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Abstract Cloud computing provides on-demand resource
provisioning and scalable resources dynamically for the effi-
cient use of computing resources. Scientific applications
recently need a very large number of loosely coupled tasks to
be handled efficiently. In response, current computing envi-
ronments often consist of heterogeneous resources such as
cloud computing. To effectively use cloud resources, auto-
scaling methods that consider diverse metrics such as CPU
utilization and costs of resource usage have been studied
widely. However it still remains a challenge to automatically
and timely allocate resources such that deadline violation and
application types are considered. In this paper, we propose
auto-scaling methods that consider specific conditions such
as application types, task dependency, user-defined deadlines
and data transfer times within a hybrid computing infrastruc-
ture. Our hybrid computing infrastructure consists of local
cluster and cloud resources using HTCaaS. We observe
noticeable improvements in performance when our auto-

B Yoonhee Kim
yulan@sookmyung.ac.kr

Jieun Choi
jechoi1205@sookmyung.ac.kr

Younsun Ahn
ahnysun@sookmyung.ac.kr

Seoyoung Kim
sssyyy77@kisti.re.kr

Jaeyoung Choi
choi@ssu.ac.kr

1 Department of Computer Science, Sookmyung Women’s
University, Seoul 140-742, Korea

2 National Institute of Supercomputing and Networking,
KISTI, Daejeon 305-806, Korea

3 School of Computer Science & Engineering, Soongsil
University, Seoul 156-743, Korea

scaling methods for bag-of-tasks and workflow applications
is applied.
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1 Introduction

Cloud computing provides on-demand resource provision-
ing and scalable resources dynamically for efficient use of
computing resources. In recent research, scientific applica-
tions often need a very large number of loosely coupled tasks
to be handled efficiently. These applications are classified
into two types which are bag-of-tasks [1] and workflow [2]
according to dependencybetween tasks.At the same time, the
computing infrastructure available to applications is becom-
ing more and more heterogeneous, integrating local clusters
and private/public clouds. To effectively use cloud resources,
auto-scaling methods that consider diverse metrics such as
CPU utilization and costs of resource usage have been stud-
ied widely.

Our previous paper [3] proposed a VM auto-scaling
method to provide efficient resource utilization in hybrid
cloud computing environment. However, the proposed auto-
scaling algorithm needs to be extended to support various
patterns of task execution like bag-of-tasks and workflow.
Bag-of-tasks schedules tasks to resources separately from
each other, whereas workflow performs tasks in order of
dependency patterns.

This paper proposes an extended version of the auto-
scaling method reflecting patterns of tasks and the require-
ments of an applicationbasedonhybrid computing infrastruc-
ture. We propose auto-scaling methods that finish all tasks,
while meeting a deadline and considering task dependency
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and data transfer time. Our hybrid computing infrastruc-
ture consists of cluster and cloud resources using HTCaaS
[4]. We analyze ten thousand (104) tasks using various
empirical combination of cluster and cloud resources. We
evaluate the auto-scaling methods with bag-of-tasks applica-
tion and extension protein annotation workflow application
[2]. The results of these experiments showed that themethods
automatically allocated resources efficiently to user-defined
deadline constraints.

The rest of this paper is structured as follows: Sect. 2
discusses related work while Sect. 3 introduces the service
architecture of the auto-scaling framework. In Sect. 4, auto-
scaling methods are discussed in detail, while experiments
and results are presented in Sect. 5. Section 6 concludes the
paper and discuss future work.

2 Related work

In this section, we introduce several related works with a
focus on various aspects such as horizontal/vertical scal-
ing, Bag-of-tasks [1]/Workflow [2], CPU/memory, costs, job
deadline and other policies compared with our work.

