
Optimization of Matrix–Matrix Multiplication Algorithm
for Matrix–Panel Multiplication on Intel KNL

Muhammad Rizwan
School of Computer Science & Eng.

Soongsil University

Seoul, South Korea
mrizwan@soongsil.ac.kr

Enoch Jung
School of Computer Science & Eng.

Soongsil University

Seoul, South Korea
enochjung@soongsil.ac.kr

Yoosang Park
School of Computer Science & Eng.

Soongsil University

Seoul, South Korea
yspark@soongsil.ac.kr

Jaeyoung Choi

School of Computer Science & Eng.

Soongsil University

Seoul, South Korea
choi@ssu.ac.kr

Yoonhee Kim
Department of Computer Science
Sookmyung Women’s University

Seoul, South Korea
yulan@sookmyung.ac.kr

Abstract— The most scientific and numerical problems can be

solved using the system of equations in linear algebra. Matrix–

matrix multiplication is the foundation of linear algebra

equations, and its optimization has an impact on the overall

performance of a system. ScaLAPACK has established itself as

the industry standard for dense linear algebraic computations,

developed 30 years ago. Owing to advancements in

microprocessor architectures, it is difficult to fully utilize the

hardware capabilities of legacy software systems on modern

architectures and achieve the maximum performance. In this

study, we analyzed the effects of matrix size, register blocking

parameters, and thread distribution on the performance, and

improved our previously implemented matrix–matrix

multiplication routine for matrix–panel multiplication, which

performed well for large-sized square matrices. We also presented

the ScaLAPACK QR factorization performance by replacing the

double-precision general matrix–matrix multiplication routine

(DGEMM) of ScaLAPACK with our matrix–matrix

multiplication routine for a single node Intel Xeon Phi Knights

Landing processor.

Keywords— ScaLAPACK, Intel Knights Landing, QR

factorization, matrix–matrix multiplication, AVX-512

I. INTRODUCTION

Generally linear algebra is used in numerous domains of
science and engineering applications such as operations
research and optimization studies, dynamical systems analysis
and control, signal processing, computational chemistry,
quantum mechanics, and even in big data analysis and
machine learning. Because earlier computers had only a single
processor, sequential programming was the basis for most
software designs. In those days, the hardware performance has
been improved with an increase of the clock speed, but
hardware designers were faced with the "power wall" problem
[1], and it was no longer possible to increase the performance
by simply increasing the clock speed. Therefore the trend has
shifts towards multi-core processors on a single chip, thereby
shifting the processor design paradigm toward multi-core and
manycore approaches. Software developers have therefore
been required to rewrite their applications using a parallel
programming model to achieve a higher performance by
utilizing most of the hardware capabilities. This has given rise
to parallel processing to improve the computing performance,
perform complex calculations, and solve computationally
expensive linear algebra equations.

Matrix multiplication is an essential component of linear
algebra. Numerous applications of scientific and engineering
problems have also used dense matrix–matrix multiplications.
In this paper, we present a modified version of matrix
multiplication algorithm on Intel Xeon Phi Knights Landing
(KNL) processor, which is the second generation Intel Xeon
Phi product, and supports vectorization and the AVX-512
SIMD instruction set to conduct extremely high-performance
matrix computations [2].

A. Background

In earlier works [3, 4], a matrix–matrix multiplication
algorithm was implemented using register and cache blocking,
data prefetching, loop unrolling techniques, and the Intel
AVX-512 instruction set. The register block sizes, cache block
sizes, loop unrolling depth, and parallelization scheme all
affect the performance of the matrix–matrix multiplication
routine. We named our previously implemented matrix–
matrix multiplication algorithm as USERDGEMM. We
examined the effect of matrix size on the performance of
USERDGEMM. The parameters for which this algorithm
performed well for large square matrices, but the performance
is lower when the resultant matrix C is not a square shape. In
this study, we optimized the algorithm for matrix–panel
multiplication operation.

The matrix multiplication operation is of the form � = � ⋅
� ⋅ � + � ⋅ �, where � and � are scalar, and A, B, and C are
matrices of sizes m × k, k × n and m × n, respectively. When
one of the dimensions is small, the matrix–matrix
multiplication can be termed as panel–matrix, matrix–panel,
or panel–panel, depending on whether m, n, or k is small,
respectively. When n is small, the shape of the matrix–panel
operation is illustrated in Fig. 1.

