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Abstract—Virtualization is an innovative technology that ac-
celerates software development by providing portability and
maintainability of applications. However, it often leads underper-
formance especially caused by overheads from managing virtual
machines. To address the limitation of virtual machines, container
technology has emerged to deploy and operate distributed appli-
cations without launching entire virtual machines. Unfortunately,
resources contention issues in container-based clusters, bringing
substantial performance loss are still challenging. This paper
proposes an adaptive fair-share method to share effectively in
container-based virtualization environment. In particular, we
focus on enabling GPU sharing between multiple concurrent
containers without lack of GPU memory. We demonstrate that
our approach contributes to overall performance improvement
as well as higher resource utilization compared to default and
static fair-share methods with homogeneous and heterogeneous
workloads. Compared to two other conditions, their results show
that the proposed method reduces by 16.37%, 15.61% in average
execution time and boosts approximately by 52.46%, 10.3% in
average GPU memory utilization, respectively.

Index Terms—GPU scheduling, GPU memory, container-based
virtualization, Docker, Mesos, heterogeneous, adaptive

I. INTRODUCTION

A Graphics Processing Unit (GPU) is a specialized elec-

tronic circuit designed to rapidly manipulate and alter mem-

ory to accelerate the creation of images in a frame buffer

intended for output to a display device [1]. However, due to

their powerful structure which supports massive and energy-

efficient parallelism as well as high computational bandwidth,

they have been recently utilized more for intensive-parallel

computing than for general-purpose CPUs. In the last decade,

the efforts to utilize GPUs effectively have increased rapidly

since the great success of deep learning and the introduction of

several frameworks such as CUDA (Compute Unified Device

Architecture) [2], OpenCL (Open Computing Language) [3].

This has led to their deployment in a wide range of platforms

such as cloud computing, large-scale distributed computing

environments.

Virtual Machine (VM) has then emerged, offering various

options for users to choose, which helped to maximize their

applications’ performance. This, however, led to underperfor-

mances especially caused by overheads from their manage-

ment (e.g., deploying & destroying) and the rise of running

costs on the cloud.

To overcome such performance overheads, Docker [4]

which is an open-source virtualization technology of container

is adopted as an alternative. It is similar to a virtual machine,

but it is very light weight and takes seconds to build. In

addition, it isolates each independent container running on the

same instance of operating system by making use of Linux

kernel features like control groups and namespaces. Each

docker container encapsulates an application and can be run

on different machines on top of a docker engine. Their images

can also be easily shared and distributed once they have been

built. This in turn reduces the time for testing, development

and deployment.

The above mentioned shift, however, require effective meth-

ods to improve the utilization of GPUs and to share them

properly in the virtualized environment.

NVIDIA [5] has presented a way to share GPU drivers

from host to containers, without having them installed on each

container individually. However, the way that NVIDIA Docker

assigns the physical resources is generally limited to a single

container. That is, only one container is able to occupy the

whole GPU memory without sharing it.

This paper aims to investigate an effective method for

sharing GPUs and GPU memory without contention among

containers. Specifically, this paper’s contributions are as fol-

lows :

• GPU & GPU memory sharing’s drawbacks analysis in

the current container-based environment

• An algorithm to share GPU memory effectively for GPU

containers

• A framework that enables effective & scalable on-demand

container-based computing environment

The organization of this paper is as follows.

In Section II, we discuss the current system’s drawbacks by

analyzing the problems and some related works. Section III

introduces our algorithm in detail. The succeeding section

shows the overall architecture that we have designed and how

the proposed algorithm can be applied to the architecture.

After that, we present the algorithm’s demonstration by

evaluations. Finally, we conclude the paper in Section V.
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II. PROBLEM STATEMENT & RELATED WORKS

We start this section by discussing the problem that

may happen in container-based virtualization environment for

GPUs. The main problem is depicted on Figure 1. Suppose

Fig. 1: GPU memory contention problem

that only one GPU container exists and it uses certain amounts

of GPU and memory. Once the second container is added, it

starts to assign GPUs and memory to container 2. However,

as shown on the figure 1, it returns “Out of memory” since

the remaining memory space’s size cannot cover what the

second container needs. In the end, the system cancels the

execution of container 2 instead of controlling memory size

or sharing the memory. It is challenging to make the system

share the memory to multiple containers within appropriate

proportions. Despite the fact that the container technology

supports better isolation and performance to utilize the limited

resources, it still needs a proper strategy which can assign and

share the GPUs & their memory to containers depending on

their real-needs. The benefits and challenges of containerized

systems have been studied in many aspects. Related with the

container-based environment, there exist several researches

which emphasize usually managing CPU, Network and I/O

contention [8], [9], [10], [11], but it is very rare for the GPUs.

