
A Job Dispatch Optimization Method on Cluster and Cloud for Large-scale
High-Throughput Computing Service

Jieun Choi, Theodora Adufu, Yoonhee Kim

Dept. of Computer Science
Sookmyung Women‘s University

Seoul, Republic of Korea
{jechoi1205, theodora, yulan}@sookmyung.ac.kr

Seoyoung Kim, Soonwook Hwang

National Institute of Supercomputing and Networking
KISTI

Daejeon, Republic of Korea
{sssyyy77, hwang}@kisti.re.kr

Abstract—Cloud technologies, clusters and grids have ac-
tively supported large-scale scientific computing over the years.
Whereas these technologies provide unlimited computing re-
sources, combining them with the existing infrastructures to
effectively support demanding scientific applications is more
and more laborious. In this paper, we design a service archi-
tecture and propose an algorithm to optimize job distribution
on a cluster and a cloud using HTCaaS. HTCaaS is a pilot job-
based multi-level scheduling system for large-scale scientific
computing in Korea. In addition, we present a newly added
cloud module on HTCaaS which is based on OpenStack.
We implement and validate the algorithm in HTCaaS. A
preliminary experiment is also conducted to find an optimal
distribution ratio for CPU-intensive jobs and I/O-intensive jobs
in our cloud and cluster environments. We compare our method
to a baseline approach which distributes tasks in proportions
of the number of cores each resource has in order to validate
the proposed job dispatch optimization method. Experimental
results show that the proposed method can improve throughput
and match tasks to appropriate resources using adaptive job
distribution ratio in cloud and cluster environments.

Keywords-job scheduling optimization; cloud computing;
high-throughput computing; distribution ratio;

I. INTRODUCTION

Cloud computing is an innovative technology for dynamic

provisioning of shared resources over the Internet. It also

presents users with the ability to rent computational re-

sources from its unlimited pool for use in high-throughput

computing (HTC), high performance computing (HPC) as

well as for many task computing (MTC) in the scientific

application fields of study. Meanwhile, in every distributed

computing system, the importance of scheduling methods

is evident. A variety of studies have been proposed to dy-

namically and effectively support scientific applications with

execution environments that hide the complexities of dis-

tributed infrastructures. However, properly scheduling such

scientific applications to heterogeneous computing resources

in order to achieve good performance or low cost is still

challenging because performances vary depending on where

the applications are executed.

In this paper, we design a service architecture and propose

a job scheduling optimization method to take account of

metrics in a distributed environment which involves cluster

and cloud resource usage. This method controls a ratio of

scheduling distribution for distributed environments accord-

ing to the characteristics of a given application and its

current workload. The ratio of scheduling distribution is

adaptable to dynamic computing environments. In addition,

our method considers as a policy, two metrics which are

performance and QoS. Both metrics are significantly con-

sidered for modern large-scale scientific applications, which

request high-throughput computing services such as events

generation in high-energy physics and automated docking

tools. The proposed method is evaluated on HTCaaS [1], a

pilot job-based multi-level scheduling system for large-scale

scientific computing in Korea. We conducted a preliminary

experiment in order to find an optimal distribution ratio

for CPU-intensive and I/O-intensive jobs in our cloud and

cluster environments. To verify the proposed job dispatch

optimization method which considers application types, we

compare the method to a core-based method which dis-

tributes tasks in proportions of the number of cores each

resource has. Experimental results show that it can improve

the overall performance by up to 21%.

The rest of this paper is structured as follows: Section II

discusses related works and Section III introduces the service

architecture model. We discuss our proposed algorithm in

detail in Section IV, while Section V presents experiment

and its results. Finally, we conclude this paper in Section VI.

II. RELATED WORK

In distributed computing systems, there are many stud-

ies that have considered diverse scheduling algorithms for

large-scale High Throughput Computing (HTC) applications

such as scientific computational applications over distributed

middleware systems. Such research on job scheduling algo-

rithms are carried out according to different policies such

as performance, priority and QoS. Falkon [2] is an one of

the middleware systems that takes on multi-level scheduling

mechanisms similar to HTCaaS which used in this paper and

described in section V-A. Falkons’ scheduler use a data

diffusion approach by adding a data-aware scheduler [3].

