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ABSTRACT
Recently, graphic processing unit (GPU) multitasking has become
important in many platforms since an efficient GPU multitasking
mechanism can enable more GPU-enabled tasks running on limited
physical GPUs. However, current GPU multitasking technologies,
such as NVIDIA Multi-Process Service (MPS) and Hyper-Q may not
fully utilize GPU resources since they do not consider the efficient
use of intra-GPU resources. In this paper, we present smCompactor,
which is a fine-grained GPU multitasking framework to fully ex-
ploit intra-GPU resources for different workloads. smCompactor
dispatches any particular thread blocks (TBs) of different GPU ker-
nels to appropriate stream multiprocessors (SMs) based on our
profiled results of workloads. With smCompactor, GPU resource
utilization can be improved as we can run more workloads on a
single GPU while their performance is maintained. The evaluation
results show that smCompactor improves resource utilization in
terms of the number of active SMs by up to 33% and it reduces the
kernel execution time by up to 26% compared with NVIDIA MPS.
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1 INTRODUCTION
Graphics processing unit (GPU) has been widely deployed in many
platforms since massive research fields such as deep learning and
high-performance computing require its exascale computational
power [25]. Currently, GPU is available in supercomputers such
as Summit [21] and cloud services such as Google [5], Amazon [3]
due to their high performance on computational intensive work-
loads and energy efficiency. To fully utilize the resource of GPU in
these platforms, efficiently sharing GPU resources is a challenging
work [7].

GPU multitasking improves the GPU resource utilization where
multiple GPU kernels with different resource consumption patterns
can run on the GPU simultaneously [14]. NVIDIA provides Hyper-
Q[10] and MPS [14] technologies to enable GPU multitasking on
NVIDIA GPUs. The Hyper-Q technology makes multiple CUDA
kernels from the same CUDA context [12] issued within differ-
ent CUDA stream [13] being scheduled simultaneously. The MPS
technology expands the single context multitasking into multiple
contexts. In our research, we found that GPUworkloads can achieve
its best performance even use parts of the GPU intra-resources if
the dispatching of thread blocks is well organized. In detail, depend-
ing on their features such as memory and computation consump-
tion, some workloads need fewer SMs with more thread blocks dis-
patched on each SM while others need more SMs with fewer thread
blocks on each SM to obtain their best performance. However, both
the Hyper-Q and MPS cannot exploit GPU resources efficiently,
since they use the left-over policy to dispatch thread block to each
SM, which is unaware of the relation between resource usage pat-
tern and the performance of each kernel. In addition, kernels run
with MPS are not preemptable, which means that small kernels
have to wait for large ones to finish, downgrading the quality of ser-
vice (QoS). Finally, MPS does not support dynamic parallelism [1],
which is widely used due to its additional parallelism that can be
exposed to the GPU scheduler and load balancer.

To handle these issues, previous studies [18, 23, 24] proposed
both hardware and software-based strategies to improve the per-
formance when multiple kernels run in parallel with or without
MPS. Slate [2] introduced a workload-aware kernel-based sched-
uling system to improve performance when multiple workloads
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share the GPU. It efficiently reduces the interference caused by
co-locating and isolating kernels into separate SMs. Our study is
inline with these studies [2, 18, 23, 24] in terms of investigating
the performance of GPU. In contrast, we focus on improving the
resource utilization of intra-GPU.

In this paper, we aim to improve the utilization of GPU resources
and reduce the wall time of kernel execution in the multitask-
ing environment. To do this, we first analyze the performance of
GPU workload and observe an optimal kernel execution time can
be achieved when part of the GPU resources are used if the dis-
patching of thread blocks is well organized. Second, we devise
smCompactor as a GPU multitasking framework that can improve
intra-GPU utilization. It dispatches thread blocks (TBs) of different
GPU kernels to appropriate steam multiprocessors (SMs) based
on our analyzed results. This smCompactor can fully exploit the
intra-GPU resources, including the shared memory, registers, and
stream processors (SPs) by supporting more workloads that can
share the GPU at the same time. We implement smCompactor and
evaluate it on an NVIDIA Titan Xp based system. The experimental
results show that smCompactor can improve resource utilization in
terms of activated SM by up to 33% and reduce the execution time
by up to 26% compared with MPS.

