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Abstract— The most scientific and numerical problems can be 

solved using the system of equations in linear algebra. Matrix–

matrix multiplication is the foundation of linear algebra 

equations, and its optimization has an impact on the overall 

performance of a system. ScaLAPACK has established itself as 

the industry standard for dense linear algebraic computations, 

developed 30 years ago. Owing to advancements in 

microprocessor architectures, it is difficult to fully utilize the 

hardware capabilities of legacy software systems on modern 

architectures and achieve the maximum performance. In this 

study, we analyzed the effects of matrix size, register blocking 

parameters, and thread distribution on the performance, and 

improved our previously implemented matrix–matrix 

multiplication routine for matrix–panel multiplication, which 

performed well for large-sized square matrices. We also presented 

the ScaLAPACK QR factorization performance by replacing the 

double-precision general matrix–matrix multiplication routine 

(DGEMM) of ScaLAPACK with our matrix–matrix 

multiplication routine for a single node Intel Xeon Phi Knights 

Landing processor. 

Keywords— ScaLAPACK, Intel Knights Landing, QR 

factorization, matrix–matrix multiplication, AVX-512  

 

I. INTRODUCTION  

Generally linear algebra is used in numerous domains of 
science and engineering applications such as operations 
research and optimization studies, dynamical systems analysis 
and control, signal processing, computational chemistry, 
quantum mechanics, and even in big data analysis and 
machine learning. Because earlier computers had only a single 
processor, sequential programming was the basis for most 
software designs. In those days, the hardware performance has 
been improved with an increase of the clock speed, but 
hardware designers were faced with the "power wall" problem 
[1], and it was no longer possible to increase the performance 
by simply increasing the clock speed. Therefore the trend has 
shifts towards multi-core processors on a single chip, thereby 
shifting the processor design paradigm toward multi-core and 
manycore approaches. Software developers have therefore 
been required to rewrite their applications using a parallel 
programming model to achieve a higher performance by 
utilizing most of the hardware capabilities. This has given rise 
to parallel processing to improve the computing performance, 
perform complex calculations, and solve computationally 
expensive linear algebra equations.  

Matrix multiplication is an essential component of linear 
algebra. Numerous applications of  scientific and engineering 
problems have also used dense matrix–matrix multiplications. 
In this paper, we present a modified version of matrix 
multiplication algorithm on Intel Xeon Phi Knights Landing 
(KNL) processor, which is the second generation Intel Xeon 
Phi product, and supports vectorization and the AVX-512 
SIMD instruction set to conduct extremely high-performance 
matrix computations [2]. 

A. Background 

In earlier works [3, 4], a matrix–matrix multiplication 
algorithm was implemented using register and cache blocking, 
data prefetching, loop unrolling techniques, and the Intel 
AVX-512 instruction set. The register block sizes, cache block 
sizes, loop unrolling depth, and parallelization scheme all 
affect the performance of the matrix–matrix multiplication 
routine. We named our previously implemented matrix–
matrix multiplication algorithm as USERDGEMM. We 
examined the effect of matrix size on the performance of 
USERDGEMM. The parameters for which this algorithm 
performed well for large square matrices, but the performance 
is lower when the resultant matrix C is not a square shape. In 
this study, we optimized the algorithm for matrix–panel 
multiplication operation.  

The matrix multiplication operation is of the form � = � ⋅
� ⋅ � + � ⋅ �, where � and � are scalar, and A, B, and C are 
matrices of sizes m × k, k × n and m × n, respectively. When 
one of the dimensions is small, the matrix–matrix 
multiplication can be termed as panel–matrix, matrix–panel, 
or panel–panel, depending on whether m, n, or k is small, 
respectively. When n is small, the shape of the matrix–panel 
operation is illustrated in Fig. 1. 

 

  

Fig. 1. Matrix–panel multiplication operation 

Data distribution is critical for the implementation of 
algorithms that uses cache blocking to improve the perform-
ance of cache-based hierarchical memory systems. To achieve 
a high performance and take advantage of the computational 
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power of multiple computing units, the distribution and 
alignment of data require careful attention while moving data 
from one layout to another, as well as in the realignment of 
packing and unpacking during data transfer process, allowing 
each computing unit to access the required data in sequence 
from the memory. A regular array distribution can be 
distributed in block, cyclic, and block cyclic formats [5]. 
ScaLAPACK [6, 7] uses a block cyclic data distribution 
format. 