2015 International Conference on Cloud and Autonomic Computing

/15 $31.00 © 2015 IEEE

DOI 10.1109/ICCAC.2015.42

283

Ioan et al. [2] consider only the next-available policy, which

dispatches each task to the next available resource. It can

reduce task dispatch time by using a streamlined dispatcher.

Muthuvelu et al. [4] propose a method to optimally map

the tasks to the resources based on the QoS which is referred

to as advance QoS planning. The task-resource mapping is

performed prior to the task group deployment in order to

maximize the processed task count within the QoS using

the advance QoS planning. Lee et al. [5] present good per-

formance and fairness simultaneously by adopting progress

share as a share metric in a cost-effective manner. Choudhary

et al. [6] propose new scheduling strategy that grouped task

schedules according to greedy and priority based scheduling.

The prioritization determine the tasks priority depending on

cost and deadline. However, these papers are unable to pro-

vide sufficient methods for specific applications which have

large computing tasks since they do not consider current

system workload and application specifications. Moschakis

et al. [7] use Gang Scheduling strategies, AFCFS and LJFS

under the notion of Cloud Computing. It is proved that,

both algorithms can be efficiently applied in an environment

with a non-static number of VMs. While both algorithms

provide similar performance for medium workloads LJFS

outperforms AFCFS when workloads get heavier. The papers

however, lack application to a real heterogeneous distributed

computing system since they used simulation and considered

only one platform.

In this paper, we propose a job scheduling optimization

method which takes policy into account in our distributed

environment. In addition, we take into consideration other

metrics such as application types and current workloads.

We control a ratio of scheduling distribution for distributed

environment according to applications characteristics and

current workload in order to optimize scheduling.

III. SERVICE MODEL

Figure 1: Service Architecture Model

Figure 1 presents an overview of a service architecture

model for a hybrid distributed computing infrastructure. It

basically consists of three layers and four major service

modules which efficiently manage and control the dispatch

of jobs above a middleware layer in various computing

infrastructure.

The lowest layer of this model is characterized by the

physical computing resources on top of which the infrastruc-

ture is deployed. Resources can have a distinct nature like

cluster, grid and cloud, etc. The infrastructure is controlled

and managed by middleware layer which aims to harness

the computing resources at best. In this paper, we adopt

HTCaaS as a middleware solution which is a pilot job-based

multi-level scheduling system leveraging various distributed

computing resources. We explain HTCaaS in more details

in Section V-A. In order to support advanced services,

the middleware solution needs additional features such as

application profiling, optimization for job scheduling and so

on. We model our solution according to four major services:

Workload Monitoring, Job Profiling, Resource Analyzing

and Optimization services.

Workload Monitoring Service continuously monitors

overall workloads of the system, and determines an op-

timized distribution ratio whilst taking into account both

dynamically changing workload status and application types.

This enables the system to improve utility and capacity of

resources. Job Profiling Service identifies the types of appli-

cations which are used for determining the distribution ratio.

It also maintains and manages records of tasks the system

can refer to later. Resource Analyzing Service analyzes and

maintains information of diverse platforms and resources.

The data enables the system to scale resources dynamically

during the analysis of the characteristics of resources. In this

paper, we exploit two types of computing resources which

are cluster and cloud resources. Lastly, Optimization Service
mainly manage where the jobs are carried out according

to the distribution ratio set by the Workload Monitoring
Service. It also controls a degree of over-provisioning met-

ric(i.e., vCPU/pCPU ratio) considering a policy such as

performance or QoS, etc.

IV. ALGORITHM

Usually, a job dispatch process on heterogeneous dis-

tributed environments can be generalized into the following

four stages in accordance to the above-mentioned service

architecture model (Figure 1): ‘Monitoring Workloads’,
‘Identifying Applications’, ‘Selecting Resources’ and ‘Dis-
patching Jobs’.
• Monitoring Workload: observes workloads of overall

resources and collects status information.