Liu et al. [5] focused on vertical and horizontal scal-
ing mechanisms that allocate resources according to cost/
e f f iciency and the execution pattern of the applications. In
horizontal scaling (scaling out/in), new VMs are added or
released as needed. On the other hand, vertical scaling (scal-
ing up/down) changes the resources assigned to an already
created VM by increasing (or reducing) the allocated CPU
power or memory [6]. Bao et al. [7] proposed a novel auto
load-aware scale scheme for an OpenStack-based private
cloud environment to provide QoS guarantees and ensure
system health. Based on prediction algorithms, Bao et al.
[7] describes scale-in and scale-out strategies for situations
where resources are both sufficient and insufficient. Simi-
larly, in [8] auto scaling in and out is based on prediction
algorithms; however, these algorithms take into considera-
tion scaling costs such as virtual resource cost and license
costs. Saleh et al. [9] automatically detected complex patterns
and relationships among events and performed horizontal
auto-scaling based on these patterns.

On the user side, [10], [11], [12], and [13] are stud-
ies of auto-scaling considering deadlines for applications
or costs of resource usage. There are two kinds of studies
that are scheduling a bag-of-tasks which does not consider
dependency and workflow scheduling which does consider
dependency between tasks. Dutta et al. [10] proposed an
auto-scaling method that minimized resource usage costs
for bag-of-tasks jobs. It used horizontal scaling which added
or removed VMs and vertical scaling which expanded or
reduced the size of a VM. However, it is still deficient for
resource requirements of dynamicworkloads because it lacks

consideration of resource usage during execution of an appli-
cation.

There are a few studies that have considered workflow
scheduling.Mao et al. [11] assessed the workload as a stream
of unpredicted workflow jobs and proposed two auto-scaling
mechanisms. Mao et al. [11] expects to finish the execution
of jobs within deadlines at minimum financial costs. It uses
three special types of workload patterns(pipeline, parallel,
hybrid). However, this is an insufficient mixture of workload
patterns. Thus we considered diverse workflow patterns and
applied our proposed auto-scalingmethods. Bittencourt et al.
[12] eased the execution of workflow applications on Grids,
whichmay be changed to revise the environment. Bittencourt
et al. [12] minimizes execution costs and data transmission
costs within a given deadline using a proposed auto-scaling
algorithm. Bittencourt et al. [12] divides a workflow into
partitions and assigns to each partition a sub-deadline; thus,
it can minimize execution time for the entire workflow.
Abrishami et al. [13] performed a workflow scheduling algo-
rithm that considers a sub-deadline to meet users’ deadlines.
Abrishami et al. [13] evaluates a proposed algorithm using
different structural properties and different sizes of work-
flow. Bittencourt et al. [14] proposed an efficient scheduling
algorithm for dependent jobs using a PCH algorithm. Also,
Bittencourt et al. [14] considers the communication costs
of data transfer. Sakellariou et al. [15] proposed an algo-
rithm to meet budget constraints within a minimum possible
execution time. Niu et al. [16] adopted a cost-effectiveness
algorithm to execute tightly coupled applications by inte-
grating resource provisioning. We propose an algorithm for
workflow referring to workflow scheduling algorithms.

Based on our previous research [3], an extended version
of an auto-scaling method is proposed in this paper. The pro-
posed auto-scaling method can achieve dynamic resource
allocation considering types of jobs, from bag-of-tasks to
workflow. The auto-scaling methods can automatically allo-
cate cloud resources considering task dependency and data
transfer time in various workflow applications.

3 Service architecture of auto-scaling framework

We design a service architecture of an auto-scaling frame-
work, as shown in Fig. 1. The architecture is an extended
version of that in our previous paper [3] within a hybrid
computing infrastructure. It consists of four major services.
Metadata Mgmt. Service (MMS) maintains information of
three different categories—job, resource, VM—and stores
mainly static information. Job Execution Service (JES) and
Dynamic Resource Mgmt. Service (DRMS) monitor and con-
trol jobs andVMs.Auto-Scaling Service (ASS) is a core of the
proposed service framework. This service consists of three
modules: ‘Scheduling’, ‘SLA Monitoring’and ‘Run-time
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Fig. 1 Service architecture