Fig. 1. Matrix–panel multiplication operation

Data distribution is critical for the implementation of
algorithms that uses cache blocking to improve the perform-
ance of cache-based hierarchical memory systems. To achieve
a high performance and take advantage of the computational

979-8-3503-1008-5/22/$31.00 ©2022 IEEE

power of multiple computing units, the distribution and
alignment of data require careful attention while moving data
from one layout to another, as well as in the realignment of
packing and unpacking during data transfer process, allowing
each computing unit to access the required data in sequence
from the memory. A regular array distribution can be
distributed in block, cyclic, and block cyclic formats [5].
ScaLAPACK [6, 7] uses a block cyclic data distribution
format.

Fig. 2. QR decomposition

Given a matrix A ∈ Rm×n the QR decomposition of A is

given by

 A = Q � R (1)

where A, Q, and R are matrices of sizes m × n, m × m and m ×
n, respectively. In addition, Q is an orthogonal matrix, and R
is an upper-triangular matrix. QR decomposition of matrix A
is illustrated Fig. 2. A square matrix with real values is said to
be orthogonal if it can be multiplied with its transposed matrix
to produce an identity matrix and possesses commutative
properties such as QT � Q = Q � QT = I or QT= Q–1, where Q–1

and QT are the inverse and transpose of Q, respectively.

QR factorization helps in solving linear least squares,
eigenvalue, and singular value decomposition (SVD) related
problems in linear algebra based computational methods and
is also widely used in numerous applications including data
processing, image processing, communication systems, and
radar systems. Three of the most commonly used QR
factorization methods are the Gram–Schmidt process,
Householder transformations, and Givens rotations. The
ScaLAPACK QR factorization algorithm relies on House-
holder reflectors because it is numerically more stable than
the Gram–Schmidt algorithm [8]. QR factorization applies a
series of Householder transformations of the following form:

 � = � − ���� , (2)

where I is the identity matrix, � is a column vector, and � is a
scalar.

The ScaLAPACK libraries are the de facto industry
standard for dense linear algebraic computations, and the
public version provides state-of-the-art algorithms for various
problems. ScaLAPACK supports LU, QR, and Cholesky
factorization. It solves singular value, eigenvalue, and linear
least-square problems. ScaLAPACK accepts dense,
tridiagonal, bidiagonal, banded, or packed symmetric or
triangular matrices as the inputs. The ScaLAPACK source
code is publicly available at www.netlib.org. ScaLAPACK is
included in commercial packages from Apple, AMD,
Compaq, Fujitsu, Hitachi, Hewlett-Packard, Intel, IBM,

MathWorks, NEC, NAG, PGI, SUN, and Visual Numeric.
Most Linux distributions, including Cygwin, Debian, and
Fedora, also include it in their packages.

The implementation of a dense linear algebra system of
equations is based on an open-source implementation of the
BLAS [9] library, which is platform-dependent and targets the
different architectures of AMD [10], IBM [11], Intel [12], and
Nvidia [13]. Different variants of BLAS are available in
libraries such as GotoBLAS [14], OpenBLAS [15], and BLIS
[16]. The underlying base of the ScaLapack is the BLAS
library. The ScaLAPACK has a modular architecture based on
the HPC software packages BLAS, LAPACK [17], PBLAS
[18], and BLACS [19]. ScaLAPACK is portable for multi-
node systems that support MPI [20] and depends on PBLAS,
similar to the dependence of LAPACK on BLAS as shown in
Fig. 3.

Fig. 3. The Calling stack and dependencies of ScaLAPACK

B. Contribution

The main contribution of this study:

• Evaluated the effect of matrix size, block size, register
blocking parameters, and threads distribution on the
performance of the matrix–matrix multiplication.

• We modified USERDGEMM, which performed well
on square matrices; however, its performance remains
poor when one of the dimensions is small. In this study,
we improved the performance of USERDGEMM for
matrix–panel like matrix–matrix multiplication.

• We replaced DGEMM, double-precision general
matrix–matrix multiplication routine with our
USERDGEMM routine in the ScaLAPACK QR
factorization. We also evaluated the impact of this
change on the QR factorization.

