
Abstract
Over the years, grid resources have been instrumental in promoting development of

various scientific research fields using high performance computing. Furthermore, as
the recent advent of cloud computing facilitates elastic extension of computing, there
are increasing number of studies on putting cloud computing resources to good use.

In this paper, we present a deadline-driven scheduling service that maximizes
efficient utilization of grid and hybrid cloud resources. The scheduling service enables
to increase resource utilization by satisfying a deadline of each application, and
optimizes an execution time of the application by allocating public cloud resources
under control of a monitor. Besides, the scheduling service ensures an application is
finished within its deadline at minimum financial cost.

1



1. Introduction
Grid computing has a significant ability to harness together the power of

computing resources. But the high performance computing offers a static and finite
computational capacity to users, For example, peak demand for computing
resources may be seen in sometimes, which can lead to long waiting times for
utilization for these resources, or the available resources for one application may
be insufficient to complete the application before its deadline. In these cases,
flexibility of cloud computing resources may be the solution. Moreover, the use of
cloud computing offerings has found acceptance in both industry and research. It is
thus critical to study on hybrid cloud scheduling service.

In this paper, we focus on the deadline-aware resource scheduling service in
multiple infrastructures including hybrid cloud. Our scheduling service enables to
increase resource utilization by satisfying a deadline of each application, and
optimize an execution time of the application by allocating public cloud resources
under control of a monitor. Furthermore, the scheduling service ensures an
application is finished within its deadline at minimum financial cost.

Our paper is organized in the following sections. We firstly discuss some related
works in Section 2. After that, in Section 4, we introduce a general overview of our
scheduling service with algorithms and an example of our proposed adaptive
scheduling concept in Section 5. Finally, we present experiment plans for an
ongoing progress of our work and conclude this paper in last section.

2



2. Related Work
Several works tackle the problem of scheduling hybrid cloud in efficient

way while fulfilling the applications’ quality of service constraints.
VGrADS(Virtual Grid Application Development Software) project[1]

implements a cloud computing environment by extending Amazon EC2
resources with open-source cloud software platform, Eucalyptus to execute
HPC(High Performance Computing) workflows. As a goal of the project is
implementing a scheduling policy and infrastructures particularly for time-
sensitive application among e-science applications, load balancing of multiple
infrastructures (such as TeraGrid[10] and Amazon EC2) and stability have been
studied for a new workflow. However, it has not been shown any research
results about a provisioning based on additional policies (deadline, cost and
etc.).

Comet Cloud[2] provides a deadline-constrained resource provisioning
which chooses suitable set of resources among large-scale grid and
public/private cloud by deadline policy. Although it respectively considers
deadline policy and budget constraint, until now, they does not present any
experimental data considering both deadline and budget constraint.

3



4. Resource Scheduling Service
4. 1 Hybrid Resource Scheduling Service Architecture

This slide shows the hybrid resource scheduling service architecture. If
application is submitted via Job Input Control, Profile Factoring generates
numeric values about how much each parameter influences on the application.
After job histories are extracted by high number of the generated values,
Deadline Decision Service provides reasonable deadline for the application
among them.

Resource Scheduling, related to Scheduler, Runtime Estimator, and Resource
Monitor, schedules one or more jobs of the application based on the deadline.
Runtime Estimator predicts execution time of each job and Resource Monitor
periodically keeps watch on status of resources. As considering the predicted
execution time of a job and current status of resources from the modules,
Scheduler decides a resource in which the job will be scheduled, and Resource
Allocator is responsible to service practical job execution by delivering the job
to a proper adapter among Resource Adapters such as Grid, Private and Public
Cloud adapter. While the jobs are executed by initial scheduling, in a case of
insufficient available local resources for computing, scheduler allocates public
cloud. Cost Estimation Service services minimum-cost instance for the
allocation.

Additionally, adaptive scheduling can be performed. If delayed jobs may be
violated the deadline, which are detected by Resource Monitor, scheduler will
reschedules queuing jobs to prevent job executions of violating the deadline.
The adaptive scheduling methodology is same as initial scheduling.

4



4.2 Hybrid Resource Scheduling Service
The proposed scheduling service is based on multiple types of resources and

is categorized of three main parts
Firstly, Job profile Mgmt. module is responsible for profiling job history,

estimating execution time of job and deadline(in specific cases). In this module,
we use a statistical method, PCA(Principal Component Analysis)[3] to analyze
properties of jobs. Details about this module can be found in [4]. Resource
allocation covers initial scheduling of jobs and adaptive scheduling of
particular jobs according to both of the current resources’ status and their
deadline. In case of detecting delays on the scheduled jobs, it performs
adaptive scheduling of the jobs which only hard to finish within their own
deadline. This module serves the allocation services in this order; grid, private
and then public cloud. Cost estimation module offers cost-efficient scheduling
service on the public cloud. That is, the module chooses one or more instance(s)
having minimal costs for leasing within the desired execution time.