2 BACKGROUND AND MOTIVATION
2.1 Resource Sharing Model
In NVIDIA GPU, there are two resource sharing models which are
the time-sharing model and the spatial-sharing model. Originally,
multiple concurrent launched kernels with different CUDA streams
are scheduled using the time-sharing model. In this model, time
budgets are assigned to each GPU kernel. Each kernel can utilize
GPU resources only when both its time budget and the required
resources are available. After its time budget expires, other kernels
are executed through context switching.

On the other hand, the spatial-sharing model is used by exploit-
ing NVIDIA Hyper-Q and MPS technology. In this model, kernels
launched on the GPU are scheduled depending on only their re-
source usage. In this way, multiple independent kernels can be
simultaneously executed on different SMs, as long as their resource
requirements are satisfied.
2.2 Multi-Process Service with Hyper-Q
The NVIDIA MPS [14] is a binary-compatible client-server runtime
implementation of the CUDA API. It is designed to enable coop-
erative multi-process CUDA applications in a concurrent manner
using Hyper-Q. Starting from the Fermi architecture [9], Hyper-Q
enables multiple CPU threads or processes to launch tasks on a
single GPU simultaneously. It allows CUDA kernels to be processed
concurrently on the same GPU, which can improve the performance
and utilization of GPU resources. While the concurrent scheduling
of Hyper-Q is limited to a single CUDA context, MPS with Hyper-Q
can collect the contexts from different applications and map them
into a single one. MPS works in a client-server architecture, the
control daemon of MPS acts as the server, which coordinates con-
nections between the clients and the server. MPS client runtime is
built into the CUDA driver library and can be used transparently by
any CUDA applications. The client passes its kernel and its CUDA
context to the server, and the server merges them into one context.

Figure 1: Kernel execution time varies with launched thread
block per streammultiprocessor (SM) and active SMchanges.
(BlackSholes (BS), lavaMD (LM), fdtd3D(FT)

However, multitasking with MPS cannot fully exploit the intra-
GPU resources, because it uses left-over policy to schedule thread
blocks of the different kernels, ignoring the relation between re-
source usage patterns of kernels and their performance. The MPS
may also block the later-launched kernel until the previously launched
one finishes its execution, decreasing the QoS and resource uti-
lization if the former kernel is not resource-intensive with long
execution time. We verified this property by staggering the launch
time of two workloads (FDTD3d, lavaMD) with a huge difference in
their kernel execution time. The results show that in the worst case,
the execution time of later launched small workloads can reach to
460 times of its normal execution time.
2.3 Motivation
Because the GPU was originally used for processing pixel render-
ing, multitasking on GPU is not as efficient as on CPU since it is
initially designed for monopoly use for a single workload. Besides,
monopolizing the whole GPU causes a waste of resources since
the best performance of some workloads can be achieved when
parts of the resources are used if their thread blocks are efficiently
dispatched. Figure 1 shows the relation between the execution time
and the number of activated SMs with a various number of thread
blocks launched on each SM for different workloads. As shown in
the figure, two different features appeared among these workloads.
Workload like BlackScholes (BS) needs fewer SMs (15) but with
many thread blocks(12) on each SM to obtain its best performance.
On the other hand, workload as lavaMD (LM) needs more SMs (30)
while with fewer thread blocks per SM (2) to achieve its best per-
formance. Both of the thread block dispatching policy mentioned
above consumes part of the GPU resources, for example, 12 thread
blocks of BlackScholes requires 35328 registers in each SM. NVIDIA
Titan Xp [11] has 65536 registers in each SM and the remaining
30208 registers can be used to launch four thread blocks of lavaMD
additionally on the same SM which are described in Table 1 in the
evaluation section. However, the default scheduling policy of MPS
uses the "left-over" policy, which will dispatch the thread block
to another SM only when the previous one is fully occupied. This
dispatch policy can not exploit the best utilization of GPU intra-
resource when multiple tasks running concurrently. The newest
NVIDIA Volta MPS [14] provides an SM-level resource provision-
ing, which can allocate the thread blocks of the kernel to specific
SMs. It is useful for workload such as BlackScholes, which needs



smCompactor SAC’21, March 22-March 26, 2021, Gwangju, South Korea

(a) Overview of the smCompactor architecture

(b) Control flow of the smCompactor
Figure 2: System architecture and control flow of smCom-
pactor
fewer SMs. However, workloads need more SMs with fewer thread
blocks on it such as lavaMD may still not execute efficiently with
Volta MPS.