• Identifying Applications: identifies the application type;

whether it is CPU-intensive, I/O intensive, etc.

• Selecting Resources: selects a target resource based on

Service-Level-Agreement (SLA) or machines’ specifi-

cation.

• Dispatching Jobs: manages job distribution to resources

according to various application characteristics in order

to optimize overall throughput.

284

The key notations used in the algorithms are listed in

Table I. M corresponds to a set of metajobs. D refers to

a resource distribution ratio and D with subscript(cpu or

i/o) denotes an application-specific ratio. Rji stands for

any resource where taski of metajob j will be carried on. In

this paper, it represents a location of an agent on which the

task should be deployed, as harnessed by HTCaaS which is

a pilot-based mechanism. λ represents a threshold of current

workload and is calculated by averaging the number of tasks

from m number of recent metajobs. Wresource indicates the

number of waiting tasks in the specified resource. The rest

of notations will be explained later.

In all algorithms of this paper, we assume that the

computing resources are limited to local cluster and private

cloud resources, since we conducted experiments on both

infrastructural types. In addition, it is also assumed in this

paper that there are only two types of applications which

are CPU and I/O intensive applications.

Table I: Notations

Notation Description
M A set of MetaJobs
Dcpu Resource distribution ratio(of cluster) for CPU-

intensive job
Di/o Resource distribution ratio(of cluster) for I/O-

intensive job
Rji Resource which schedule taski of Metajob j
λ Threshold of workload
k Value to adjust the resource distribution ratio
Wresource The number of waiting jobs in resource
rv/p Ratio of vCPU to pCPU
ER Error counts
ε Threshold of error count
C Maximum capacity

A. Job Dispatch Optimization

Algorithm 1 describes an optimization of job dispatch for

jobs which come into the system. Each time new requests

to submit one or several metajobs are received, Algorithm 1

is executed to compute its optimized distribution ratio. It

requires two parameters that are, a set of metajobs and

policy. A metajob has properties which include the type

of the metajob and the number of subjobs it has. Policy

can be either one of performance or QoS. Performance

(e.g, throughput), which allows the system to exploit the

maximum capacity of cores in Cloud via over-provisioning,

is a default policy in this paper. QoS, on the other hand,

is the policy where a user prefers a stable status(low error

rate) rather than performance and so leads to an adjustment

of the over-provisioning metric if errors occur.

rv/p =
vCPU

pCPU
, 0 < rv/p ≤ C (1)

Once a set of metajob is submitted to the system, Al-

gorithm 1 identifies the policy(lines 2-6). If performance,

it allows the system to use all available cores with over-

provisioning (namely in the mode of that vCPU/pCPU is

maximum). Otherwise, it adjusts vCPU/pCPU rate according

to the count of error occurred during running time. The ratio,

rv/p, is obtained from Eq. 1 which means the number of

virtual cores mapping onto a physical core and where C
refers to the maximum amount of vCPU that cloud solution

serves. For example, if the cloud solution is OpenStack C
can be 16, since it provides 16 virtual CPU cores as a default

maximum ratio. C can vary relying on which resources are

based on, because it is also affected by size of disk or

memory as well as available physical CPU.

Algorithm 1 Job Dispatch Optimization Algorithm

Input: a set of MetaJob M, policy p
1: MetaJob j= (jobtype T, # of tasks N)

2: if p == Performance then
3: rv/p = C ;

4: else if p == QoS then
5: Control rv/p
6: end if
7: for each j in M do
8: Switch (T)

9: case CPU-intensive:
10: Dcpu ← getRatio(T);

11: Rj[0:N∗Dcpu−1] = Cluster;

12: Rj[N∗Dcpu:N−1] = Cloud;

13: case I/O-intensive:
14: Di/o ← getRatio(T);

15: Rj[0:N∗Di/o−1] = Cluster;