 

Fig. 2. QR decomposition 

Given a matrix A ∈ Rm×n the QR decomposition of A is 

given by  

 A = Q �  R   (1) 

where A, Q, and R are matrices of sizes m × n, m × m and m × 
n, respectively. In addition, Q is an orthogonal matrix, and R 
is an upper-triangular matrix. QR decomposition of matrix A 
is illustrated Fig. 2. A square matrix with real values is said to 
be orthogonal if it can be multiplied with its transposed matrix 
to produce an identity matrix and possesses commutative 
properties such as QT � Q = Q � QT = I or QT= Q–1, where Q–1 

and QT are the inverse and transpose of Q, respectively. 

QR factorization helps in solving linear least squares, 
eigenvalue, and singular value decomposition (SVD) related 
problems in linear algebra based computational methods and 
is also widely used in numerous applications including data 
processing, image processing, communication systems, and 
radar systems. Three of the most commonly used QR 
factorization methods are the Gram–Schmidt process, 
Householder transformations, and Givens rotations. The 
ScaLAPACK QR factorization algorithm relies on House- 
holder reflectors because it is numerically more stable than 
the Gram–Schmidt algorithm [8]. QR factorization applies a 
series of Householder transformations of the following form: 

 � = � − ���� ,   (2) 

where I is the identity matrix, � is a column vector, and � is a 
scalar.  

The ScaLAPACK libraries are the de facto industry 
standard for dense linear algebraic computations, and the 
public version provides state-of-the-art algorithms for various 
problems. ScaLAPACK supports LU, QR, and Cholesky 
factorization. It solves singular value, eigenvalue, and linear 
least-square problems. ScaLAPACK accepts dense, 
tridiagonal, bidiagonal, banded, or packed symmetric or 
triangular matrices as the inputs. The ScaLAPACK source 
code is publicly available at www.netlib.org. ScaLAPACK is 
included in commercial packages from Apple, AMD, 
Compaq, Fujitsu, Hitachi, Hewlett-Packard, Intel, IBM, 

MathWorks, NEC, NAG, PGI, SUN, and Visual Numeric. 
Most Linux distributions, including Cygwin, Debian, and 
Fedora, also include it in their packages. 

The implementation of a dense linear algebra system of 
equations is based on an open-source implementation of the 
BLAS [9] library, which is platform-dependent and targets the 
different architectures of AMD [10], IBM [11], Intel [12], and 
Nvidia [13]. Different variants of BLAS are available in 
libraries such as GotoBLAS [14], OpenBLAS [15], and BLIS 
[16]. The underlying base of the ScaLapack is the BLAS 
library. The ScaLAPACK has a modular architecture based on 
the HPC software packages BLAS, LAPACK [17], PBLAS 
[18], and BLACS [19]. ScaLAPACK is portable for multi-
node systems that support MPI [20] and depends on PBLAS, 
similar to the dependence of LAPACK on BLAS as shown in 
Fig. 3.  

 

Fig. 3. The Calling stack and dependencies of ScaLAPACK 

B. Contribution 

The main contribution of this study:  

• Evaluated the effect of matrix size, block size, register 
blocking parameters, and threads distribution on the 
performance of the matrix–matrix multiplication.  

• We modified USERDGEMM, which performed well 
on square matrices; however, its performance remains 
poor when one of the dimensions is small. In this study, 
we improved the performance of USERDGEMM for 
matrix–panel like matrix–matrix multiplication. 

• We replaced DGEMM, double-precision general 
matrix–matrix multiplication routine with our 
USERDGEMM routine in the ScaLAPACK QR 
factorization. We also evaluated the impact of this 
change on the QR factorization. 

II. RELATED WORK 

LAPACK [17] is an open-source library that leverages an 
optimized BLAS [9] at the node level, and since its initial 
release approximately 30 years ago has been widely used on 
single nodes. By contrast, ScaLAPACK [6, 7] is built upon 
and having the same capabilities as LAPACK, and is designed 
for distributed memory systems. It uses both parallel BLAS 
(PBLAS) [18] and explicit distributed-memory parallelism to 



extend LAPACK for multinode and distributed-memory 
structures. 