Inspired by these observations, we proposed smCompactor, where
thread blocks of each kernel can be intentionally launched to spe-
cific SMs to obtain a near-optimal performance according to the
profiling result while using as few resources as possible, leaving
more resources available for executing other workloads.

3 DESIGN AND IMPLEMENTATION
There are several goals in our design of the smCompactor. First,
smCompactor aims to support GPU multitasking without using
NVIDIA MPS to complement the shortcomings of the MPS. Second,
smCompactor aims to dispatch task (at thread block level) efficiently
to exploit the GPU resources efficiently and reduce the wall time
of kernel execution; Third, smCompactor aims to provide a GPU
kernel multitasking environment that is transparent to the users. To
achieve our design goal, we perform several works as follows. (1) we
profile the kernel information including the resource consumption,
predicting the necessary number of SMs and thread blocks per SM
to achieve the best performance. (2) we automatically extract the
kernel function and its parameters from the source code, (3) we
convert them into a manually controllable version transparently, (4)
wemerge CUDA contexts into a single context and finally managing
the thread block dispatching according to that information.
3.1 System Architecture
Our approach is based on the client-server structure. As shown in
Figure 2(a), each application is individually bound to the CUDA API
wrapping module, which acts as a client. The CUDA API wrapper
module intercepts the original CUDA kernel functions and their

parameter lists and passes them to the smCompactor runtime dae-
mon that runs on the host side. As shown in the figure, it contains
the kernel profiler, dispatch module, kernel transform module, and
runtime compiler module.

Figure 2(b) shows the control flow of the smCompactor runtime.
When the application calls CUDA API to allocate device memory
and launch a kernel, the wrapping module intercepts the kernel
function body and parameter lists and forwards them to the sm-
Compactor runtime ( 1○). The kernel profiler profiles the kernel
and forwards the profiling result to the dispatch module ( 2○). The
dispatch module adds dispatching related information to the kernel
function body and forwards them to the kernel transform module
( 3○-b); however, if the dispatch information of a specific kernel
changes, it sends modified dispatch information back to the kernel
profiler and triggers a new profile ( 3○-a). The kernel transform
module converts the original kernel function into a transformed
version with dispatching information, which can be adopted in
the persistent thread model [6]. Then, it forwards the transformed
kernel to the runtime compiler module ( 4○). The runtime compiler
module compiles the transformed kernel source into a ptx file, and
launches the modified kernel from that file ( 5○). After the trans-
formed kernel is launched on the GPU side, a persistent thread is
generated to dispatch the thread blocks as tasks ( 6○) to the specific
SMs ( 7○) according to the implanted dispatching information. We
will discuss each module in the smCompactor runtime in detail in
the following subsections.

3.2 CUDA API Wrapping Module
Overall, CUDA applications use the CUDA runtime and driver APIs
to communicate and control the NVIDIA GPU. In our proposed
design, smCompactor runtime is responsible for transforming the
original kernel functions received from each client into the modified
version that can be scheduled; thus, the kernel functions and their
parameters should be separated in advance before being transferred
to the runtime.

However, as the CUDA API is not open source, we cannot mod-
ify the CUDA function itself; instead, we develop the CUDA API
wrapping module to capture the APIs mentioned above and im-
plement our design to derive the kernel function from the source
code transparently. Particularly, we intercepted the cudaLaunch
call to get the kernel function body as a string by parsing the entry
parameter used in the cudaLaunch function. Finally, we transfer
the kernel function source and their parameter list as well as their
sizes to the smCompactor runtime.