16: Rj[N∗Di/o:N−1] = Cloud;

17: default:
18: T= detectJobType;

19: end switch
20: end for
21: (Dcpu,Di/o) = MonitorWorkload();

Output: Resource select decision RS
= {(MetaJob j,Rji) | i = 0,1,· · · , N−1,

Rji ∈ (Cluster, Cloud, ...) }

The whole process to adjust vCPU/pCPU rate is illustrated

in Figure 2. If ER, which is the total count of error occurred

during runtime such as VM failure, is greater than an error

threshold(ε) and the ratio(rv/p) is not the minimum value,

the system decreases the ratio by 1. In contrast, if the

condition is false, rv/p increases repeatedly till C.

After, it classifies each metajob in M into cpu and i/o-

intensive jobs(line 7-20). For each case, tasks belonging

to the metajob are assigned to the target resource through

‘Monitor Workload()’(line 21), on the basis of Dcpu or

Di/o. That is, if the type of metajob j is CPU-intensive,

it dispatches all jobs to cluster and cloud according to

Dcpu by getting the distribution ratio from workload monitor

285

modules(lines 9-12). If it belongs to I/O-intensive, it sends

all jobs to cluster or cloud according to Di/o by getting the

distribution ratio from workload monitor modules(lines 13-

16).

Figure 2: Flow Chart of Over-provisioning ratio adjustment

Suppose that a metajob which has the following parame-

ters, (cpu, 10000), is submitted to the system and that

Dcpu is 0.4. The scheduler dispatches the tasks to Cluster at

a rate of Dcpu(0.4, 40%) which is given by getRatio(cpu)
and 60% tasks to Cloud. After that, it monitors and updates

ratio D(if necessary) depending on current workloads. We

deal with further details in the next subsection.

B. Workload Monitoring

Algorithm 2 Workload Monitoring Algorithm

1: λ = threshold(m);

2: if Wcluster ≥ λ and Wcloud ≥ λ then
3: Dcpu = initializeRatio();
4: Di/o = initializeRatio();
5: else if Wcluster ≥ λ then
6: Dcpu = Dcpu −k;

7: Di/o = Di/o −k;

8: else if Wcloud ≥ λ then
9: Dcpu = Dcpu +k;

10: Di/o = Di/o +k;

11: end if
Output: SetRatio(Dcpu, Di/o)

In this system, a ‘Workload Monitoring’ service returns

a ratio of scheduling distribution with regards to the job

type and current workload threshold(λ). λ is defined as the

average number of tasks from m number of recent metajobs

as follows (Eq. 2).

threshold(m) =

⎧⎨
⎩
0 if n = 0∑n

i=n−m+1 |MetaJobi|
m

if n> 0

(2)

where m is the number of recent metajobs and n is the

last id of metajobs submitted.

If workloads of both cluster and cloud exceed λ, then

the distribution ratio will be initialized (lines 2-4). This is

because, we consider the current ratio unfeasible. Note that

initial ratio is determined through an empirical measurement.

If only cluster’s workload is greater than the threshold, λ,

then both Dcpu and Di/o decreases by k(lines 5-7). It is

because the D refers to the proportion by which to dispatch

the tasks to cluster. Otherwise, if only that of cloud is greater

than the value of λ then both Dcpu and Di/o increases by

k(lines 8-10). Here we set the value of k as 0.1.

Figure 3: An Example of the Optimization Algorithm

Figure 3 shows an example where multiple metajobs

having various conditions are arriving at different times. In

this example, initial value of λ would be zero, since there

was no previous metajob before time t0(Eq. 2). Suppose

that ratios D for cpu and i/o are 0.5 and 0.4, respectively,

and three metajobs are submitted sequentially at time t0.