Owing the evolution of the computer architecture, it is 
difficult to utilize modern heterogeneous high-performance 
computing machines to their full potential, and traditional and 
legacy libraries are rapidly becoming obsolete. For processors 
with hierarchical memory architectures, automatic kernel 
tuning software such as PHiPAC [21] and ATLAS [22] has 
been developed. The kernels automatically generated by the 
auto-tuned linear algebra softwares are not always optimal. 
Different algorithms may be optimal for different matrix 
dimensions depending on the shapes of the matrices involved, 
and hand-coded micro-kernels must be quantified in order to 
optimize performance. Intel AVX instructions were also used 
to improve the performance of kernels in published works [23, 
24, 25, 26]. 

ScaLAPACK was designed and developed for computer 
systems with distributed memory. Current processor designs 
have evolved, and multi-core processors are now available on 
a single chip. Multi-core systems have shared memory 
architecture, whereas multinode systems have a distributed 
memory architecture. The hardware capabilities of multi-core 
computer systems have not been fully utilized by systems 
designed for distributed memory. Multinode computer 
systems using a multi-core computer as a node utilize a hybrid 
model of shared and distributed memories.  

III. METHODOLOGY / PROPOSAL 

We aim to improve the performance of QR factorization 
routine, using an AVX-512 instruction set-based matrix–
matrix multiplication routine. ScaLAPACK QR factorization 
iteratively applies matrix–matrix multiplication and improv-
ing the performance of a matrix–matrix multiplication can 
yield a noticeable improvement in the QR factorization.  

In this section, we discuss the existing implementation of 
the QR factorization routine, PDGEQRF in ScaLAPACK. We 
also discuss the changes made in its subroutine PDLARFB in 
subsection A, and then we discuss followed by a description 
of the modification to our USERDGEMM routine for 
improving the performance for matrix–panel multiplication 
operation in subsection B. 

A. QR Factorization 

The ScaLAPACK QR factorization routine, PDGEQRF, is 
a composite of the routines PDGEQR2, PDLARFT, and 
PDLARFB. PDGEQR2 further depends on the routines 
PDLARFG and PDLARF, which are responsible for 
generating elementary reflectors ��  and ��  and updating the 
trailing submatrix, respectively. For the current column of the 
processes of Householder vector v in the process row, 
PDLARFT only computes the triangular matrix. In addition, 
PDLARFB is responsible for applying QT to the rest of the 
matrix from the left. We intend to improve only the 
PDLARFB routine, because it involves the DGEMM routine 
multiple times, as shown in Fig. 4. 

To develop a distributed block form of this algorithm, it is 
necessary to represent the product of b elementary House-
holder matrices of order n as a block form of a Householder 
matrix. This is the most important step in creating the 
distributed block version of the algorithm, 

 Q = H1 H2 H3 …... Hb = I – V T VT. (3) 

 

Fig. 4. ScaLAPACK QR Factorization routine PDGEQRF 

 In QR factorization, the primary purpose of the PDLARFB 
routine is to apply  �  to the remainder of the matrix from the 

left: �! <= QT A. 

There are different ways to compute this routine, and the 
currently available version of ScaLAPACK computes this 
routine in the following manner: 

 This variant of PDLARFB computes as follows: 

QT A <= (I – V T VT) TA 
<= (I – V TT VT) A  
<= A – V TT VTA 
<= A – V (TT VT A)  
<= A – V (AT V T)T  
<= A – V (W T)T  

<= A – V "# T.  

In the current implementation of ScaLAPACK, the first 
DGEMM operation computes W <= AT V and conducts a 
(transpose)-(no transpose) operation of the matrix–matrix 
multiplication, as shown in Fig. 5 5. This operation is of a 

GEMP [27] type. DTRMM computes "$  <= W T, which is a 
matrix–matrix operation, in which T is an upper triangular 
matrix. In addition, the second DGEMM operation shown in 

Fig. 4 computes and updates �! <= A – V "$ T and conducts a 
(no transpose)-(transpose) operation. An illustration of the 
second DGEMM operation is presented in Fig. 6. 