II. RELATED WORK

LAPACK [17] is an open-source library that leverages an
optimized BLAS [9] at the node level, and since its initial
release approximately 30 years ago has been widely used on
single nodes. By contrast, ScaLAPACK [6, 7] is built upon
and having the same capabilities as LAPACK, and is designed
for distributed memory systems. It uses both parallel BLAS
(PBLAS) [18] and explicit distributed-memory parallelism to

extend LAPACK for multinode and distributed-memory
structures.

Owing the evolution of the computer architecture, it is
difficult to utilize modern heterogeneous high-performance
computing machines to their full potential, and traditional and
legacy libraries are rapidly becoming obsolete. For processors
with hierarchical memory architectures, automatic kernel
tuning software such as PHiPAC [21] and ATLAS [22] has
been developed. The kernels automatically generated by the
auto-tuned linear algebra softwares are not always optimal.
Different algorithms may be optimal for different matrix
dimensions depending on the shapes of the matrices involved,
and hand-coded micro-kernels must be quantified in order to
optimize performance. Intel AVX instructions were also used
to improve the performance of kernels in published works [23,
24, 25, 26].

ScaLAPACK was designed and developed for computer
systems with distributed memory. Current processor designs
have evolved, and multi-core processors are now available on
a single chip. Multi-core systems have shared memory
architecture, whereas multinode systems have a distributed
memory architecture. The hardware capabilities of multi-core
computer systems have not been fully utilized by systems
designed for distributed memory. Multinode computer
systems using a multi-core computer as a node utilize a hybrid
model of shared and distributed memories.

III. METHODOLOGY / PROPOSAL

We aim to improve the performance of QR factorization
routine, using an AVX-512 instruction set-based matrix–
matrix multiplication routine. ScaLAPACK QR factorization
iteratively applies matrix–matrix multiplication and improv-
ing the performance of a matrix–matrix multiplication can
yield a noticeable improvement in the QR factorization.

In this section, we discuss the existing implementation of
the QR factorization routine, PDGEQRF in ScaLAPACK. We
also discuss the changes made in its subroutine PDLARFB in
subsection A, and then we discuss followed by a description
of the modification to our USERDGEMM routine for
improving the performance for matrix–panel multiplication
operation in subsection B.

A. QR Factorization

The ScaLAPACK QR factorization routine, PDGEQRF, is
a composite of the routines PDGEQR2, PDLARFT, and
PDLARFB. PDGEQR2 further depends on the routines
PDLARFG and PDLARF, which are responsible for
generating elementary reflectors �� and �� and updating the
trailing submatrix, respectively. For the current column of the
processes of Householder vector v in the process row,
PDLARFT only computes the triangular matrix. In addition,
PDLARFB is responsible for applying QT to the rest of the
matrix from the left. We intend to improve only the
PDLARFB routine, because it involves the DGEMM routine
multiple times, as shown in Fig. 4.

To develop a distributed block form of this algorithm, it is
necessary to represent the product of b elementary House-
holder matrices of order n as a block form of a Householder
matrix. This is the most important step in creating the
distributed block version of the algorithm,

 Q = H1 H2 H3 …... Hb = I – V T VT. (3)

Fig. 4. ScaLAPACK QR Factorization routine PDGEQRF

 In QR factorization, the primary purpose of the PDLARFB
routine is to apply � to the remainder of the matrix from the

left: �! <= QT A.

There are different ways to compute this routine, and the
currently available version of ScaLAPACK computes this
routine in the following manner:

 This variant of PDLARFB computes as follows:

QT A <= (I – V T VT) TA
<= (I – V TT VT) A
<= A – V TT VTA
<= A – V (TT VT A)
<= A – V (AT V T)T
<= A – V (W T)T

<= A – V "# T.

In the current implementation of ScaLAPACK, the first
DGEMM operation computes W <= AT V and conducts a
(transpose)-(no transpose) operation of the matrix–matrix
multiplication, as shown in Fig. 5 5. This operation is of a

GEMP [27] type. DTRMM computes "$ <= W T, which is a
matrix–matrix operation, in which T is an upper triangular
matrix. In addition, the second DGEMM operation shown in

Fig. 4 computes and updates �! <= A – V "$ T and conducts a
(no transpose)-(transpose) operation. An illustration of the
second DGEMM operation is presented in Fig. 6.

Fig. 5. Illustration of DGEMM operation for W <= AT V

Fig. 6. Illustration of DGEMM operation for �! <= A – V "$ T

 The second variant of PDLARFB computes as follows:

 QT A <= (I – V T VT) T A

<= (I – V TT VT) A

<= A – V TT VTA

<= A – V TT W

<= A – V "$.