There also exists various studies that handled GPU con-

tention issues in Cloud or multiprocessor environment. Steran

[12] suggested a high-level GPU distribution mechanism rather

than a distribution of GPU system through low-level such as

CUDA through SkelCL method. It shows a mechanism for

automatic data redistribution by implicit movement between

CPU and GPU memory through a container that can be

accessed by both CPU and GPU. However, in applications

such as machine learning, redistribution between CPU mem-

ory and GPU memory requires overhead to be resolved by

proper distribution of GPU memory per container. Kmrinen

[13] explained the advantages of container by comparing the

performance of virtual machine configuration and container

configuration in GPU cloud gaming system. Contrary to a

virtual machine, a container does not require pre-allocated

memory, but it can use resources efficiently because it requires

resources at a specific time of an application’s runtime. There-

fore, we propose efficient allocation of GPU memory resources

using the advantages of containers.

III. PROPOSED GPU CONTAINER SCHEDULING STRATEGY

To minimize the weakness that was mentioned in the pre-

vious section and to make better use of the container system,

this paper propose an Adaptive Fair-Share (after denoted as

Adaptive F-S) algorithm for GPU-memory.

A. Adaptive Fair-share Algorithm

As opposed to the conventional way, allowing all active

containers to be given the fixed size of GPU-memory one by

one that leads a specific container to monopolize the whole

memory, our proposed method primarily takes account of

sharing the memory among the multiple containers evenly.

Giving all active containers relatively equal access to the

memory might not always be best, because the containers

considered as more important might need to be given more

resources than others. In addition, the degree of importance

can even fluctuate depending on the properties of jobs running

inside the container or the current global workload status.

For that reasons, our Adaptive Fair-Share method aims

to serve the different amount of memory to the containers

according to their importance which can be determined by

the count and average input size of jobs. The importance of

each container is periodically adjusted by local and global

updates in order to adapt the state of both overall system and

applications to the scheduling.

Adaptive F-S method basically follows these abstract steps:

1) collecting jobs’ information in the queue 2) categorizing

them to multiple groups by the common properties 3) deciding

the ratio and assigning the memory to each group by the

fair share scheduling formulation 4) assigning the memory

to the groups according to the distribution rate and rebuild-

ing applications in accordance with the distributed memory

5) evaluating jobs and updating the formulation. Details of

Adaptive F-S’s procedure will be explained below with its

algorithm.

TABLE I: Notations

Notation Description
Seti per-group memory distribution
SET a set of Seti (Set1...n)
G a set of groups (group1...n)
J a set of jobs
window the job count that J has
gi the number of jobs for each group
propmi the i th group’s weight in terms of a property propm

(e.g., input size, application type)
GPU Current available GPU memory size for the noden
ER Error counts
εperf Threshold of performance
εworkload Threshold of workload
εerror Threshold of error count
C a set of coefficients, C0, C1, ..., Cm

interval an execution interval for the procedure ADAPTIVEFS

Algorithm 1 describes the abstract procedure of the adaptive

fair-share method. For a set of incoming jobs(J) the count of

which is denoted as window, it categorizes them into multiple

groups depending on their properties (line 2). In general, the

grouping can be made depending on the application name,

input size, parameter types or user id, etc. After grouping,

it calculates memory distributions according to the properties

such as the number of jobs per group or input size, etc., by
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Algorithm 1 Adaptive Fair-Share Algorithm

1: function ADAPTIVEFS( J )
2: G = GROUPING(J);
3: SET = CALCULDISTS(G);
4: GPU = MONITORAVAILGPUMEM();
5: for each Seti in Set1...n of SET do
6: ASSIGNJOBSTOCONTAINER(Seti, GPU );
7: end for
8: MONITORSYSTEM(); � Evaluation
9: SLEEP(interval);

10: end function

the function CALCULDISTS(array)(line 3), where it applies

the following Equation 1 for each defined group i.