 

 

Fig. 5. Illustration of DGEMM operation for W <= AT V 

 

 

Fig. 6. Illustration of DGEMM operation for  �! <= A – V "$ T 

 The second variant of PDLARFB computes as follows: 

  QT A  <= (I – V T VT) T A  

<= (I – V TT VT) A  

<= A – V TT VTA  

<= A – V TT W  

<= A – V "$ . 



In this variant of PDLARFB, the first DGEMM operation 
computes W <= VT A and applies a (transpose)-(no transpose) 
operation, as shown in Fig. 7. 

  

 

Fig. 7. Illustration of DGEMM operation for W <= VTA 

 

Fig. 8. Illustration of DGEMM operation for �%  <= A – VW$  

In this implementation, DTRMM computes "$  <= TT W, 
which is a matrix–matrix operation in which T is an upper 
triangular matrix. In addition, the second DGEMM operation 

computes and updates �! <= A – V "$ , which conducts a (no 
transpose)-(no transpose) operation. An illustration of the 
second DGEMM operation is presented in Fig. 8. 

The performance improvement of a matrix–matrix multi-
plication operation is critical for the overall performance 
improvement of the QR factorization routine. Matrix–matrix 
multiplication has been discussed extensively by Goto [27], 
and other works [3, 4], and double precision matrix–matrix 
multiplication operation in the row major order has been 
implemented and it works reasonably well for large matrices. 
The column major variant was also developed and used to 
improve the performance of the ScaLAPACK PDGEMM 
routine [4]. We modified the column major variant to 
improve the performance of the matrix–matrix multiplication 
routine for a matrix–panel operation. 

  

Algorithm 1: Blocked matrix multiplication algorithm 

for i = 1, …, m in steps of mb do 

  for p = 1, …, k in steps of kb do 

    Pack A(i: i + m – 1, p:p + kb 1) into �!; 

    for j = 1, …, n in steps of nb do 

      Pack B (p: kb – 1, j:j + nb  – 1) into �$ ; 

      for ir = 1, …, mb in steps of mr do 

        for jr = 1,…, nb in steps of nr do 

            �( = �! (ir : ir + mr – 1,:); 

            �) = �* (:, jr : jr + nr – 1); 

            �(+= �( ⋅ �); 

            Update C using �(; 

        end 

      end  

    end   

  end    

End     

Fig. 9. Blocked matrix–matrix multiplication algorithm 

B. USERDGEMM MODIFICATION DETAIL 

The blocked matrix–matrix multiplication is described in 
Fig. 9 as Algorithm 1. In this algorithm, m denotes the number 
of rows in matrices A and C; k represents the number of 
columns and rows in matrices A and B, respectively; and n 
represents the number of columns in matrices B and C.  

The cache block parameters mb, kb, and nb guide the 
algorithm on the sizes of the submatrix to copy, pack, and 
realign in sequential memory for the micro-kernel to compute 
a core matrix–matrix operation. The sizes of mb, kb, and nb 

determines the data reuse size of the packed submatrices �! or 
�*  and have a major impact on the performance of the routine 
because they are the key players in determining the effective 
usage of the cache. The matrices are stored in column-major 
format. In order to exploit the cache appropriately the 
matrices are blocked and packed in memory buffers. In the 

outer three loops matrices A and B are packed into �! and 

�*, respectively; so that the submatrices are aligned in 
sequential manner.  

The storage format of the A matrix is from row to column 
major in �! and, matrix B is from column to row major in �*  
and are illustrated in Fig. 10 and Fig. 11, respectively. This 
algorithm is for the BLAS Level 3 operation and thus it 
calculates:  

 C <= C – op(A) × op(B)   (4) 

where op(X) = X or op(X) = XT. 

 

 

Fig. 10. Illustration of Pack A 

 

Fig. 11. Illustration of Pack B 

For the same parameters for which this algorithm 
performed well for large square matrices, the performance is 
lower when the resultant matrix C is not a square shape. We 

considered a specific case of � = � − �� ⋅ �  with A as a 
square matrix of size m=k=10000, and B as a rectangular 
matrix of size k=10000 and n=300. 