It is assumed that users choose the default policy in this

example, as well. The system starts to distribute tasks of the

metajobs onto the existing resources which are cluster and

cloud, in a five to five ratio for cpu tasks and in a four to

six ratio for i/o tasks. Right after submitting three metajobs,

‘monitoring workload’ service would be performed. At that

time, λ results in 13000 by Eq. 2 and ratios are updated

to 0.4 and 0.3 (decreased by 0.1), since Wcluster is equal

to λ. Hence, I/O-intensive job would be scheduled into the

resources at a two to eight ratio at t1. After t1, in the same

manner, D would be updated until that the system is in

stable status. If the workload of cloud is over λ, after t3, the

distribution ratios increase by 0.1. In this way, it can adapt

to current status of dynamic environments and contribute to

making the overall system stable.

286

V. EXPERIMENT

Experiments that validated our scheduling optimization

methods are presented in this section. First, we describe the

system and target applications, and subsequently present the

experimental setting along with results.

A. HTCaaS

Figure 4: HTCaaS Architecture

HTCaaS[8] aims to facilitate exploring large-scale and

complex HTC or MTC problems by leveraging various com-

puting resources such as Supercomputers, Grids, Clusters

and Clouds. It can hide heterogeneity of integrating different

resources from users, and allow users to efficiently submit

a large number of jobs at once. This system also helps

researchers to solve large-scale and complex scientific prob-

lems efficiently by providing them with hybrid resources

managed by many kinds of local resource managers (such

as PBS[9], HTCondor[10], LoadLeveler[11], SGE[12] and

gLite[13]) systematically. It adopts an agent-based(or pilot-

based) multi-level scheduling mechanism which supports the

decoupling of resource allocation from resource binding.

Since it adopts agent-based multi-level scheduling and

streamlined job dispatching (as described in Falkon[2], con-

dor glide-in[14]), a first-level request to a batch scheduler

(e.g., Load Leveler and Condor in PLSI [15] Supercomput-

ers, gLite for Grids, PBS for Amazon EC2[16]) reserves

resources by submitting agents as batch jobs and then each

agent pro-actively pulls the user tasks from the job manager

which implements the lightweight and fast job dispatching

mechanisms.

By employing this mechanism consistently across hetero-

geneous computing resources, HTCaaS can effectively form

a dedicated resource pool on-the-fly for fast dispatching of

many tasks to circumvent the performance bottleneck of

traditional batch schedulers. The general agent itself is a

regular batch job which is submitted by HTCaaS system and

is assigned into the resources by the local batch scheduler.

Then it performs ‘pulling and executing’ sub-jobs as well as

coordinating the launch and monitoring processes. It avoids

the necessity to queue each sub-job and as a consequence,

leads to the efficient utilization of resources as well as

reducing the time of completion.

In order to support private cloud platform, OpenStack

module is recently added to HTCaaS as shown on Figure 4.

In the OpenStack module, each virtual machine core corre-

sponds to an agent as mentioned above. Thus once a virtual

machine is launched, the agent in the VM starts to pull &

launch the task it is given. Our proposed algorithm is mainly

communicated with Agent Manager module.

B. Empirical Results

In our proposed algorithms, the initial distribution ratios

are requisites and can be decided by empirical finding, as

previously mentioned. In this section, we show the empirical

findings for the optimized job distribution ratios from our

cluster and cloud computing infrastructures. Figure 5 and 6

show the experimental results of the mean elapsed time

of tasks which are distributed by varying distribution rates

ranging from 0 to 100%(denoted as 0, 0.1, .. 0.9,
1.0 in graph). Figure 5a and Figure 6a are the results for

which system has exploited full capacity of processors in

order to consider the policy, ‘Performance’. Figure 5b and

Figure 6b are the results when system has set rv/p as 1 for

the policy ‘QoS’. The rate having the lowest elapsed time

through experiment would be the initial distribution ratio. In

this case, Dcpu can be 0.5 for performance and for QoS,

while Di/o is 0.4, respectively. For these experiments, we

ran multiple thousand(103) metajobs having thousands(103)

of subjobs independently. In these experiments, we set C to

2.