Seti = C0 ∗ gi∑n
j=1 gj

+ C1 ∗ prop1i∑n
j=1 prop

1
j

+ ...+ Cm−1 ∗ propm−1
i∑n

j=1 prop
m−1
j

(1)

where m is the count of the properties that are used for

classification, and n is the number of groups. Where C is the

weight of the properties calculated accordingly to the number

of properties, propki being the group i rank, being proportional

to the performances, in the overall ranking
∑n

j=1 prop
k
j ,

representing the summary of scores through all the groups. For

example, (m-1)th property score of a group i can be defined as

propm−1
i . During the first few executions, C0 is set as 1 and

the other coefficients C1≤x≤m are 0 until it has enough profiles

to analyze, meaning only taking account of the count of

jobs for the first several executions. Once enough records are

collected in the system, all the coefficients C0≤x≤m become

1/m and they are adjusted by the procedure AdaptiveUpdate
which will be explained in detail with the next algorithm.

Regarding the decision of prop value, it is generated based on

the relative rank the group has. For instance, suppose that the

system generated five groups depending on three-four kinds of

properties which are application name, input size, user id as

well as job counts, as depicted on the left part of the Figure 2.

In the group 1, 2, 5 cases, they include four kinds of properties

which induce all coefficients(C0≤x≤m) to 1/m, that is 0.25.

Fig. 2: An example of grouping and scoring, the properties of

each group(left), the calculated dist. ratio(right)

Each group’s memory distribution ratio Seti (after several

executions) can be defined as shown on the right part of

Figure 2. For the first group, the property scores are 12
(job counts), 1 (1st rank among two applications), 1 (1st

rank among three applications), 2 (among three applications),

respectively. In the third group case, the coefficient is 1/3,

since it has only three properties, and it calculates only

for three properties. In this way, the system calculates the

distribution ratios for groups according to the weights.

For all the groups, it prepares to assign the jobs to the

container with the part of memory. Function ASSIGNJOB-

STOCONTAINER(float, int)(line 6) includes the following

three steps; rebuilding jobs, creating & deploying containers,

launching jobs on the container. After deploying the containers

and assigning jobs, it monitors the overall system status for

both local and global aspects and evaluates the executed jobs

(line 8), which will be discussed further details in Algorithm 2.

A cycle of the whole processes in ADAPTIVEFS procedure

repeats itself within regular interval (line 8).

Algorithm 2 states the monitoring procedure in charge

of monitoring and evaluating, which consists of two main

functions. One part, referred as LOCAL monitoring, is to

observe and compare the performances of jobs running over

containers to the previous records, thereby it is able to examine

if there exists the performance degradation on the jobs and

containers and to update the coefficients value in the end

(line 2-7). Second part, GLOBAL monitoring, is to read global-

scale status and to apply it to the scheduling by adjusting

the coefficients and the number of groups. If the number of

waiting jobs in the queue is over the threshold (εworkload), it

reflects the state to the scheduling system so that it can update

the interval and window size. In addition, it supplements

additional containers to avoid waiting jobs.(line 8-14).

In the case of that ER counts over the threshold (εerror), the

system updates properties’ scores as well as their coefficients

(line 15-18). The implementation issue for the aforementioned

algorithms will be treated further in Section IV-A.

Algorithm 2 MonitorSystem ()

1: function MONITORSYSTEM

2: procedure LOCAL( )

3: diff ← PROFILESAVECHECK();

4: if diff ≥ εperf then
5: ER++

6: end if
7: end procedure
8: procedure GLOBAL( )

9: queue← CHECKWORKLOAD();

10: if queue ≥ εworkload then
11: G.increase();

12: interval.decrease(); window.increase();

13: end if
14: end procedure
15: if ER ≥ εerror then
16: prop.update();
17: ADAPTIVEUPDATE();

18: ER.initial();
19: end if
20: end function
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IV. EVALUATION

In this section, we introduce the framework that we imple-

mented and utilized for the experiments.

A. Experimental Architecture

Figure 3 presents the abstract system architecture that we

have designed. Overall system (Figure3) is classified in three

layers, which are framework, kernel and infrastructure parts.

The topmost layer, Framework, is containing the wrapper, ap-

Fig. 3: System Architecture

plication profiler, resource manager, scheduler, and monitoring

module. Our adaptive F-S algorithm is incorporated in the

scheduling module of this layer.

The resource scheduler generates resource-specific tasks and

manages the orchestration of heterogeneous resources. Tasks

can be created by setting the amount of resources, number

of containers, network setting, environment variable setting.

The scheduler is generally performed after confirming the

profiled property information of each application. One of

the main roles of this step is to create a scheduling plan

that predicts resource usage of applications and appropriately

places tasks on GPUs and CPUs container nodes. Application

profiling module’s main role is to provide and analyze the

characteristics that applications have. The main technique used

for this module is based on the previous work [15].