Scaling’ which are dependent on each other. The Scheduling
module allocates jobs to VMs that fit resource requirements
of jobs according to application types and SLA. We con-
sider two kinds of applications and develop two algorithms
(described in Sects. 4.2 and 4.3). One is a bag-of-tasks appli-
cation: loosely coupled tasks without dependency. The other
is a workflow application which has a critical path with task
dependency. The SLAMonitoring module is responsible for
estimating of performance. Performance can be estimated by
comparing the biggest Estimated Finish Time (EFT) of the
last job on a VM with the deadline in SLA, and whether
the EFT would exceed the deadline. The SLA Monitoring
module checks deadline violations of running applications
and sets scaling to TRUE or FALSE. The SLA Monitoring
is conducted at specified interval, and monitoring returns the
value of SCALING which indicates whether scaling is nec-
essary. The Run-time Scaling module decides the number of
VMs to create or destroy for application execution and then
passes the decisions to DRMS and JES.

HTCaaS [4] allows users to effectively use available
resources in heterogeneous computing environments and
efficiently submit a large number of jobs at once. HTCaaS
comprises the JES and DRMS levels. Thus, instead of using
JES and DRMS, HTCaaS is selected.

A Hybrid Infrastructure consists of heterogeneous com-
puting resource such as cluster and public/private cloud
computing resources. Amazon EC2 can be used as a public
cloud resource and a private cloud can be built using Open-
Stack [17].

4 Auto-scaling methods

Auto-scaling is currently being discussed and studied as
a useful resource management approach. With increasing

Table 1 Notations for three algorithms

Notation Description

taski (i = 1, 2, . . . N ) Tasks in an application

Ri Resources which schedule taski
toStartUp List for VM creation

toShut Down List for VM deletion

EFTRi Estimated finish time of a resource

ESTRi Earliest start time of a task i on a resource

ETRi Execution time of a task i on a resource

D Deadline of application

CP Critical path in a application

focus on auto-scaling in several studies, much effort has
been made to dynamically provide optimized resource scal-
ing in cloud computing environments. Auto-scaling issues
are divided into various categories such as application types,
performancemetric, resource usage, costs, user-defined SLA
and QoS.

The auto-scaling processes correspond to the MAPE [6]
loop of autonomous systems, which consists of four steps:
Monitoring, Analysis, Planning and Execution. The pro-
posed auto-scaling method also considers the following
steps:

• Monitoring:providingmeasurements about user require-
ments, job queue, job status, SLA violation and resource
status to use scaling metrics.

• Analysis: obtaining data from monitoring phase about
current system utilization, and optionally predictions of
future needs.

• Planning: planning how to scale the resources assigned
to the application to satisfy the scaling policies.

• Execution: executing the scaling actions decided in the
previous step.

In this section, three algorithms that can schedule tasks
to VM for bag-of-tasks and workflow applications are intro-
duced. The two algorithms make job scheduling decisions
depending on application types. The algorithms’ assump-
tion and notation can be seen in [3]. Some notations for the
algorithms are presented in Table 1. In all algorithms, com-
puting resources consist of cluster and private and public
cloud resources.

4.1 Run-time scaling algorithm

Algorithm 1 describes run-time scaling which is overall the
auto-scaling algorithm described in our previous research
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[3]. Algorithm 1 can be used to scale computing resources
for resource utilization while an application is running. Also,
it considers application types such as bag-of-tasks and work-
flow within a given deadline.