C. Target Application

We target High Throughput Computing(HTC) and Many

Task Computing(MTC) application which usually have mil-

lions or billions of tasks to be processed with relatively short
per task execution time. This application paradigm embraces

a wide range of scientific domains such as high-energy

physics, pharmaceutics, chemistry and so on. For our ex-

periment, we use two applications, PYTHIA and Autodock

to represent CPU and I/O intensive jobs, respectively.

PYTHIA[18] is a standard tool for Monte Carlo(MC)

simulations, written in fortran(and C++), for events genera-

tion in high-energy physics. It comprises a coherent set of

physics models as a library and also has a set of utilities

and interfaces to external programs. PYTHIA is mainly a

CPU-intensive application with small size of in/output files.

AutoDock[19] is a suite of automated docking tools to

predict how small molecules, such as substrates or drug

candidates, bind to a receptor of known 3D structure. The

287

(a) Performance-based policy (b) QoS-based policy

Figure 5: Empirical results for CPU-intensive jobs

(a) Performance-based policy (b) QoS-based policy

Figure 6: Empirical results for I/O-intensive jobs

AutoDock tool is used for performing the docking of ligands

to a set of target proteins in order to discover potential new

drugs for several serious diseases such as SARS, Malaria.

The AutoDock job we use is considered an I/O-intensive

application having in/output data files with small sizes of

memory usage.

D. Experimental Settings & Results
The experiment environments consist of local cluster and

private cloud resources using HTCaaS. The local cluster

uses a Sun Grid Engine(SGE) [12] which is a batch-

queuing system supported by Sun Microsystems and later

Oracle. OpenStack [17] is an open source software that

provides large pools of compute, storage and networking

resources used for cloud environments. As an infrastructure

management system, maximizing resource usage is a basic

requirement for OpenStack. Our OpenStack environment

consists of 1 Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz

Controller with 12 cores of CPU and 16GB of RAM and

1 Inter(R) Core(TM) i7-4930K CPU @ 3.40GHz compute

node with 8 CPU cores and 26GB RAM and 2 Intel(R)

Xeon(R) CPU E5-2650 0 @ 2.00GHz compute nodes with

each 24 and 32 CPU cores and 32GB RAM. Each VM was

created identically using Ubuntu 12.04 Server image with

1GB ram and 1 vCPU.
For the performance evaluation, we use a simple pattern of

workload consisting of uniform and bursty patterns as shown

on Figure 7. It can represent a common environment for

large-scale computing service having unexpected and sudden

overloads for several times.

Figure 7: Workload Pattern

We compare the proposed job dispatch optimization

method which is represented as optimization in the graph,

to a baseline policy through the evaluations. The baseline

policy which is means as core-based in the graph is that

system distributes tasks in proportions of the number of

cores each resource has. With the addressed conditions,

results of the evaluation are as follows: Figure 8 depicts

the comparative results in terms of makespan time and

throughput. First of all, Figure 8a shows the comparisons of

our method to the baseline with respect to average makespan

288

(a) Makespan time for different jobs (b) Throughput for different jobs: CPU-intensive(left),
I/O-intensive(right)

(c) Throughput for combination jobs

Figure 8: Experimental results

time of metajobs. The results show there are overall im-

provements in performance by reducing makespan time for

each application. In Figure 8b, the proposed methods can

improve the throughput by about 3.8 percent for CPU-

intensive jobs and about 9.6 percent for I/O-intensive jobs.

Therefore, our job dispatch optimization method is a suitable

method, when the system dispatches jobs according to job

distribution ratio. In the case of a combination of two jobs as

shown in Figure 8c, our optimization method is better than

the core-based method by about 21.4 percent. Especially, in

the case of multiple applications, our method results in more

noticeable improvement to each individual application.

VI. CONCLUSION

We design a system architecture and propose a job

scheduling optimization method which takes account of

metrics (e.g., performance, QoS) in cluster and cloud en-

vironments. This method controls a ratio of scheduling

distribution for distributed environment according to char-

acteristics of application and current workload. The ratio of

scheduling distribution is adaptable to dynamic computing

environments. We conducted a preliminary experiment in

order to find an optimal distribution ratio for CPU-intensive

job and I/O-intensive job in our cloud and cluster environ-

ments. Our approach is compared with baseline approach.