The Algorithm 1 was implemented in C language and has 
three main components, i.e., Pack A, Pack B and the micro-
kernel routines. Micro-kernel is responsible for the core 
matrix–matrix computation and was implemented in AVX- 



Algorithm 2: Micro-kernel pseudo code for (mr, nr) = (8,31) 

register __m512d   _A0; 

register __m512d   _C0, _C1, _C2, ……………, _C30; 

_C0 = _mm512_loadu_pd(&C[0*ldc+0]); 

_C1 = _mm512_loadu_pd(&C[1*ldc+0]); 

: 

: 

_C30 = _mm512_loadu_pd(&C[30*ldc+0]); 

for i = 0,…,kb-1 do 

  _mm_prefetch(&A[L1_DIST_A+0], MM_HINT_T0); 

  _A0 = _mm512_loadu_pd(&A[0]); 

  _mm_prefetch(&B[L1_DIST_B+ 0..24],_MM_HINT_T0); 

  _C0 = _mm512_fnmadd_pd(_mm512_set1_pd(B[0]), _A0, _C0); 

  _C1 = _mm512_fnmadd_pd(_mm512_set1_pd(B[1]), _A0, _C1); 

  _C2 = _mm512_fnmadd_pd(_mm512_set1_pd(B[2]), _A0, _C2); 

     : 

     : 

  _C30 = _mm512_fnmadd_pd(_mm512_set1_pd(B[30]), _A0, _C30); 

  A += 8; 

  B += 31; 

end  

_mm512_storeu_pd(&C[0*ldc+0], _C0); 

_mm512_storeu_pd(&C[1*ldc+0], _C1); 

: 

: 

_mm512_storeu_pd(&C[30*ldc+0], _C30); 

Fig. 12. Micro-kernel implemented in AVX-512 pseudo code 

 

 Algorithm 3: Micro-kernel pseudo code for (mr, nr) = (8,15) 

register __m512d   _A0; 

register __m512d   _C0, _C1, _C2, ……………, _C29; 

_C0 = _mm512_loadu_pd(&C[0*ldc+0]); 

_C1 = _mm512_loadu_pd(&C[1*ldc+0]); 

: 

: 

_C14 = _mm512_loadu_pd(&C[14*ldc+0]); 

_C15 = _mm512_loadu_pd(&C [0*ldc+ nr*ldc]); 

_C16 = _mm512_loadu_pd(&C [1*ldc+ nr*ldc]); 

: 

: 

_C29 = _mm512_loadu_pd (&C [14*ldc+ nr*ldc]); 

for i = 0,…,kb-1 do 

  _mm_prefetch(&A[L1_DIST_A+0], MM_HINT_T0); 

  _A0 = _mm512_loadu_pd(&A[0]); 

  _mm_prefetch(&B[L1_DIST_B+ 0..24],_MM_HINT_T0); 

  _C0 = _mm512_fnmadd_pd(_mm512_set1_pd(B[0]), _A0, _C0); 

  _C1 = _mm512_fnmadd_pd(_mm512_set1_pd(B[1]), _A0, _C1); 

  _C2 = _mm512_fnmadd_pd(_mm512_set1_pd(B[2]), _A0, _C2); 

     : 

     : 

  _C14 = _mm512_fnmadd_pd(_mm512_set1_pd(B[14]), _A0, _C14); 

_C15 = _mm512_fnmadd_pd(_mm512_set1_pd(B[0+nr*kb]), _A0, _C15); 

_C16 = _mm512_fnmadd_pd(_mm512_set1_pd(B[1+nr*kb]), _A0, _C16); 

_C17 = _mm512_fnmadd_pd(_mm512_set1_pd(B[2+nr*kb]]), _A0, _C17); 

  : 

  : 

  _C29 = _mm512_fnmadd_pd(_mm512_set1_pd(B[14+ nr*kb]), _A0, _C29); 

  A += 8; 

  B += 15; 

end  

_mm512_storeu_pd(&C[0*ldc+0], _C0); 

_mm512_storeu_pd(&C[1*ldc+0], _C1); 

: 

: 

_mm512_storeu_pd(&C[14*ldc+0], _C14); 

: 

: 

_mm512_storeu_pd(&C[0*ldc+ nr*ldc], _C15); 

_mm512_storeu_pd(&C[1*ldc+ nr*ldc], _C16); 

: 

: 

_mm512_storeu_pd(&C[14*ldc+ nr*ldc], _C29); 

Fig. 13. Modified micro-kernel pseudo code 

 

512 intrinsic. Its pseudo code is described in Fig. 12 as 
Algorithm 2. For the same parameters but a different matrix 
size, the performance of USERDGEMM was less than 20% of 
the Intel MKL DGEMM. We changed the parameters mb, kb, 
and nb and achieved a USERDGEMM performance of up to 
50% that of MKL DGEMM. 