Algorithm 1 Run-time Scaling algorithm
Input: An application, application type T, a deadline D
1: SCALING ← TRUE;
2: while (true)
3: if SCALING == TRUE
4: switch T
5: case bag-of-tasks
6: JS ← Bag-of-tasksScheduling(application,D)
7: case workflow
8: JS ← WorkflowScheduling(application,D)
9: end switch
10: for each VM where status is running do
11: if no running/waiting tasks on VM then
12: add VM to toShutDown;
13: end if
14: end for
15: WaitForNextInterval();
16: SCALING ← SLAMonitoring(runningTasks, D);
17: end if
18: end while
Output: Scaling decision S = {toStartUp, toShutDown}

Scheduling decision J S
= { (taski , Ri ) | i = 1, 2, · · · N ,

Ri ∈ (Clusters, Privavte VMs, Public VMs)}

If SCALING is true (line 3), an application is scheduled
using the applicable type of application (lines 4–9). After
scheduling, the algorithm checks whether there is any VM
that does not have a running job or a queued job. If so,
the VMs are added to the toShut Down list for deletion
(lines 10–14). The output of algorithm 1 is the scaling deci-
sion S and the scheduling decision J S. These outputs are
sent to DRMS and JES respectively. The SLA Monitoring
module checks deadline violations of running application
and sets scaling to TRUE or FALSE. SLA Monitoring is
conducted at given intervals, and the monitoring returns
the value of SCALING which indicates whether scaling is
necessary.

4.2 Bag-of-tasks scheduling algorithm

Algorithm 2 shows a scheduling algorithm for bag-of-tasks
during an auto-scaling process in a cluster and cloud com-
puting environment. First, the algorithm verifies whether
there are available cluster resources (line 2). If there are
available cluster resources then the task is scheduled to the
cluster resources that can then the task earliest within the
application deadline (line 3). If there are no available cluster
resources then the task is scheduled to the private VM that
can start the task the earliest within the application dead-
line (line 4), but if there is no private VM running then the

scheduler finds a new private VM and adds the VM to the
toStartUp list (lines 5–8). In the sameway, if there is noVM
running in private then the task is scheduled to public VM
(lines 11–17). Finally, the taski is scheduled to Ri and the
Estimated Finish Time (EFT) is calculated while considering
theEarliest Start Time (EST) and theExecutionTime (ET) on
the Ri .

EFTRi = ESTRi + ETRi (1)

Algorithm 2 Bag-of-tasks scheduling algorithm
Input: Waiting application, D
1: for each taski do
2: if Available(Cluster) then
3: Ri ← FindEarliest(Cluster,D);
4: else if Available(Private VM) then
5: if there is no private V M running then
6: Ri ← FindNew(Private VM, D);
7: add Ri to toStartUp;
8: else
9: Ri ← FindEarliest(Private VM, D);
10: end if
11: else // Available(Public VM)
12: if there is no public V M running then
13: Ri ← FindNew(Public VM, D);
14: add Ri to toStartUp;
15: else
16: Ri ← FindEarliest(Public VM, D);
17: end if
18: end if
19: Schedule taski to Ri ;
20: EFTRi ← ESTRi + ETRi ;
21: end for
Output: Scaling decision S = {toStartUp}

Scheduling decision J S
= { (taski , Ri ) | i = 1, 2, · · · N ,

Ri ∈ (Clusters, Privavte VMs, Public VMs)}

4.3 Workflow scheduling algorithm

Algorithm 3 shows the workflow scheduling procedure. The
proposed auto-scaling technique can discover delay and
deadline violations by comparing actual start times and esti-
mated start times of running tasks. Tasks in the workflow are
sorted in sequential order and are connected with other tasks.
Thus each task could get an EFT from a related previous task
and set an EST value to the EFT of a related previous task to
consider the order of tasks.

The proposed workflow scheduling algorithm is based on
a PCH algorithm [14]. The scaling method tries to allocate
cloud resources based on SLA monitoring. We can get tasks
on a critical path by grouping the tasks using the PCH algo-
rithm [14]. The total execution time of a critical path in a

123



Cluster Comput (2015) 18:1063–1073 1067

resource is calculated and set to a deadline value. Also, addi-
tional time is added to the deadline value.