In this variant of PDLARFB, the first DGEMM operation
computes W <= VT A and applies a (transpose)-(no transpose)
operation, as shown in Fig. 7.

Fig. 7. Illustration of DGEMM operation for W <= VTA

Fig. 8. Illustration of DGEMM operation for �% <= A – VW$

In this implementation, DTRMM computes "$ <= TT W,
which is a matrix–matrix operation in which T is an upper
triangular matrix. In addition, the second DGEMM operation

computes and updates �! <= A – V "$, which conducts a (no
transpose)-(no transpose) operation. An illustration of the
second DGEMM operation is presented in Fig. 8.

The performance improvement of a matrix–matrix multi-
plication operation is critical for the overall performance
improvement of the QR factorization routine. Matrix–matrix
multiplication has been discussed extensively by Goto [27],
and other works [3, 4], and double precision matrix–matrix
multiplication operation in the row major order has been
implemented and it works reasonably well for large matrices.
The column major variant was also developed and used to
improve the performance of the ScaLAPACK PDGEMM
routine [4]. We modified the column major variant to
improve the performance of the matrix–matrix multiplication
routine for a matrix–panel operation.

Algorithm 1: Blocked matrix multiplication algorithm

for i = 1, …, m in steps of mb do

 for p = 1, …, k in steps of kb do

 Pack A(i: i + m – 1, p:p + kb 1) into �!;

 for j = 1, …, n in steps of nb do

 Pack B (p: kb – 1, j:j + nb – 1) into �$;

 for ir = 1, …, mb in steps of mr do

 for jr = 1,…, nb in steps of nr do

 �(= �! (ir : ir + mr – 1,:);

 �) = �* (:, jr : jr + nr – 1);

 �(+= �(⋅ �);

 Update C using �(;

 end

 end

 end

 end

End

Fig. 9. Blocked matrix–matrix multiplication algorithm

B. USERDGEMM MODIFICATION DETAIL

The blocked matrix–matrix multiplication is described in
Fig. 9 as Algorithm 1. In this algorithm, m denotes the number
of rows in matrices A and C; k represents the number of
columns and rows in matrices A and B, respectively; and n
represents the number of columns in matrices B and C.

The cache block parameters mb, kb, and nb guide the
algorithm on the sizes of the submatrix to copy, pack, and
realign in sequential memory for the micro-kernel to compute
a core matrix–matrix operation. The sizes of mb, kb, and nb

determines the data reuse size of the packed submatrices �! or
�* and have a major impact on the performance of the routine
because they are the key players in determining the effective
usage of the cache. The matrices are stored in column-major
format. In order to exploit the cache appropriately the
matrices are blocked and packed in memory buffers. In the

outer three loops matrices A and B are packed into �! and

�*, respectively; so that the submatrices are aligned in
sequential manner.

The storage format of the A matrix is from row to column
major in �! and, matrix B is from column to row major in �*
and are illustrated in Fig. 10 and Fig. 11, respectively. This
algorithm is for the BLAS Level 3 operation and thus it
calculates:

 C <= C – op(A) × op(B) (4)

where op(X) = X or op(X) = XT.

Fig. 10. Illustration of Pack A

Fig. 11. Illustration of Pack B

For the same parameters for which this algorithm
performed well for large square matrices, the performance is
lower when the resultant matrix C is not a square shape. We

considered a specific case of � = � − �� ⋅ � with A as a
square matrix of size m=k=10000, and B as a rectangular
matrix of size k=10000 and n=300.

The Algorithm 1 was implemented in C language and has
three main components, i.e., Pack A, Pack B and the micro-
kernel routines. Micro-kernel is responsible for the core
matrix–matrix computation and was implemented in AVX-

Algorithm 2: Micro-kernel pseudo code for (mr, nr) = (8,31)

register __m512d _A0;

register __m512d _C0, _C1, _C2, ……………, _C30;

_C0 = _mm512_loadu_pd(&C[0*ldc+0]);

_C1 = _mm512_loadu_pd(&C[1*ldc+0]);

:

:

_C30 = _mm512_loadu_pd(&C[30*ldc+0]);

for i = 0,…,kb-1 do

 _mm_prefetch(&A[L1_DIST_A+0], MM_HINT_T0);