We found that this degradation in the performance was 
caused by copying data from one memory location, realigning 
the data, and saving them to another memory location during 
packing. To enhance the parallelism and reduce the time 
required for copying and backend stalls, we then modified the 
thread distribution and applied all 68 threads instead of only 
17, which improved the performance by up to 70% that of the 
MKL DGEMM for the specified case. We then implemented 
different variants of micro-kernel by modifying the original 
code for mr=8 and nr= 6, 7, 8, 10, 14, 15, 16, and 28. Using 
micro-kernel (mr,nr)=(8,15), we achieved maximum perform-
ance up to 90% that of the MKL DGEMM. 

The main difference between the modified and the original 
implementation of USERDGEMM is of using two tiles of 
nr=15 simultaneously, which are separated from each other by 
nr × ldc instead of using a single tile of nr=31, which reduces 
the number of iterations of the inner jr loop. The pseudo code 
of micro-kernel mentioned in Fig. 13 handles only a full tile 
of size mr × nr.  

It handles the full block/tile and load data from C matrix. 
However, for handling partial tiles, there is another variant 
that does not read data from the resultant matrix memory 
location but initialize it in a buffer memory using instrinsic 
_mm512_setzero_pd. After the computation, the result is 
copied to the required position and updated at the correspond-

ing memory location. 

 Matrix A was divided and packed into sub-matrix �!  in 

column major order. Matrix B is packed into �*  with row 
major order. This data realignment was performed using the 
packing routines. For the transpose matrix multiplication of 

� = � − �� ⋅ � , it is required to be packed into row to 
column major order. In addition, we modified the existing 

code for the packing routines using AVX-512 intrinsics.  

IV.  HARDWARE AND SOFTWARE 

 In this study, we used an Intel Xeon Phi 7250 machine, 
codenamed KNL, which has 68 cores and operates at a 

frequency of 1.4 GHz.  

 

 

Fig. 14. Intel xeon phi 7250 (KNL) chip 



 It consists of a single socket and 34 tiles interconnected 
by a 2D mesh, each of which contains two cores, and the cores 
on each tile share a 1 MB L2 cache, as shown in Fig. 14. 
There are total 68 cores, and 4 threads per core. Each core has 
two vector processing units (VPU), 32 (AVX-512) vector 
registers, 8 mask registers, and an L1 cache of 32 KB. KNL 
equipped with 192 GB of DDR4 memory and 16 GB of high-
bandwidth multi-channel DRAM (MCDRAM). KNL is 
capable of delivering performance of double-precision up to 
44.8 GFLOPS per core [3].  

 CentOS version 8.5.2111 (kernel 4.18.0-348.7.1. el8-
5.x86-64) and Intel oneAPI BaseKit and HPCKit for Linux 
versions 2021.3.0.3219 and 2021.3.0.3230, respectively, 
were installed on the machine. ScaLAPACK version 2.0.2 
was used for this study. We used the Intel oneAPI module 
MKL library from the Base Kit, Intel Classic Compiler, and 

MPI library from the HPC Kit. 

V. RESULTS AND EVALUATION 

 In this section, we discuss the results obtained and 

validated on an Intel Xeon Phi Processor 7250.  

A. Performance of USERDGEMM 

TABLE I lists the register block and cache block 
parameters for the original and modified versions of 
USERDGEMM. Fig. 15 shows a performance comparison of 
both variants of the original and modified USERDGEMM for 

�� ⋅ � when A is a square matrix and matrix B has a panel 
shape for m=k=10000, and when varying the size of n from 
40 to 5000. The graph demonstrates that the modified version 
of USERDGEMM performs significantly better than the 

original version for a value of n of less than or equal to 2000.  