Algorithm 3 Workflow scheduling algorithm
Input: Waiting application, D
1: for each taski considering EFTR j do
2: if taski ∈ CP then
3: if taski is the first task ∈ CP then
4: if Available(Cluster) then
5: Ri ← FindEarliest(Cluster, D, CP);
6: else if Available(Private VM) then
7: Ri ← FindEarliest(Private VM, D, CP);
8: else // Available(Public VM)
9: Ri ← FindEarliest(Public VM, D, CP);
10: else // not a first task ∈ CP
11: Ri ← Current R on which all tasks ∈ CP

within the D;
12: end if
13: else
14: if Available(Cluster) then
15: Ri ← FindEarliest(Cluster, D);
16: else if Available(Private VM) then
17: if there is no private V M running then
18: Ri ← FindNew(Private VM, D);
19: add Ri to toStartUp;
20: else
21: Ri ← FindEarliest(Private VM, D);
22: end if
23: else // Available(Public VM)
24: if there is no public V M running then
25: Ri ← FindNew(Public VM, D);
26: add Ri to toStartUp;
27: else
28: Ri ← FindEarliest(Public VM, D);
29: end if
30: end if
31: end if
32: Schedule taski to Ri ;
33: ESTRi ← EFTR j

34: EFTRi ← ESTRi + ETRi
if (Ri �= R j ) + DTTi j ;

35: end for
Output: Scaling decision S = {toStartUp}

Scheduling decision J S
= { (taski , Ri ) | i = 1, 2, · · · N ,

Ri ∈ (Clusters, Privavte VMs, Public VMs)}

First, each taski in a workflow application, we must con-
sider a related previous task j and the EFT of task j on
resource R j (line 1). Next, tasks on a critical path are sched-
uled on the same resource, which can execute all tasks in a
critical path (line 2). If the taski is the first task in a crit-
ical path, taski is scheduled to Ri which is the available
resource onwhich all tasks in a critical path can runwithin the
deadline (lines 3–9). If there are available cluster resources,
the scheduler finds a cluster on which all tasks in a critical
path can run within the deadline (lines 4–5). In our hybrid
computing infrastructure, it is rare that tasks fail in cluster
resources. For this reason, cluster resources are considered
first for workflow applications. Thus in scheduling tasks, it

is a rule to choose private cloud resources (lines 6-7) prior to
public cloud resources (lines 8–9). After that, other tasks in a
critical path are scheduled to the currently selected resource
(lines 10–12). The scheduler then schedules tasks that are not
in a critical path (lines 14–31) with consideration to a related
previous task’s EFT. If there are available cluster resources,
then the task is scheduled to the cluster resources that can
execute the task earliest within the application deadline (line
14). If there are no available cluster resources, the task is
scheduled to the private VM that can start the task earliest
within the application deadline (line 21), but if there is no
private VM running then the scheduler finds a new private
VM and adds the VM to the toStartUp list (lines 17–19).
In the same way, if there is no VM running in private then
the task is scheduled to public VM (lines 24–30). Finally, the
taski is scheduled to Ri and EFT is caculated(line 32–34).
It is important to consider task dependencies and data trans-
fer time in workflows. In this algorithm, Data Transfer Time
(DTT) from task j to taski can be defined as shown in Eq. 2.

DTTi j = Data(taski , task j )

NetworkBandwidth
(2)

With the execution of tasks on the critical path on the same
resource, communication overhead is reduced. That is, when
parent tasks and child tasks are all performed on the same
VM, data transfer time is zero. When tasks that are not on a
critical path are scheduled to VMs, tasks check a parent tasks
state. If parent tasks are allocated to cloud resources, child
tasks could be allocated as well. Otherwise, while parent
tasks are scheduled to cloud resources, child tasks must wait
to be allocated. As mentioned above, each task could get an
EFT of a parent task and calculate an EST value considering
EFT of a parent task and data transfer time. This can be
calculated as presented below:

EFTRi = ESTRi + ETRi + DTTi j (3)

5 Experiments

Experiments that validated our auto-scalingmethods are pre-
sented in this section. First, the hybrid computing infrastruc-
ture and empirical combination of hybrid resources is pre-
sented in Sect. 5.1 and the subsequently, the experimental
results are shown in Sects. 5.2 and 5.3.