The second and third layers perform the actual task, and

consist of the master node, resource pool, respectively. The

master node is responsible for identifying, allocating, and man-

aging different types of heterogeneous resources. It is based

on Mesos mater. A system can dynamically allocate resources

by controlling the resources of multiple nodes on a single

computer and recognizing available resource information. It

perceives and controls specific resources (CPU, GPU, memory,

disk, etc) of each node’s container according to the schedule

created by the job scheduler. Nodes in the infrastructure layer

are composed of nvidia-dockers and docker-based containers,

respectively, and containers are controlled by the master node.

It is based on the Mesos slave of the container and connects

directly to the master node to inform the resources.

To achieve a stable architecture, we have employed several

well-known researches and techniques. Here, we are going

to explain them in details. Mesos [6] is a distributed system

kernel, a resource management system designed to manage

resources of cloud infrastructure and computing systems in

an integrated manner. The resources of various computing

systems bundled in a network are grouped into a pool, man-

aged by grouping together CPU, GPU, memory, and disk.

Second important framework that is used for our system is

Marathon. Marathon [7] is a part of Mesos framework that

supports long-running applications such as web-applications.

If Mesos is considered as a kernel, Marathon acts as an init
or daemon. The most important one among technologies we

employed is Nvidia docker [5], which is a GPU-enabled docker

container. GPU-accelerated applications can be containerized

and deployed on a GPU-supported infrastructure. Container

runtime as well as extensible Docker container technology

throughout the orchestration system.

B. Evaluation Scenario & Setup

To demonstrate the performance improvement, we compare

our scheduling method to two conditions:

1) Default, a baseline GPU memory distribution ratio of-

fered by state-of-art Nvidia-docker system.

2) Static fair-share, a static GPU memory distribution ratio

to each group in which all jobs have same application

characteristics (Set1...n = GPU/n, n is the number of

groups defined).

3) Adaptive fair-share, the proposed method.

In this experiment, we evaluate all scenarios on both homo-
geneous and heterogeneous workloads. We form the homoge-

neous workloads using multiple copies of the same application.

For heterogeneous workloads, we make them up by randomly

selecting a number of applications out of two applications. and

build 10 kinds of heterogeneous combination of parameters for

each application. In total we evaluate 40 homogeneous and

heterogeneous workloads. Overall, five thousand(5K) jobs are

generated for each experiment, and we’ve exploited an average

result from five times repetitions.

We set containers using Tensorflow [16] images for exper-

iments. Tensorflow is a numerical computation using a data

flow graph. It can use a python script without CUDA code

where the number of GPUs, GPU memory usage, and etc can

be specified and modified.

We employed two kinds of applications from representative

domains, which are machine learning (ML) and molecular

dynamics (MD), that are actively utilizing GPUs and that can

generate different irregularity patterns. The details of them are

as follows.
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Convolution Neural Network (CNN) [17] - MNIST [18] is

a composite product algorithm, mainly used for visual image

analysis. CNN is composed of several hidden layers and is

generally composed of convolution layers and pooling layers.

The MNIST dataset is a numeric handwritten image. In this

experiment, MNIST data of 60,000 numerical images consist-

ing of 10 labels of 28 x 28 size was studied through CNN

model composed of 3 convolution layers using Tensorflow.

AMBER [19], [20] is a suite of programs for biomolecular

simulations in molecular dynamics(MD) field. It includes the

collection of numerous programs that work together to setup,

perform, and analyze MD simulations, from the preparation

of the necessary input files, to the analysis of the results.

Due to the specific characteristics that are the computational

complexity and fine-grained parallelism of MD simulations

of macromolecules, AMBER started to support GPU-based

execution and include the adaptor program which helps to

port from the existing Fortran code to the GPU platform using

NVIDIAs Compute Unified Device Architecture (CUDA) lan-

guage. In this experiment, we employed its python module to

carry it out with Tensorflow. Our experiments are conducted

on the framework (described in Sec. IV-A) consisting of two

container-based clusters. Table II provides the details of the

clusters. In particular, the experiments are conducted on the

GPU containers.