TABLE I.  ALGORITHM PARAMETERS 

Params 
USERDGEMM 

(Original) 

USERDGEMM 

(Modified) 

mr 8 8 

nr 31 15 

mb 6200 10000 
nb 124 150 

kb 336 500 

 

 The original code used 17 threads on Pack A, the same 
number of threads for the jth loop, and 4 threads for the inner 
ir loop. However, in the modified version, 68 threads were 
used for Pack A, the same number of threads were used for 
Pack B, and all 68 threads are used on the inner loop. We used 

the memkind library to pack and align submatrices �! and �* in 
the buffer on a high bandwidth memory (HBM).  

 We observed an improvement in performance for a small 
value of n. It was observed that when the size of n is close to 
m, the performance of the original USERDGEMM is higher 

than that of the modified variant of USERDGEMM. 

  The performance of the (transpose)-(no transpose) 
operation is shown in Fig. 15, and the performance of the (no 
transpose)-(no transpose) operation is almost identical for 
matrices of the same size. The sizes of mb, kb, and nb impact 
on the performance of the routine, and kb is crucial for the 
performance of all subroutines Pack A, Pack B, and the micro-

kernel. Theoretically, a larger size of kb can produce a better 
micro-kernel performance because it blocks data for a lengthy 
period of time and reuses the data; however, the larger size of 
the kb affects the cache blocking, and the number of cache 
misses increases. The cache blocking parameters mb and kb, 
which produce a good performance for Pack A, whereas the 
same value of kb with nb limits the performance of Pack B 
because n is small. The cache and register blocking 
parameters for which we achieved a good performance are 
listed in TABLE I. In this study, we have improved the 
performance of USERDGEMM for matrix–panel operation 

when m=k and n is small. 

 

Fig. 15. Performance comparison of original and modified USERDGEMM 

B. QR factorization performance 

 We tested the performance of the ScaLAPACK QR 
factorization routine with 2 USERGEMM routines, and the 
results are shown in Fig. 16. The matrix dimensions are 
ranged from 4000 to 36000, the solid line represents the QR 
factorization performance using modified USERDGEMM 
routine, and the dashed line represents the performance using 
original USERDGEMM routine. The performance using 
modified USERDGEMM is higher than using the original 
routine. The performance of the first variant of QR 
factorization using modified USERDGEMM is nearly double 
as compared to the performance using the original 

USERDGEMM routine for matrix of size 36000. 

 

Fig. 16. Performance measure of QR factorization. 

 TABLE II lists the performance of QR factorization 
variants, for matrix of size 36000. The performance of the 
first variant of QR factorization using modified 
USERDGEMM is higher. However, the performance of 
second variant using modified USERDGEMM is lower than 



the original routine, but better than the first variant using 

original USERDGEMM routine.  

TABLE II.  QR FACTORIZATION VARIANTS 

Performance for matrix of size 36000 

Variants First Second 

USERDGEMM Original Modified Original Modified 

GFlops 224.02033 436.12085 372.65709 240.97167 

VI. CONCLUSION 

 This paper presented an improved version of matrix–
matrix multiplication routine USERDGEMM for matrix–
panel multiplication operation. Despite having the same 
memory structure, the optimal blocking parameters and 
thread distribution for matrices with different dimensions are 
not the same. When matrices are not in same size, the 
blocking parameters to amortize the cost of packing matrix A 
are not optimal for packing the data of matrix B, and vice 
versa. Therefore, the optimal blocking parameters for matrix–
panel multiplication cannot yield the best performance for 

matrix–matrix or panel–matrix multiplication operations.  

 We also presented the performance of the ScaLAPACK 
QR factorization by replacing DGEMM with USERDGEMM 
routines. Using our modified USERDGEMM routine, a 
significant performance improvement was achieved in the 
first variant of the QR factorization as compared to the 
original matrix-matrix multiplication routine. This study is 
validated on a single node Intel Xeon Phi Knights Landing. 
In near future, we plan to test the routine on Intel next 
generation high-performance processor, Xeon Scalable 
processor (SKL) [29]. We will also extend our work to multi-
node cluster environment of both Intel KNL and SKL 

processors. 
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