According to the experimental results, it can improve the

overall performance by approximately 21%.

In the near future, we are going to extend our algorithms

by adding an application profiling service which can identify

the type of jobs ingeniously. We will perform additional

experiments using a variety of realistic workload patterns

and diverse kinds of applications as well.

ACKNOWLEDGMENT

This research was supported by Basic Science Research

Program through the National Research Foundation of Ko-

rea(NRF) funded by the Ministry of Science, ICT and Future

Planning (NRF-2013R1A1A3007866)

REFERENCES

[1] HTCaaS Wiki : http://htcaas.kisti.re.kr/wiki/ (2014)

[2] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde,
Falkon: a Fast and Light-weight tasK executiON framework,
in Proceedings of the 2007 ACM/IEEE conference on Super-
computing (2007)

[3] M. Feller, I. Foster, and S. Martin, GT4 GRAM: A Functional-
ity and Performance Study, in Proceedings of the TERAGRID
2007 Conference, Jun. 2007.

[4] Nithiapidary Muthuvelu, Ian Chai, Eswaran Chikkannan and
Rajkumar Buyya, QoS-based Task Group Deployment on Grid
by Learning the Performance Data, Journal of Grid Computing,
Vol. 12, No. 3, pp. 465-483, September (2014)

[5] Gunho Lee, Byung-Gon Chun and Randy H. Katz,
Heterogeneity-Aware Resource Allocation and Scheduling in
the Cloud, in Proc. of 3rd USENIX Workshop on Hot Topics
in Cloud Computing, June (2011)

[6] Monika Choudhary, Sateesh Kumar Peddoju, A Dynamic
Optimization Algorithm for Task Scheduling in Cloud Envi-
ronment, International Journal of Engineering Research and
Applications, Vol. 2, No. 3, pp. 2564-2568, May-June (2012)

[7] Ioannis A. Moschakis, Helen D. Karatza, Evaluation of gang
scheduling performance and cost in a cloud computing system,
The Journal of Supercomputing, Vol. 59, No. 2, pp. 975-992,
February (2012)

[8] Jik-Soo Kim, Seungwoo Rho, Seoyoung Kim, Sangwan Kim,
Seokkyoo Kim, and Soonwook Hwang, HTCaaS: Leverag-
ing Distributed Supercomputing Infrastructures for Large-
Scale Scientific Computing, ACM 6th Workshop on Many-
Task Computing on Clouds, Grids, and Supercomputers
(MTAGS’13) held with SC13, November (2013)

[9] B. Bode, D. M. Halstead, R. Kendall, Z. Lei, and D. Jackson,
The Portable Batch Scheduler and the Maui Scheduler on
Linux Clusters, in Proceedings of the Usenix, Proceedings of
the 4th Annual Linux Showcase & Conference (2000)

[10] HTCondor, http://research.cs.wisc.edu/htcondor/

289

[11] IBM Tivoli Workload Scheduler LoadLeveler, http://www-03.
ibm.com/systems/software/loadleveler/

[12] Gentzsch, W., Sun Grid Engine: towards creating a compute
power grid, Cluster Computing and the Grid, 2001. Proceed-
ings. First IEEE/ACM International Symposium on , vol., no.,
pp.35-36 (2001)

[13] gLite - Lightweight Middleware for Grid Computing, http:
//glite.cern.ch/

[14] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke,
Condor-G: A Computation Management Agent for Multi-
Institutional Grids. Cluster Computing, 5(3):237246, July
(2002)

[15] Partnership and Leadership for the nationwide Supercomput-
ing Infrastructure, http://www.plsi.or.kr/

[16] Amazon EC2(Elastic Compute Cloud), http://aws.amazon.
com/ec2

[17] OpenStack, http://www.OpenStack.org

[18] T. Sjstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and
manual, 050262006

[19] Autodock, http://autodock.scripps.edu/

290