5.1 Experiment environment

The hybrid computing infrastructure consist of local clus-
ter and private cloud resources using HTCaaS [4]. HTCaaS
allows users to effectively use available resources in a het-
erogeneous computing environment and efficiently submit
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Fig. 2 System architecture

a large number of jobs at once. Figure 2 shows the system
architecture using HTCaaS.We use OpenStack [17], an open
source software that provides large pools of compute, storage
and networking resources used for the private cloud.

Table 2 shows the specifications of the cluster machines
and Table 3 shows the cloud machines’ specifications.

On the hybrid computing infrastructure, we conducted
empirical experiments that collected preliminary data for the
bag-of-tasks application. The application used in our exper-
iments consisted of a large number of tasks. The tasks have
an average of 10 s as their execution time.

Figure 3 shows the experimental results. We analyze the
application using various empirical combinations of cluster
and cloud resources in our hybrid computing infrastructure.
The application has ten thousand (104) tasks executed in the
cluster and the cloud. The x-axis represents the number of
tasks that are executed using a combination of cluster and
cloud resources; that is, the number of tasks in the cluster/the
number of tasks in the cloud. We use cluster resources that
have 104 cores and use cloud resources that have 208 virtual
machines and each VMwas created identically using Ubuntu
12.04 Server image with a memory allocation of 3GB and 1
vCPU. In Fig. 3, a combination (6000/4000) performs 6000
tasks in cluster resources and executes 4000 tasks in VM
represented the ‘best’ result.

Fig. 3 Empirical combining cloud and cluster resources

5.2 Auto-scaling for bag-of-tasks applications

The proposed auto-scaling algorithm for bag-of-tasks appli-
cations was simulated using CloudSim [23] which has the
environment identical to Tables 2 and 3. Figure 4 shows
the result of the simulation for bag-of-tasks applications,
comparing auto-scaling and initial scheduling. The same
application from the experiment above was used in the pro-
posed hybrid computing infrastructure. The application has
ten thousand (104) tasks: 6000 tasks in cluster resources and
4000 tasks in cloud resources. During the simulation, there
is a delay from −20 s to +20 s at 400 tasks. During initial
scheduling, tasks are executed regardless of deadline viola-
tions since initial scheduling does not include rescheduling of
tasks. In contrast, the auto-scaling algorithm tries to resched-
ule tasks that may violate the deadline. When a deadline
violation occurs, the proposed auto-scaling algorithm works
better than the initial scheduling. In the initial scheduling, 212
tasks fail while all tasks were executed successfully within
the given deadline using the auto-scaling approach. So, the
proposed auto-scaling algorithm for bag-of-tasks application
can prevent task failure compared to initial scheduling.

5.3 Workflow applications

The concept of the proposed workflow algorithm is demon-
strated in a simulation inCloudSim [23] using a protein anno-

Table 2 Cluster
machines’ specifications

CPU Core RAM

Compute 1 2 × Intel Xeon Processor E5-2690v2 (3.0 GHz,
25 MB L3, QPI 8.0 GT/s, 115 W, 10-Core)

40 128 GB

Compute 2 Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60 GHz 32 64 GB

Compute 3 Intel(R) Xeon(R) CPU X5560 @ 2.80 GHz 8 16 GB

Compute 4∼6 Intel(R) Xeon(R) CPU E5420 @ 2.50 GHz 8 16 GB

Table 3 Cloud
machines’ specifications

CPU Core RAM

Controller Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20 GHz 40 96 GB

Compute 1 AMD Opteron(tm) Processor 6378 64 256 GB

Compute 2 AMD Opteron(tm) Processor 6378 64 256 GB
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Fig. 4 Auto-scaling for bag-of-tasks

tation workflow. The simulation of the proposed auto-scaling
algorithm is conducted in a hybrid computing infrastruc-
ture. Section 5.3.1 shows test applications and discusses
workflow auto-scaling with data transfer times. Section 5.3.2
compares algorithm 3 to deadline-MDP [12] and Sect. 5.3.3
discusses our auto-scaling performance when a deadline vio-
lation occurs.