TABLE II: Experimental Setting

CPU GPU
Architecture Intel(R) Core(TM) i7-

5820K
Nvidia GeForce TItan
Xp D5x

Core Clock 3.30GHz 1.58GHz
Num of Cores 6 cores 128 CUDA cores
Mem. size 32 GB 12 GB
Threading API - Nvidia CUDA 8.0
Compiler ICC (Intel Compiler) Nvidia C Compiler

(NVCC8.0)
OS Ubuntu 16.04.3 LTS Ubuntu 14.04.5 LTS

C. Evaluation & Results

With the conditions that are addressed above, Figure 4 to

6 depict the comparative results in terms of execution time,

GPU utilization, and GPU memory utilization, respectively.

The experimental environment is shown in Table II.

1) Execution Time: Figure 4 depicts the comparison results

in terms of execution time. With homogeneous workload, the

result for execution time allows us to realize (left group in

the Fig.4) that the default condition causes the long average

makespan time, since all jobs had to be carried out in sequen-

tial way. In the fair-share condition, the result is shorter than

the Default condition (approximately 3,376 seconds), since the

GPU memory could be sharable and so it is possible to lead

better performance than default one in this condition. Our

adaptive fair-share method produces the shortest makespan

time among the performed conditions, about 2,901 seconds.

Overall, the proposed method could improve the execution

time by 16.37% compared to the static fair-share condition in

the homogeneous workload group.
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Fig. 4: Comparison of Container Execution time

The experimental results with heterogeneous workloads

(right group in the Fig.4) also show that the default condition

results in the longest average makespan time among three

conditions, mostly because of the waiting time between jobs

caused by the random placements of the different applications

to the identical container. For both fair-share and adaptive

fair-share conditions, the results present huge improvements,

especially on the proposed method. The improvement in the

proposed method mostly seems to be possible because of the

grouping in similar jobs which induces rapid recycling of the

containers and the evaluation step from by the adaptive update

module.
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Fig. 5: Comparison of GPU Utilization

2) GPU Utilization: In the GPU utilization aspect, the

results of default conditions show that it leads to poor GPU

utilization for both workloads, because it cannot assign the
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whole GPUs to all containers due to the problem as mentioned

in Section II. By sharing GPUs among multiple containers, the

fair-share and adaptive fair-share could achieve better utiliza-

tion than the default’s one. However, in fair-share condition,

all containers can only get the fixed amount ratio of memory

regardless of the characteristics of jobs within a group. It has

a bad effect on utilizing GPUs at their best. The adaptive

fair-share method results in the highest GPU utilization as

depicted on Figure 5, since it can adapt to the system status

and control it depending on the status in order to achieve

better resource utilization. Overall, it could achieve 50.2 %,

10.7 % improvements than the other conditions (default, F-S,

respectively) in the homogeneous, and 54.72 %, 9.9 % with

heterogeneous workloads.
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Fig. 6: Comparison of GPU Mem. Utilization

3) GPU Memory Utilization: Figure 6 shows the impact

of the different conditions on the GPU memory utilization.

We can observe that the default condition has the inferior

results for both workloads. Because the different kinds of

jobs generate diverse kinds of containers, thus the average

of utilization in heterogeneous seems to be lower than the

one with homogeneous. We can also see that the fair-share

condition led to lower memory utilization results, while it

achieved relatively quite good execution time. Since multiple

containers need to share GPU memory among groups and

its amount is not really even regarding jobs’ scale within

each container, it results in the waste of resources leading

to low utilization. The adaptive fair-share condition shows

higher GPU memory utilization than the default conditions

in both two workload groups, and shows 67.43% and 22.54%

higher memory utilization when compared with two conditions

in homogeneous workload environment, 77% and 24.7% in

heterogeneous environment.

To sum up, the overall experimental results show that the

adaptive fair-share condition proposed in this paper is superior

to the other two conditions(Default, fair-share) in terms of

execution time, GPU utilization, and GPU memory utilization

in the homogeneous group and the heterogeneous group.

V. CONCLUSION

This paper proposes a method to share GPU memories

effectively in GPU-container clusters. The proposed adap-

tive fair-sharing strategy helps to overcome the limitation of

sharing GPU memories among the containers which causes

fatal performance degradation. We analyzed the problems that

might happen in the GPU container clusters and conducted

several experiments to show its performance degradation.

Our approach is compared with baseline and static fair share

method by the evaluations. According to their results, it is

able to improve the overall performances in terms of execution

time, both GPU and GPU memory utilization.

We are planning to extend our scheduling algorithm that

is considering both CPU and GPU elements in the global

framework. In addition, we are going to implement APIs to

port and support general applications to apply the adaptive fair

share scheduling method we researched.
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