 29
(2007).

3. Li, H., Groep, D., Wolters, L.: Efficient response time predictions
by exploiting application and resource state similarities, In Pro-
ceedings of the 6th IEEE/ACM International Workshop on Grid
Computing. IEEE Computer Society, pp. 234–241 (2005).

4. Urgaonkar, B., Shenoy, P,. and Roscoe, T.: Resource overbook-
ing and application profiling in a shared Internet hosting platform.
ACM Trans. Internet Technol. 9, 1, Article 1 (February 2009), pp.
45. 2009.

5. Raicu, I., Foster, I.T., and Yong Z.: Many-task computing for grids
and supercomputers”, MTAGS 2008. In: Workshop on Many-Task
Computing on Grids and Supercomputers, pp. 1–11 (2008).

6. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E.,
Belew, R.K., Olson, A.J.: Automated docking using a lamarckian
genetic algorithm and and empirical binding free energy function.
J. Comput. Chem. 19, 1639–1662 (1998)

7. Alwall, J., Herquet, M., Maltoni, F., Mattelaer, O., Stelzer, T.: Mad-
Graph 5: going beyond. J. High Energy Phys. 6, 1–40 (2011)

8. Rho, S., Kim, S., Kim, S., Kim, S., Kim, J.-S., and Hwang,
S.: HTCaaS: a large-scale high-throughput computing by lever-
aging grids, supercomputers and cloud, In: Research Poster at
IEEE/ACM International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC’12), November
(2012).

9. Jolliffe, I.T.: Principal Component Analysis (PCA), Springer Series
in Statistics., 2nd edn. Springer-Verlag, New York (2002)

10. Amazon EC2 (Elastic Compute Cloud), http://aws.amazon.com/
ec2. Accessed 12 April 2014

11. Flanagan Scientific Library, http://www.ee.ucl.ac.uk/~mflanaga/
java/. Accessed 12 April 2014

12. DAS2-Grid, http://cs.vu.nl/das2. Accessed 12 April 2014
13. Grid Workload Archive (GWA), http://gwa.ewi.tudelft.nl/.

Accessed 12 April 2014

Seoyoung Kim is a researcher in
National Institute of Supercom-
puting and Networking (NISN)
at KISTI (Korea institute of Sci-
ence and Technology Informa-
tion). She received her Bachelors
and Masters degree from Sook-
myung Women’s University in
2010 and 2012, respectively. She
has worked in NISN, KISTI
from 2012. Her research interests
focus on meta-scheduling in dis-
tributed computing systems, par-
ticularly (on) High-Throughput
Computing, Many-Task Com-
puting.

Jik-Soo Kim received a Ph.D.
in Computer Science from Uni-
versity of Maryland at Col-
lege Park in 2009. He is cur-
rently a Senior Research Sci-
entist in the National Institute
of Supercomputing and Net-
working at KISTI (Korea Insti-
tute of Science and Technol-
ogy Information). Dr Kim’s pri-
mary interests are in the design
and analysis of distributed com-
puting infrastructures to sup-
port High-Throughput Comput-
ing, Many-Task Computing and
Cloud Computing.

Soonwook Hwang is a team
leader in Korea Institute of
Science and Technology Infor-
mation (KISTI), leading the
research and development of
value-added technologies and
services mainly based on grid
and cloud technologies for the
realization of e-Science para-
digm in many areas ranging from
high energy physics to medical
physics and life science. He has
been responsible for the devel-
opment of the AMGA meta-
data system and its production

deployment for the Belle II experiment at KEK in Japan. He is also lead-
ing the development of a large-scale HTC Problem Solving Environ-
ment called HTCaaS by fully exploiting the national distributed super-
computing infrastucture called PLSI in Korea. Dr Hwang received his

123

http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://www.ee.ucl.ac.uk/~mflanaga/java/
http://www.ee.ucl.ac.uk/~mflanaga/java/
http://cs.vu.nl/das2
http://gwa.ewi.tudelft.nl/

Cluster Comput

BS and MS degree from Seoul National University in Korea and got his
PhD in Computer Science from the University of Southern California.

Yoonhee Kim is a professor in
the Department of Computer Sci-
ence, Sookmyung Women’s Uni-
versity. She received her Bach-
elors degree from Sookmyung
Women’s University in 1991, her
Masters degree and Ph.D. from
Syracuse University in 1996 and
2001, respectively. She was a
Research Staff Member at the
Electronics and Telecommuni-
cation Research Institute dur-
ing 1991 and 1994. Before join-
ing the faculty of Sookmyung
Women’s University in 2001, she

was on the faculty of the Computer Engineering Department at
Rochester Institute of Technology in NY, USA. Her research interests
span many aspects of runtime support and management in distributed
computing systems.

123

	Towards effective science cloud provisioning for a large-scale high-throughput computing
	Abstract
	1 Introduction
	2 Related work
	3 System model
	3.1 Target application model
	3.2 System model

	4 Allocation and provisioning model
	4.1 A processing cycle
	4.1.1 Profiling
	4.1.2 Allocating and provisioning
	4.1.3 Evaluating

	5 Experiments
	5.1 Experimental setting
	5.2 Scenarios
	5.3 Results

	6 Conclusion and future work
	Acknowledgments
	References