5.3.1 Extension of protein annotaion workflow

The London e-Science Center developed the Protein anno-
tation workflow [2] which has dependent tasks and is able
to deal with large amounts of information. Also, it provides
15 services that require several steps to fulfill each. These
services are performed sequentially, and each service in a
workflow generates output data required by the child ser-
vices as inputs, as shown in Fig. 5. Among the services,
HMMer, IMPALA, BLAST, PSI-BLAST, and PSI-PRED
are considered in particular in this experiment. Each services
explanation can be found in [18–22]. In the experiment, input
data and output data are key factors in considering data trans-
fer times. Because HMMer, IMPALA, BLAST, PSI-BLAST,
and PSI-PRED services require large input data, the values
of each data transfer time are different. Especially, the PSI-
BLAST service requires not only large input data, but also
large output data as following PSI-PRED service requires all
the output data from PSI-BLAST.

Figure 6 shows an extension of a protein annotation work-
flow. The number of tasks is 57 and the length of tasks is
featured in parentheses in Fig. 6. Protein annotation work-
flow [2] applications services are performed sequentially and
generate output data required by the child services as inputs.
The I/O data of theworkflows range from1.2 to 29.2GB. The
available network bandwidth between services is 100 Mbps.
In this experiment (Figs. 7, 8, 9), four private clouds having
330 MIPS and public clouds having 600 and 2400 MIPS are
used.

In Fig. 7, an extension of the protein annotation work-
flow using only hybrid cloud resources is used. In Fig. 7, the

Fig. 5 E-protein service structure [2]

two graphs show the number of VM used when the work-
flow pattern includes I/O data and when it has no I/O data.
The dot pattern graph in Fig. 7, represents the result of auto-
scaling when considering I/O data. A diagonal pattern graph
shows the result of auto-scalingwithout considering I/O data,
where the data transfer time is zero. The graph without con-
sidering I/O data executes all tasks within 7200 s. However,
with considering I/O data, the graph shows finishing within
8500 s. The auto-scaling algorithm successfully perform
dynamically allocation tasks actually needed in workflow
considering task dependency and data transfer time. At the
beginning of the execution time, both graphs used the same
number of VMs. Tasks are not affected by data transfer time,
but only influenced by dependency. So, tasks are allocated to
VMs in parallel. After 1800 s, considering the I/O data graph
using less VM than without considering the I/O data graph
does because of waiting tasks. In 4200 s, with considering
the I/O data graph shows that waiting tasks can execute at
the same time.

Figure 8 presents the percentage of tasks completed at
each monitoring interval using only hybrid cloud resources.
The graph without I/O data finishes at 7200 s. However, the
graph with I/O data accomplishes all tasks within 8500 s,
because tasks are influenced by data transfer times. In the
case of executions with I/O data, tasks wait to be allocated
until parent tasks are finished. From the graph, before 1800 s,
the lines show no difference. After 1800 s, however, tasks
cannot be allocated to VM and wait for data transfer time
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Fig. 6 Extension of protein annotation workflow

Fig. 7 The result of extension of protein annotation workflow

Fig. 8 The percentage of tasks completed

with I/O data. In 3600 s, the graph without I/O data shows
that 70 % of tasks are finished. On the other hand, the graph
with I/O data reveals that less than 50% of tasks are allocated
to VM.

Fig. 9 Simple workflow pattern

Thus, data transfer times influence execution times and
VM usage. The proposed auto-scaling method can complete
the tasks as soon as possible by automatically allocating
VMs, considering data transfer time and dependency.