 _A0 = _mm512_loadu_pd(&A[0]);

 _mm_prefetch(&B[L1_DIST_B+ 0..24],_MM_HINT_T0);

 _C0 = _mm512_fnmadd_pd(_mm512_set1_pd(B[0]), _A0, _C0);

 _C1 = _mm512_fnmadd_pd(_mm512_set1_pd(B[1]), _A0, _C1);

 _C2 = _mm512_fnmadd_pd(_mm512_set1_pd(B[2]), _A0, _C2);

 :

 :

 _C30 = _mm512_fnmadd_pd(_mm512_set1_pd(B[30]), _A0, _C30);

 A += 8;

 B += 31;

end

_mm512_storeu_pd(&C[0*ldc+0], _C0);

_mm512_storeu_pd(&C[1*ldc+0], _C1);

:

:

_mm512_storeu_pd(&C[30*ldc+0], _C30);

Fig. 12. Micro-kernel implemented in AVX-512 pseudo code

 Algorithm 3: Micro-kernel pseudo code for (mr, nr) = (8,15)

register __m512d _A0;

register __m512d _C0, _C1, _C2, ……………, _C29;

_C0 = _mm512_loadu_pd(&C[0*ldc+0]);

_C1 = _mm512_loadu_pd(&C[1*ldc+0]);

:

:

_C14 = _mm512_loadu_pd(&C[14*ldc+0]);

_C15 = _mm512_loadu_pd(&C [0*ldc+ nr*ldc]);

_C16 = _mm512_loadu_pd(&C [1*ldc+ nr*ldc]);

:

:

_C29 = _mm512_loadu_pd (&C [14*ldc+ nr*ldc]);

for i = 0,…,kb-1 do

 _mm_prefetch(&A[L1_DIST_A+0], MM_HINT_T0);

 _A0 = _mm512_loadu_pd(&A[0]);

 _mm_prefetch(&B[L1_DIST_B+ 0..24],_MM_HINT_T0);

 _C0 = _mm512_fnmadd_pd(_mm512_set1_pd(B[0]), _A0, _C0);

 _C1 = _mm512_fnmadd_pd(_mm512_set1_pd(B[1]), _A0, _C1);

 _C2 = _mm512_fnmadd_pd(_mm512_set1_pd(B[2]), _A0, _C2);

 :

 :

 _C14 = _mm512_fnmadd_pd(_mm512_set1_pd(B[14]), _A0, _C14);

_C15 = _mm512_fnmadd_pd(_mm512_set1_pd(B[0+nr*kb]), _A0, _C15);

_C16 = _mm512_fnmadd_pd(_mm512_set1_pd(B[1+nr*kb]), _A0, _C16);

_C17 = _mm512_fnmadd_pd(_mm512_set1_pd(B[2+nr*kb]]), _A0, _C17);

 :

 :

 _C29 = _mm512_fnmadd_pd(_mm512_set1_pd(B[14+ nr*kb]), _A0, _C29);

 A += 8;

 B += 15;

end

_mm512_storeu_pd(&C[0*ldc+0], _C0);

_mm512_storeu_pd(&C[1*ldc+0], _C1);

:

:

_mm512_storeu_pd(&C[14*ldc+0], _C14);

:

:

_mm512_storeu_pd(&C[0*ldc+ nr*ldc], _C15);

_mm512_storeu_pd(&C[1*ldc+ nr*ldc], _C16);

:

:

_mm512_storeu_pd(&C[14*ldc+ nr*ldc], _C29);

Fig. 13. Modified micro-kernel pseudo code

512 intrinsic. Its pseudo code is described in Fig. 12 as
Algorithm 2. For the same parameters but a different matrix
size, the performance of USERDGEMM was less than 20% of
the Intel MKL DGEMM. We changed the parameters mb, kb,
and nb and achieved a USERDGEMM performance of up to
50% that of MKL DGEMM.

We found that this degradation in the performance was
caused by copying data from one memory location, realigning
the data, and saving them to another memory location during
packing. To enhance the parallelism and reduce the time
required for copying and backend stalls, we then modified the
thread distribution and applied all 68 threads instead of only
17, which improved the performance by up to 70% that of the
MKL DGEMM for the specified case. We then implemented
different variants of micro-kernel by modifying the original
code for mr=8 and nr= 6, 7, 8, 10, 14, 15, 16, and 28. Using
micro-kernel (mr,nr)=(8,15), we achieved maximum perform-
ance up to 90% that of the MKL DGEMM.