3.3 Kernel Profiler
The kernel profiler is responsible for profiling the thread block
dispatch features of each kernel. As introduced in [4], the Em-
pirical Criteras (EC) can be used to distinguish a workload into
computational intensive or memory intensive (large EC indicates
computational intensive). According to the EC of each workload,
we categorize our workload and analyze the relation between their
performance and thread block dispatch pattern. Figure 3 and Fig-
ure 4 demonstrate their performance changes depending on the
dispatching of the thread blocks on various number of SMs.

Figure 5 and Figure 6 show the change of global load throughput
and achieved occupancy of each workload with different thread
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Figure 3: Performance of a various number of thread blocks
(1,2,4,8) dispatched on SMs for mummergpu.

Figure 4: Performance of a various number of thread blocks
(1,2,4,8) dispatched on SMs for lavaMD.

(a) Device memory bandwidth of mummergpu

(b) Parallelism of mummergpu

Figure 5: Device memory bandwidth and parallelism of
mummergpu on various thread block dispatching
block dispatch strategy. Comparing with Figure 3 and Figure 4, we
can find that the memory bandwidth has more impact than paral-
lelism on the performance.We also find a saturated gld/gst_throughput
can indicate the best performance. As a result, the kernel profiler
profiles global store throughput (gst_throughput), and global load
throughput (gld_throughput) for different number of the thread
blocks when all SMs are activated and only one SM is activated. We
also observe that the gld/gst_throughput is directly proportional

(a) Device memory bandwidth of lavaMD

(b) Parallelism of lavaMD
Figure 6: Device memory bandwidth and parallelism of
lavaMD on various thread block dispatching

to the number of SM and thread blocks per SM before they are
saturated. The kernel profiler collects this information for the first
time when each kernel is launched.

The profiler obtains these features by utilizing NVIDIA CUDA
Compiler (NVCC) [15] options and NVProf [16]. After profiling,
the profiled results are forwarded to the dispatch module and based
on this collected information, we calculate how many resources
remain in each SM and decide how many more thread blocks can
be issued to each SM.
3.4 Dispatch Module
The dispatch module injects the dispatching information into the
original kernel according to the obtained profiling information from
the kernel profiler. The dispatching information contains the thread
block and SMmapping data. It will be a guideline to dispatch thread
blocks of different kernels to each SM to maximize resource utiliza-
tion while achieving optimal performance. Particularly, it is created
by considering all related features such as profiling result, current
resource usage of each SM, and the resource consumption of target
kernels. As mentioned above, the best kernel performance can be
achieved when (gst_throughput and gst_throughput) are saturated.
Both of these two features are functions of the number of activated
SMs and the number of warps running on each SM. In detail, the
gld_throughput and gst_throughput firstly increase as the numbers
of warps and activated SMs increase. However, at some point, the
throughput is saturated even if the numbers of warps and activated
SMs increase. We noticed that before the throughput is saturated,
the increment of these two features is directly proportional to the
increment of warps and SMs. Thus, the dispatch module can use the
profiled information of gst and gld_throughput in one SM and the
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Figure 7: Kernel transformation.

saturated gst and gld_throughput to infer the increment coefficient
and calculate the necessary number of thread blocks and SMs.
3.5 Kernel Transform Module
Generally, GPU thread blocks are scheduled and dispatched to ran-
dom SMs depending on the hardware scheduler. Thus, to improve
the resource utilization according to each kernel’s feature, manu-
ally controlling the dispatch of the GPU thread block is difficult to
implement. Thus, [6] proposed the concept of the persistent thread
model, which is based on the dynamic parallelism mechanism pro-
vided by NVIDIA. In this programming model, thread blocks are
treated as tasks; meanwhile, a persistent thread is running perma-
nently, picking up tasks from the task queue, and launching the
tasks asynchronously.