5.3.2 Comparing algorithm 3 with deadline-MDP

The same workflow presented in Fig. 9 was generated
to compare algorithm 3 with deadline-MDP [12]. Figure 9
presents a simple workflow pattern. In Fig. 9, some tasks
merge with other tasks and the number of dependencies is
2150. The number of tasks is 1000 and the length of tasks
ranges from 15,000 to 90,000. The monitoring interval is
600 s.

Figure 10 shows the result of comparing algorithm
3 with deadline-MDP using the workflow presented in
Fig. 9. Bittencourt et al. [12] proposed deadline-MDP which
a is workflow scheduling algorithm using sub-deadlines.
Deadline-MDP divides deadlines with synchronization tasks
to meet the whole deadline, whereas algorithm 3 finds the
critical path to arrange deadlines and allocates VMs with
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Fig. 10 Comparing algorithm 3 to deadline-MDP [12]

consideration of dependency and data transfer time; sub-
deadlines are not considered in algorithm 3.

Some tasks may be restrict to allocated VMs using
sub-deadlines in special cases. Thus, sub-deadline may be
used for a number of VMs momentarily after meeting a
sub-deadline. Deadline-MDP extends total execution time
because deadline-MDP cannot sometimes allocate VM to
keep sub-deadlines. Deadline-MDP also uses an inefficient
amount of VMs after keeping a sub-deadline. For exam-
ple, after 7200 s, deadline-MDP uses 174 VMs to execute
tasks that were waiting for the sub-deadline time. This is an
inefficient way to use resources. Algorithm 3 appropriately
allocates VMs by using 82 VMs at 4800 s and 150 VMs at
7200 s. The results show that the proposed algorithm finishes
all tasks within 12,000 s while deadline-MDP completes
within 12,800 s. Algorithm 3 runs faster than deadline-MDP
and uses the resources with maximum efficiency.

Additionally, deadline-MDP may not be appropriate for
allocating many tasks in the initial stages because they
impacts on sub-deadlines. Allocating an amount of tasks
to VMs at initial stages is efficient by following initial
scheduling, because delay can occur in run times and then
rescheduling would be needed.

5.3.3 Auto-scaling for workflow applications

The proposed auto-scaling algorithm for workflow applica-
tions is simulated within a hybrid computing infrastructure
that includes local cluster and cloud resources. Figure 11
shows the result of a simulation of workflow applications
comparedwith auto-scaling and initial scheduling.Thework-
flowapplication,which extends fromFig. 6 andhas 228 tasks,
was used for this simulation. An assumption that the 48 tasks
that are not in the critical path have a 100 s delay is made,
because all tasks in a critical path scheduled cluster resources
that are not scaled even if a delay is caused. Similarly, during
initial scheduling, tasks are executed regardless of deadline
violations since initial scheduling does not include reschedul-
ing of tasks. In contrast, the auto-scaling algorithm tries to
reschedule tasks thatmay violate a deadline.When a deadline
violation occurs, the proposed auto-scaling algorithm works

Fig. 11 Auto-scaling for workflow

better than the initial scheduling approach. In initial schedul-
ing, some tasks fail while no tasks fail within a deadline in
auto-scaling. Thus, the proposed auto-scaling algorithm for
workflow application can protect against task failure better
than initial scheduling.

6 Conclusions and future work

This paper proposes auto-scaling methods that effectively
manage bag-of-tasks applications and workflow applications
within a hybrid computing infrastructure. Our hybrid com-
puting infrastructure consisted of local cluster and cloud
resources.We analyzed the application using various empiri-
cal combinations of cluster and cloud resources in our hybrid
computing infrastructure. We conducted simulations that
showed performance achievements of our algorithmwith the
bag-of-tasks application. Also, we carried out simulations
with the protein annotation workflow application and used
various kinds of workflow. In the simulation, our proposed
workflow scheduling algorithm automatically allocatedVMs
within the deadline, while considering application types, task
dependency and data transfer time in a hybrid computing
infrastructure. The proposed auto-scaling methods can elim-
inate task failurewhile an application is running. In the future,
wewill implement our auto-scalingmethods for different sci-
entific workflows based on various policies.
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