The main difference between the modified and the original
implementation of USERDGEMM is of using two tiles of
nr=15 simultaneously, which are separated from each other by
nr × ldc instead of using a single tile of nr=31, which reduces
the number of iterations of the inner jr loop. The pseudo code
of micro-kernel mentioned in Fig. 13 handles only a full tile
of size mr × nr.

It handles the full block/tile and load data from C matrix.
However, for handling partial tiles, there is another variant
that does not read data from the resultant matrix memory
location but initialize it in a buffer memory using instrinsic
_mm512_setzero_pd. After the computation, the result is
copied to the required position and updated at the correspond-

ing memory location.

 Matrix A was divided and packed into sub-matrix �! in

column major order. Matrix B is packed into �* with row
major order. This data realignment was performed using the
packing routines. For the transpose matrix multiplication of

� = � − �� ⋅ � , it is required to be packed into row to
column major order. In addition, we modified the existing

code for the packing routines using AVX-512 intrinsics.

IV. HARDWARE AND SOFTWARE

 In this study, we used an Intel Xeon Phi 7250 machine,
codenamed KNL, which has 68 cores and operates at a

frequency of 1.4 GHz.

Fig. 14. Intel xeon phi 7250 (KNL) chip

 It consists of a single socket and 34 tiles interconnected
by a 2D mesh, each of which contains two cores, and the cores
on each tile share a 1 MB L2 cache, as shown in Fig. 14.
There are total 68 cores, and 4 threads per core. Each core has
two vector processing units (VPU), 32 (AVX-512) vector
registers, 8 mask registers, and an L1 cache of 32 KB. KNL
equipped with 192 GB of DDR4 memory and 16 GB of high-
bandwidth multi-channel DRAM (MCDRAM). KNL is
capable of delivering performance of double-precision up to
44.8 GFLOPS per core [3].

 CentOS version 8.5.2111 (kernel 4.18.0-348.7.1. el8-
5.x86-64) and Intel oneAPI BaseKit and HPCKit for Linux
versions 2021.3.0.3219 and 2021.3.0.3230, respectively,
were installed on the machine. ScaLAPACK version 2.0.2
was used for this study. We used the Intel oneAPI module
MKL library from the Base Kit, Intel Classic Compiler, and

MPI library from the HPC Kit.

V. RESULTS AND EVALUATION

 In this section, we discuss the results obtained and

validated on an Intel Xeon Phi Processor 7250.

A. Performance of USERDGEMM

TABLE I lists the register block and cache block
parameters for the original and modified versions of
USERDGEMM. Fig. 15 shows a performance comparison of
both variants of the original and modified USERDGEMM for

�� ⋅ � when A is a square matrix and matrix B has a panel
shape for m=k=10000, and when varying the size of n from
40 to 5000. The graph demonstrates that the modified version
of USERDGEMM performs significantly better than the

original version for a value of n of less than or equal to 2000.

TABLE I. ALGORITHM PARAMETERS

Params
USERDGEMM

(Original)

USERDGEMM

(Modified)

mr 8 8

nr 31 15

mb 6200 10000
nb 124 150

kb 336 500

 The original code used 17 threads on Pack A, the same
number of threads for the jth loop, and 4 threads for the inner
ir loop. However, in the modified version, 68 threads were
used for Pack A, the same number of threads were used for
Pack B, and all 68 threads are used on the inner loop. We used

the memkind library to pack and align submatrices �! and �* in
the buffer on a high bandwidth memory (HBM).

 We observed an improvement in performance for a small
value of n. It was observed that when the size of n is close to
m, the performance of the original USERDGEMM is higher

than that of the modified variant of USERDGEMM.

 The performance of the (transpose)-(no transpose)
operation is shown in Fig. 15, and the performance of the (no
transpose)-(no transpose) operation is almost identical for
matrices of the same size. The sizes of mb, kb, and nb impact
on the performance of the routine, and kb is crucial for the
performance of all subroutines Pack A, Pack B, and the micro-

kernel. Theoretically, a larger size of kb can produce a better
micro-kernel performance because it blocks data for a lengthy
period of time and reuses the data; however, the larger size of
the kb affects the cache blocking, and the number of cache
misses increases. The cache blocking parameters mb and kb,
which produce a good performance for Pack A, whereas the
same value of kb with nb limits the performance of Pack B
because n is small. The cache and register blocking
parameters for which we achieved a good performance are
listed in TABLE I. In this study, we have improved the
performance of USERDGEMM for matrix–panel operation

when m=k and n is small.