Our proposed smCompactor adopts this persistent thread mech-
anism by modifying the original kernel into a revised version. The
modification details are as follows: First, the kernel transform mod-
ule replaces the built-in CUDA variables blockIdx and gridIdx with
the persistent thread model related code segments to implement its
functionality. As shown in Figure 7, a general CUDA kernel with a
multi-dimension grid will be first converted into a one-dimension
grid where the size of the grid is equal to the product of the size
of each dimension in the original grid. Each thread block in the
converted dimension is treated as a task. Meanwhile, a persistent
thread, which is also a kernel function running permanently on the
device side, is created to sequentially extract tasks and launches
them to the SM asynchronously. Then, dispatching information
obtained from the dispatch module is integrated into the revised
kernel; therefore, thread blocks of certain kernels can run on the
designated SM. Finally, the revised kernels are launched with dif-
ferent CUDA streams [13] to exploit the concurrent scheduling
features of the hardware scheduler.

In our proposed smCompactor, we use a "fulfill and retreat"
strategy to control the dispatch of the thread blocks. The strategy
keeps trying to dispatch the task (thread block) until it locates
the specific SM and until the number of thread blocks matches
the number in the dispatching information. As introduced above,
the NVIDIA hardware thread block scheduler may dispatch thread
blocks to any of the SMs according to its resource usage. Since
the details of the NVIDIA hardware scheduler are not available
to the public, the distribution of thread blocks is random to the
users. However, the "fulfill and retreat" strategy takes advantage
of the persistent kernel model where thread blocks are treated as
tasks to use an alternative means to solve the problem by trying
to dispatch the task (thread block) contiguously. We note that the

Figure 8: Details of fulfill and retreat mechanisms

persistent kernel mode is necessary because original kernels are
launched inside a kernel (persistent thread) and current task queue
status needs to be synchronized between the task (consumer) and
the persistent thread (producer). A CUDA device synchronization
variable can be modified and testified by both of them without
accessing host memory since both of them are running on the
device.

Figure 8 illustrates the details of the "fulfill and retreat" mech-
anism. As shown in Figure 8(a), the persistent thread starts to
dispatch tasks to the SMs according to the dispatching information.
Currently, two tasks need to be dispatched to SM0 and SM1, re-
spectively. In the beginning, as shown in Figure 8(b), the persistent
thread successfully dispatches one task to SM0 by the hardware
scheduler. In this case, the persistent thread pops this task from
the queue and continues to dispatch the next one. As shown in
Figure 8(c), the next task is dispatched to SM2 (wrong SM in this
case), which violates the dispatch information. As a result, the task
needs to retreat and the persistent thread dispatches again. After
dispatching, at this time, the task is located on SM0, which exceeds
the threshold of the thread block count. Thus, the task should be
treated again. Finally, as shown in Figure 8(d), the task is success-
fully dispatched to SM1, and the persistent thread pops the task
from the queue and prepares to dispatch the next one until the
queue is empty.

3.6 Runtime Compiler Module
The runtime compiler module compiles the modified kernels which
are converted by the kernel transform module into an executable
form. It works in four stages. First, the runtime compiler module
creates a unique CUDA context since as mentioned above, NVIDIA
Hyper-Q technology enables concurrent scheduling with CUDA
streams where the kernels should belong to the same CUDA context.
Second, it compiles the source code into ptx form. Third, it allocates
device memory for each kernel in that CUDA context. Fourth, it
launches the kernels on the GPU.

The runtime compiler module contains one main thread and
several child threads. The main thread creates the unique CUDA
context and receives the modified kernel from the previous module.
Each child thread obtains the main context and corresponding
kernel from the main thread, compile the kernel into a ptx file,
allocate device memory, and launching the kernel under the main
context.
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Figure 9: Execution time of BlackScholes with the different
number of thread blocks (TBs) on the different number of
SMs.

4 EVALUATION
In this section, we evaluate the performance of smCompactor on
several real-world applications with different scenarios. The eval-
uations are executed on a real GPU system, which consists of an
NVIDIA Titan Xp GPU card, Intel Xeon E5-2683 CPU with 14 phys-
ical cores, and 64GB DDR3 memory. The NVIDIA Titan Xp GPU
belongs to the Pascal architecture, which consists of 30 SMs, with
65536 registers and 64KB shared memory in each SM. The whole
system runs on the Ubuntu 16.04 operating system, with Linux ker-
nel 4.4.180. The NVIDIA device driver version we used is 384.130,
with the NVIDIA CUDA toolkit 9.1.