5



4.3 Scheduling Algorithm
In this research, as mentioned before, we target HTC (High Throughput Computing)

applications which is also known as BoT(Bag of Tasks)[5]. Accordingly, we assume
that an each user’s request contains one or more sub-jobs and that each request has a
stipulated maximum desired time in which all sub-jobs on the request need to be
finished. We also assume that when a request is arrived, the sub-jobs belonging to the
request are sorted in order of the estimated execution time. The proposed algorithm is
separated in three parts as the followings:

1) Initial Scheduling: For all sub-jobs of each request, schedule the jobs on the
available resource. Suppose that grid has the highest priority and public cloud
has the lowest one. The scheduler checks these resources in order of resource
priority. In each resource, each job is expected to be finished within deadline
under its estimated execution time via Job profile management module. If any
specific job(s) has risks of violating deadline (it can be inferred by sum of the
estimated execution time and current time), then scheduler will check the next
resource for scheduling the job.

2) Adaptive scheduling: For each scheduled job, Monitoring service periodically
checks delay which is due to large difference between the estimated one and
real execution time. If delay is occurred and violates deadline, it performs
adaptive scheduling of all jobs queued, not in running. The way to adaptive
schedule them is performed in the same way as the above 1).

3) Cost-efficient scheduling: In a case of schedules on public cloud (if the
deadline is violated in both grid and private cloud), we choose instance type(s)
of virtual machine which can support performance condition for the job.
Among the candidates, we lastly choose the most cost-efficient instance.

6



5. Scheduling Example 
In this section, we present an example of our scheduling algorithm. This

figure shows the example of initial scheduling and adaptive scheduling. In this
example, there are two cores in grid(G1, G2) and two cores in private cloud(P1,
P2) as each bar means one core. Each part of the bar is corresponded to a sub-
job. In addition, overhead is included in public/private cloud for each job. In
case of initial scheduling (left of figure), jobs are submitted in order of job size.
We labeled sequential numbers on the sub-jobs in decreasing order of their
estimated execution time.

This schedule is achieved starting with the schedule on the left-hand side of
cores in numerical order of label numbers as shown on (a), left part of Figure 1.
In case of job#5, it is hard to finish the job execution on both of G1 and G2
within its deadline. Therefore, it scheduled on P1 instead of G1 and G2.
However, if some delays occurred, algorithm reschedules all of the queued jobs
according to deadline. As shown on (b) part of the figure, delays occur on G1
and G2, then adaptive scheduling is enacted at the point where monitoring
service recognized the delays (the dotted line on the fig.). Overall, job#9,
job#10 will be scheduled on P1.

7



6. Experiment 
To demonstrate our scheduling algorithm, we use workload of e-AIRS 2.0[6]

system for CFD [8] applications of aerodynamics running over PRAGMA[7]
grid environment. The job traces have been collected for approximately 7
months.

Using this traces, we recreated new job traces which are based on both grid
and hybrid cloud via CloudSim[9]. We use these trained data for estimating
execution time with its parameters and the details can be described in [4]. The
metric for evaluation is Deadline Miss Rate. Through the simulation, it is
expected that our algorithm will reduce the Deadline Miss Rate in comparisons
with other scheduling schemes of the related works. Besides, it is expected to
decrease total computational costs even on public clouds.

8



7. Conclusion and Future work
In this paper, we proposed a deadline-based scheduling service that maximizes efficient

utilization of both grid and hybrid cloud resources. Our scheduling service is able to increase
resource utilization by satisfying a deadline of each application, and optimize an execution time of
the application by allocating public cloud resources under control of a monitor. Besides, the
scheduling service ensures an application is finished within its deadline at minimum financial cost.

In the future, we will present evaluations of this idea and show simulations covering more types
of applications and resource configurations.

References
[1] Ramakrishnan, L., Koelbel, C., Kee, Y., Wolski, R., Nurmi, D., Gannon, D., Obertelli, G., 
YarKhan, A., Mandal, A., Huang, T.M., Thyagaraja, K., and Zagorodnov, D., VGrADS: enabling 
e-Science workflows on grids and clouds with fault tolerance, In Proceedings of SC, 2009.
[2] Comet Cloud, http://www.cometcloud.org
[3] Jolliffe, I.T. “Principal Component Analysis”, Springer Verlag. 2002.
[4] Seoyoung Kim, Jung-in Koh, Yoonhee Kim “Profile Analysis of Scientific Application Using
PCA for Cloud Computing”, Proceeding of the 2011 IEEE Seoul Section, Korea Univ., pp.79 -82,
Dec. 3, 2011.
[5] W.Cirne, et al, “Grid Computing for Bag of Tasks Applications,” Proceedings of the 3rd IFIP
Conference on E-Commerce, E-Business and E-Government, September 2003.
[6] Kim, Y.; Kim, E.-k.; Kim, J. Y.; Cho, J.-h.; Kim, C. & Cho, K. W. (2006). e-AIRS: An e-
Science Collaboration Portal for Aerospace Applications. HPCC 2006, LNCS (Lecture Note in
Computer Science), Vol.4208, 813-822, 0302-9743
[7] PRAGMA Grid and Cloud Monitoring homepage, http://pragma-goc.rockscluster.org
[8] Computational Fluid Dynamics, http://www.cfd-online.com
[9] Rodrigo N. Calheiros, et al, “CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning Algorithms, Software:
Practice and Experience(SPE)”, Vol. 41, Num.1, pp.23-50, ISSN: 0038-0644, Wiley Press, New
York, USA, January, 2011
[10] US TeraGrid, http://www.teragrid.org

9