Fig. 15. Performance comparison of original and modified USERDGEMM

B. QR factorization performance

 We tested the performance of the ScaLAPACK QR
factorization routine with 2 USERGEMM routines, and the
results are shown in Fig. 16. The matrix dimensions are
ranged from 4000 to 36000, the solid line represents the QR
factorization performance using modified USERDGEMM
routine, and the dashed line represents the performance using
original USERDGEMM routine. The performance using
modified USERDGEMM is higher than using the original
routine. The performance of the first variant of QR
factorization using modified USERDGEMM is nearly double
as compared to the performance using the original

USERDGEMM routine for matrix of size 36000.

Fig. 16. Performance measure of QR factorization.

 TABLE II lists the performance of QR factorization
variants, for matrix of size 36000. The performance of the
first variant of QR factorization using modified
USERDGEMM is higher. However, the performance of
second variant using modified USERDGEMM is lower than

the original routine, but better than the first variant using

original USERDGEMM routine.

TABLE II. QR FACTORIZATION VARIANTS

Performance for matrix of size 36000

Variants First Second

USERDGEMM Original Modified Original Modified

GFlops 224.02033 436.12085 372.65709 240.97167

VI. CONCLUSION

 This paper presented an improved version of matrix–
matrix multiplication routine USERDGEMM for matrix–
panel multiplication operation. Despite having the same
memory structure, the optimal blocking parameters and
thread distribution for matrices with different dimensions are
not the same. When matrices are not in same size, the
blocking parameters to amortize the cost of packing matrix A
are not optimal for packing the data of matrix B, and vice
versa. Therefore, the optimal blocking parameters for matrix–
panel multiplication cannot yield the best performance for

matrix–matrix or panel–matrix multiplication operations.

 We also presented the performance of the ScaLAPACK
QR factorization by replacing DGEMM with USERDGEMM
routines. Using our modified USERDGEMM routine, a
significant performance improvement was achieved in the
first variant of the QR factorization as compared to the
original matrix-matrix multiplication routine. This study is
validated on a single node Intel Xeon Phi Knights Landing.
In near future, we plan to test the routine on Intel next
generation high-performance processor, Xeon Scalable
processor (SKL) [29]. We will also extend our work to multi-
node cluster environment of both Intel KNL and SKL

processors.

ACKNOWLEGEMENT

 This work was supported by the Supercomputer
Development Leading Program of the National Research
Foundation of Korea (NRF) funded by the Korean
government (MSIT) (No. 2020M3H6A1084984). Also this
work was supported by the National Supercomputing Center
with supercomputing resources including technical support

(No. KSC-2022-CRE-0202).

REFERENCES

[1] C. Meenderinck and B. Juurlink, "(When) Will CMPs Hit the Power
Wall?" Euro-Par 2008 Workshops - Parallel Processing, pp. 184-193,
2009.

[2] C. Byun, "Optimizing Xeon Phi for Interactive Data Analysis," 2019
IEEE High Performance Extreme Computing Conference (HPEC),
2019.

[3] R. Lim, Y. Lee, R. Kim, and J. Choi, "An implementation of matrix–
matrix multiplication on the Intel KNL processor with AVX-512,"
Cluster Computing, vol. 21, no. 4, pp. 1785–1795, 2018.

[4] Y. Park, R. Kim, T.M.T. Nguyen, and J. Choi, "Improving blocked
matrix-matrix multiplication routine by utilizing AVX-512 instructions
on intel knights landing and xeon scalable processors" Cluster
Computing, pp. 1-11, 2021.

[5] J. Choi, D. Walker, J. Dongarra, "Pumma: Parallel universal matrix
multiplication algorithms on distributed memory concurrent
computers," Concurrency: Practice and Experience, vol. 6, no. 7, pp.
543-570, 1994.

[6] J. Choi, J. Dongarra, R. Pozo, and D. Walker, "ScaLAPACK: a scalable
linear algebra library for distributed memory concurrent computers,"

Proceedings of the fourth symposium on the Frontiers of Massively
Parallel Computation, 1994.