4.1 Evaluation Methodology
We evaluate our proposed smCompactor with the following per-
formance metrics. 1) real & normalized kernel execution time, 2)
resource utilization in terms of the number of active SMs and thread
blocks for each workload under a multitasking environment. Table 1
shows the target evaluation workloads. They are from the NVIDIA
CUDA 9.0 Samples and Rodinia GPU benchmark suite [20]. Each ap-
plication varies in its degree of parallelism, number of registers, and
shared memory usages. For each application, we run evaluations on
its original CUDA, MPS, Slate [2], smCompactor. Since slate is not
an open-source framework, we implement it. All of the MPS, Slate,
and smCompactor support GPU resource spatial sharing, while the
original CUDA supports GPU resource time sharing. The reason
we chose Rodinia and CUDA samples as our evaluation targets is
that they have appropriate GPU memory consumption. Since cur-
rently GPU memory cannot be oversubscribed, appropriate GPU
memory usage can avoid Out-of-Memory error in the multitasking
environment. We can also consider using Unified Memory (UM),
however, there are performance issues on the UM and we will take
it as our future work.

4.2 Performance on Different Thread Block
Counts on Different Number of SMs

In this section, we evaluate smCompactor by running a single
workload with a different number of thread block counts on a
different number of SMs. We choose FDTD3d and BlackScholes as
the evaluation targets in this section since each of them represents
a different resource usage pattern. As shown in Table 1, FDTD3d
consumes a large number of registers and shared memory with a
small number of thread blocks, while BlackScholes has low resource
usage but a large number of thread blocks.

Figure 10: Execution time of FDTD3d with a different num-
ber of thread blocks (TBs) on different number of SMs.

Figure 11: Execution time and active SM counts of running
in different scenarios (Bar: kernel execution time; Curve:
Number of activated SMs).

Figure 9 illustrates the kernel execution time of BlackScholes.
From the figure, the execution time varies according to the change
in the number of thread block and active SMs. The best performance
(27.6 ms) can be achieved when 30 SMs were activated and launch-
ing eight TBs on each of them, and the second-best performance
(28.02 ms) is achieved when 15 SMs were activated with 16 TBs on
each of them. In this case, the kernel execution time is almost the
same as the execution time on the original CUDA (27.31 ms). The
performance can be almost saturated when only half of the whole
SMs were activated with an appropriate number of thread blocks
launched on each of them, leaving sufficient room for improvement
in resource utilization.

Figure 10 shows the case of FDTD3d. The performance is also
saturated when 15 SMs are activated. However, different from the
case of BlackScholes, the performance variation is small when the
number of thread blocks launched on each SM increased from one
to four due to its large resource usage of each thread block. Because
the thread blocks are actually scheduled by the hardware scheduler,
which allows thread blocks to be executed only when the resource
is available.

In summary, for either the workload that has a large or small
resource usage, its optimal performance can be achieved without all
SMs which are activated if an appropriate combination of the num-
ber of thread blocks and the active SM counts are found. However,
compared with resource-intensive kernels, those small kernels have
a higher possibility to find the optimal performance with fewer
active SMs since their performance varies greatly when the number
of thread blocks launched on each SM changes.
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Workloads #ThreadBlock #Threads/Block Registers/Block Shared Memory (byte)
FDTD3d (FT) 288 512 57344 3840

nn (NN) 32768 256 4608 0
BlackScholes (BS) 2343750 128 2944 0
lavaMD (LM) 1000 128 7168 7200

Table 1: TARGET EVALUATIONWORKLOADS

(a) Wall execution time

(b) The execution time of each workload

Figure 12: Execution time of co-locating three workloads
with different strategies

4.3 Performance on Concurrent Kernel and
Resource Sharing

In this section, we evaluate the performance of two co-launching
kernels with different strategies. We select FDTD3d, BlackScholes,
and lavaMD as our evaluate target since their execution times are
similar to each other. The evaluation is conducted with the original
CUDA, MPS, Slate, and smCompactor. We evaluated eight combi-
nations among all the workloads. For the Slate and smCompactor,
we evaluate all the combinations and present the best performance
on the result.

Figure 11 demonstrates the kernel execution time and the number
of active SMs in all eight cases. The time presented in the figure is
the execution time of the last finished workload. The original CUDA
provides the baseline for the comparison. As shown in Figure 11,
MPS can efficiently schedule two concurrent kernels, outperform-
ing the original CUDA version. In that case, the improvements can
be 17% and 24% for the FT-LM and BS-LM combination, respec-
tively. The slate also outperforms the original CUDA in both cases.
However, it suffers performance downgrades of 14.8% and 22.5%
compared with MPS in the cases of FT-LM, and BS-LM, respectively.

SM 0 - SM 14 SM 15 - SM 19 SM 19 - SM 24 SM 25 - SM 29
FT-LM FT:1,LM:1 FT:0,LM:8 FT:0,LM:8 FT:0,LM:0
LM-BS BS:12,LM:4 BS:12,LM:4 BS:0,LM:4 BS:0,LM:0

Table 2: Number of thread blocks on each SM
SM 0 - SM 14 SM 15 - SM 19 SM 19 - SM 24 SM 25 - SM 29

FT-LM+BS FT:1,LM:1 FT:0,LM:2,BS:12 FT:0 LM:2,BS:12 FT:0,LM:0,BS:16
LM-BS+FT BS:12,LM:4 BS:12,LM:4 BS:0,LM:1,FT:1 BS:0,LM:1,FT:1

Table 3: Number of thread blocks on each SM
smCompactor also outperforms the baseline in both cases. Mean-

while, it can enhance the performance against Slate by 10% and
16% when concurrently running FT-LM and BS-LM, respectively.
It should be noted that resource utilization can be increased when
the workloads are running with smCompactor. Even though the
execution time of the FT-SM and BS-LM combination is slightly
longer than that of the MPS cases, it only uses 83% and 66% of the
whole SMs to achieve this performance, saving the SMs for the
upcoming workloads. The number of thread blocks launched for
each SM is shown in Table 2.

To demonstrate that those resources that saved by smCompactor
can also be used to execute other kernels without performance
degradation, we launch a third workload on those unused SMs
for both the FT-LM and BS-LM cases. Particularly, we additionally
launch thread blocks of BlackScholes (BS) mainly on the remaining
five SMs for the FT-LM case, and one thread blocks of FT on the
remaining 10 SMs for the BS-LM cases. Table 3 depicts the details
of the thread block distribution on every SM. Compared to the
previous experiment configuration as shown in Table 2, we slightly
tune up the thread block number of LM to achieve an overall better
performance.

Figure 12(a) demonstrates the wall time of executing all three
workloads, which is the kernel execution time of the last finished
workload. In the case of co-launching BS on the SMs remained by
FT and LM with our proposed smCompactor, the execution time
can be decreased with 26% and 18% compared to CUDA and MPS,
respectively. The performance gains can be even larger in the case
of co-launching FT on the SMs remained by BS and SM, which are
33% and 26% compared to the CUDA and MPS.

We analyze the results by presenting the kernel execution time of
each kernel in different cases as shown in Figure 12(b). In the CUDA
case, since the kernels are scheduled in a time-sharing manner,
kernels are executed sequentially, leading to the longest wall time.
In the MPS case, BS is blocked by FT and LM, leading to a longer
execution time (84.5 ms) compared to its solo run case (27.1 ms).
Compared to the result of MPS shown in Figure 11, we can tell
that as more kernels are launched in parallel with the MPS, the
possibility that one or some of them be blocked increases.

On the other hand, the wall time on smCompactor, which de-
pends on the execution time of LM, is slightly increased in the case
of smCompactor (FT, LM + BS) compared to the case of smCom-
pactor (BS, LM + FT). This is because of the reduction of thread
block counts of LM on several SMs, for providing more resources
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to the BS. However, the wall time of smCompactor in both cases
still outperforms the case of CUDA and MPS, since the kernels can
be executing in parallel without blocking.