[7] J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D. W. Walker,
and R. C. Whaley, "Design and Implementation of the ScaLAPACK
LU, QR, and Cholesky Factorization Routines," Scientific Program-
ming, vol. 5, no. 6, pp. 173-184, 1996.

[8] E. Agullo, C. Coti, J. Dongarra, T. Herault, and J. Langem, "QR
factorization of tall and skinny matrices in a grid computing
environment," 2010 IEEE International Symposium on Parallel &
Distributed Processing (IPDPS), 2010.

[9] "BLAS (Basic Linear Algebra Subprograms)," https://netlib.org/blas/
(accessed: July. 31, 2022).

[10] "Compiler Usage Guidelines for AMD64 Platforms Application Note,"
[Online]. Available: http://developer.amd.com/wordpress/media/2012
/10/32035.pdf.

[11] C. Gomez, "Engineering and Scientific Computing with Scilab,"
Springer Science & Business Media, 2012.

[12] E. Wang, "High-Performance Computing on the Intel Xeon Phi," 2014.

[13] "cuBLAS | NVIDIA Developer," https://developer.nvidia.com/cublas
(accessed: July. 31, 2022).

[14] K. Goto and R. Van De Geijn, "High-performance implementation of
the level 3 BLAS," ACM Transactions on Mathematical Software, vol.
35, no. 1, pp. 1-14, 2008.

[15] "OpenBLAS: An optimized BLAS library," https://www.openblas.net/
(accessed: Jul. 31, 2022).

[16] F. G. Van Zee and R. A. Van de Geijn, "BLIS: A Framework for
Rapidly Instantiating BLAS Functionality," ACM Transactions on
Mathematical Software, vol. 41, no. 3, pp. 1-33, 2015.

[17] E. Angerson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du
Croz, S. Hammarling, J. Demmel, C. Bischof, D. Sorensen, "LAPACK:
A portable linear algebra library for high-performance computers,"
Proceedings of the 1990 ACM/IEEE Conference on Supercomputing,
pp. 2-11, 1990.

[18] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C.
Whaley, "A proposal for a set of parallel basic linear algebra sub-
programs," Lecture Notes in Computer Science, pp. 107-114, 1996.

[19] C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh, "Basic Linear
Algebra Subprograms for FORTRAN usage," ACM Trans. Math.
Softw. vol. 5, no. 3, pp. 308–323, 1979.

[20] L. Clarke, I. Glendinning, and R. Hempel, "The MPI Message Passing
Interface Standard," Programming Environments for Massively
Parallel Distributed Systems, Monte Verita, Switzerland, pp. 213-218,
1994.

[21] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel, "Author
retrospective for optimizing matrix multiply using PHiPAC," ACM
International Conference on Supercomputing 25th Anniversary
Volume, pp. 42-44, 2014.

[22] R. Whaley, A. PetitetJack, J. Dongarra, "Automated empirical
optimizations of software and the ATLAS project," Parallel
Computing, vol. 27, no. 1–2, pp. 3-35, 2001.

[23] R. Kim, J. Choi, and M. Lee, "Optimizing parallel GEMM routines
using auto-tuning with Intel AVX-512," Proceedings of the Inter. Conf.
on HPC Asia, 2019.

[24] S. A. Hassan, A. Hemeida, and M. M. Mahmoud, "Performance
Evaluation of Matrix-Matrix Multiplications Using Intel,"
Microprocessors and Microsystems, vol. 47, pp. 369-374, 2016.

[25] R. Lim, Y. Lee, R. Kim, and J. Choi, "OpenMP-based parallel
implementation of matrix-matrix multiplication on the intel knights
landing," Proceedings of Workshops of HPC Asia, 2018.

[26] M. E. Guney, "Optimizing Matrix Multiplication on Intel Xeon Phi TH
x200 Architecture," 2017 IEEE 24th Symposium on Computer
Arithmetic (ARITH), 2017.

[27] K. Goto and R. A. van de Geijn, "Anatomy of high-performance matrix
multiplication," ACM Transactions on Mathematical Software, vol. 34,
no. 3, pp. 1-25, 2008.

[28] "Intel Xeon Scalable Processors - View Latest Generation Xeon,"
https://www.intel.com/content/www/us/en/products/details/processors
/xeon/scalable.html (accessed: July. 31, 2022).