4.4 Overhead of smCompactor
We finally evaluate the overhead of the proposed system by execut-
ing a single application with the original CUDA, MPS, Slate, and
smCompactor. We measure the kernel execution time instead of
the whole application execution time due to that for some applica-
tions, the part running on the host side costs thousands of times
more than the kernel execution, which interferes with the accu-
racy of the evaluation. Besides, to make an appropriate comparison,
we configure both the Slate and smCompactor to use all the GPU
resources.

The result shows smCompactor has up to 7% overhead compared
to the original CUDA case, which is similar to Slate. The overhead
is due to the persistent thread model, where the user kernels nested
in the dispatcher kernel (persistent thread), and both smCompactor
and Slate adopt this concept. However, the case of NN is an excep-
tion, where the overhead is about 1.75 times than the baseline. This
is due to NN’s extremely small kernel execution time. Compared to
the kernel execution time of tens of millisecond for other workloads,
the execution time of NN is only 0.33 milliseconds, which increases
the overhead proportion. As a result, our proposed smCompactor
has a tiny impact on those kernels with relatively longer kernel
execution time; however, with small kernels, the impact could be
notable.

5 RELATEDWORK
The research of GPU multitasking was conducted from various
perspectives to better utilize GPU resources: from bottom hardware-
based implementation support to top software-based support. In
terms of the hardware-level approaches, there are attempts to apply
the CUDA stream, Hyper-Q, andMPS using simulations, andmodels
were suggested to support kernel preemption and scheduling [17–
19, 22]. Park et al. proposed a preemption-based approach [18] to
control the overhead of multitasking on the GPU. This approach is
based on the flush operation that can preempt the SM with a new
kernel. However, preemption can only occur when the thread blocks
are at an idempotent state, which limits the functionality. They also
proposed a dynamic resourcemanagement strategy [19] for efficient
utilization of multitasking GPU; it uses SM as its scheduling unit
and implemented with a simulator. However, since the functionality
needed to implement these strategies is not provided by the real-
world GPU, these studies are implemented with a simulator, which
may have different features compared the real-world GPUs. Xu et
al. proposed [24], a dynamic intra-SM slicing strategy to maximize
the performance of concurrent kernels running. This strategy uses
an analytical method for calculating resource partitioning across
different kernels and assigns the thread blocks of each kernel to
the target SM.

On the other hand, most of the software support studies are based
on the persistent thread model [6, 8]. Bo et al. [23] first proposed the
technology to circumvent the limitations of the hardware scheduler
and to allow flexible program-level control scheduling. Slate [2]
handles concurrent kernels from arbitrary applications at runtime

and integrates workload-awareness into scheduling decisions, how-
ever, it focuses on avoiding interference between different kernels
and was scheduled based on SM unit.

Our study is in line with these works [2, 23, 24] in terms of the
investigation of the technique considering sharing GPU resources
among multiple kernels. However, there are certain differences
between our study and the previous studies. In [24], all the func-
tionalities proposed are implemented via a hardware simulator,
since the NVIDIA GPU does not provide the necessary technolo-
gies. In contrast, we implement our proposed smCompactor on the
real-world NVIDIA GPU by using software technologies. Slate [2]
focuses on avoiding interference by isolating each kernel on differ-
ent SMs and [23] mainly focuses on improving the performance of
a specific kernel by increasing the locality of each kernel. However,
our proposed work aims to improve overall resource utilization by
enabling as many workloads as possible to run concurrently while
reducing the kernel execution time by aggregating thread blocks
to exploit intra-SM resources.

6 CONCLUSIONS
Currently, GPU multitasking technology is not efficient enough
considering the performance and resource utilization. The main is-
sue is that the scheduling of thread blocks depends on the hardware
scheduler which cannot detect the relation between performance
and resource usage patterns. This makes it difficult to improve re-
source utilization while maintaining performance. In this paper,
we proposed smCompactor, a fine-grained thread block scheduling
framework, which can improve the resource utilization while re-
ducing the kernel execution time in a multitasking environment
by dispatching any number of thread blocks to specific SMs. The
evaluation results demonstrate that our proposed smCompactor has
minimal overheads. Moreover, near-optimal performance can be
obtained with fewer SMs by managing thread blocks. For the mul-
titasking cases, the performance gains against the original CUDA
and MPS are up to 33% and 26%, respectively.
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