
Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Oltunes: Online learning-based auto-tuning system for DL inference in heterogeneous
GPU cluster

This Accepted Manuscript (AM) is a PDF file of the manuscript accepted for publication after peer review, when applicable, but
does not reflect post-acceptance improvements, or any corrections. Use of this AM is subject to the publisher's embargo period
and AM terms of use. Under no circumstances may this AM be shared or distributed under a Creative Commons or other form of
open access license, nor may it be reformatted or enhanced, whether by the Author or third parties. By using this AM (for
example, by accessing or downloading) you agree to abide by Springer Nature's terms of use for AM versions of subscription
articles: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

The Version of Record (VOR) of this article, as published and maintained by the publisher, is available online at:
https://doi.org/10.1007/s10586-025-05216-0. The VOR is the version of the article after copy-editing and typesetting, and
connected to open research data, open protocols, and open code where available. Any supplementary information can be found on
the journal website, connected to the VOR.

For research integrity purposes it is best practice to cite the published Version of Record (VOR), where available (for example,
see ICMJE’s guidelines on overlapping publications). Where users do not have access to the VOR, any citation must clearly
indicate that the reference is to an Accepted Manuscript (AM) version.

https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://doi.org/10.1007/s10586-025-05216-0

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

OLTunes: Online learning-based Auto-tuning System for DL

Inference in Heterogeneous GPU Cluster

Seoyoung Kim1, Jiwon Ha2, Yoonhee Kim1*

1Department of Computer Science, Sookmyung Women’s University, 100 Cheongpa-ro
47-gil, Seoul, 04310, South Korea.

2Department of Computer Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul, 08826, Seoul, South Korea.

*Corresponding author(s). E-mail(s): yulan@sookmyung.ac.kr;
Contributing authors: seoyoung.mennelet@sookmyung.ac.kr; jwh0245@snu.ac.kr;

Abstract

With rapid advancements in AI, GPU accelerator technology is evolving, leading to an increase in
heterogeneous computing nodes within data centers. This necessitates schedulers that can identify and
efficiently manage diverse resources to dynamically meet application demands. For latency-sensitive
tasks such as deep learning inference, imprecise GPU scheduling can cause resource interference,
degrading both application performance and overall GPU utilization. The rise of NLP and large
language models (LLMs) has heightened the focus on balancing throughput and latency. However,
dynamic loads on specific resources can lead to performance degradation due to head-of-line blocking.
Consequently, proactive resource management is essential to reduce costs while ensuring quality of
service (QoS) and maintaining energy efficiency.
This paper introduces OLTunes, a cluster-level scheduling system for deep learning inference models
that integrates streaming and batch methods to efficiently manage both online and offline models. By
leveraging FM-FTML, an online learning technique, OLTunes optimizes runtime environments and
resource allocation to meet user SLAs through prediction and optimization. It groups tasks based on
their characteristics and model variants to minimize interference, ensuring complementary affinities. It
also automatically adjusts resources and configurations to improve performance and reduce resource
fragmentation. Performance experiments on a heterogeneous GPU cluster demonstrated a 58% average
improvement in GPU utilization, up to 49% reduction in p99 tail latency, and a 61% increase in
throughput. It also achieved approximately 84.6% energy savings with a maximum accuracy loss of
4% and reduced latency-sensitive SLO violations by up to 92% compared to other baselines, ensuring
end-to-end QoS.

Keywords: Heterogeneous GPU Cluster, Online-learning, Machine Learning, Deep Learning Inference,
Resource Scheduling, Affinity-aware

1 Introduction

Artificial intelligence (AI) has recently gained sig-
nificant attention as a result of demonstrating

its potential in a variety of applications and the
rapid advancement of AI technology. AI is driving
innovative changes in traditional problem-solving
methodologies across a wide range of industries,

1

1

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

including healthcare, finance, manufacturing, and
autonomous driving. Moreover, the demand for
deep learning (DL) applications is rapidly increas-
ing, driving significant growth in research, devel-
opment, and various applications across multiple
domains As a result, the demand for technolo-
gies to develop and optimize deep learning (DL)
models is at an all-time high. To address this
demand, most companies now commonly establish
GPU data centers equipped with heterogeneous
computing resources[1]. In these heterogeneous
computing environments, an efficient scheduler is
essential for managing computing resources and
deep learning tasks, thereby enhancing computa-
tional efficiency and hardware utilization.

Deep learning applications generally consist of
two stages: training and inference. In the infer-
ence stage, deep learning applications are often
provided as online real-time services that need
to respond quickly to user requests. Online infer-
ence tasks predominantly exhibit latency-critical
(LC) characteristics, with service users expect-
ing high performance in terms of both response
time and inference accuracy. Consequently, if tasks
fail to meet the service level agreement (SLA)
or demonstrate lower-than-expected accuracy, this
situation can significantly undermine service relia-
bility and degrade the user experience. Hence, the
inference process must carefully balance latency,
accuracy, and cost.

Meanwhile, since the emergence of Chat-
GPT[39], large language models (LLMs) have
gained radical popularity, leading to a surge in
demand for LLM inference services. However,
these LLM-based inference services are not pro-
vided as traditional online inference services sensi-
tive to latency, but rather as offline inference ser-
vices. Such tasks have the nature of throughput-
oriented (TO) work, where optimization focused
on throughput is prioritized. These two methods
can be selectively used depending on the char-
acteristics and needs of the system, but recently,
various services utilizing AI have been appropri-
ately mixing the two inference methods. For exam-
ple, Netflix uses an online inference method that
corresponds to LC tasks for real-time video recom-
mendations, while it employs an offline inference
method that corresponds to TO tasks for improv-
ing recommendation algorithms or movie classifi-
cations. In other words, scheduling and resource
management techniques must support both forms

of inference, optimizing resources based on their
characteristics. To provide optimized inference
service performance, it is necessary to carefully
adjust H/W(e.g., GPU type, GPU memory, etc.)
and S/W parameters (e.g., variant, batch size,
etc.). This greatly improves the efficiency of appli-
cations and helps reduce data center operating
costs. However, having service users set or change
runtime parameters themselves is a complex and
time-consuming task. Additionally, providing the
optimal combination of H/W and S/W parame-
ters requires a significant amount of computation,
considering the allocation constraints on a het-
erogeneous GPU cluster and unexpected events.
In particular, it becomes a more challenging task
when it comes to providing real-time services.

From the perspective of the data center, it is
challenging to unconditionally provide the best
resources for all user demands. Thus, in addi-
tion to addressing client-side SLA requirements,
efficient resource management and load balanc-
ing across computing resources play a critical role
in ensuring service stability and sustainability.
As AI workloads grow in scale and complexity,
the demand for better resource utilization intensi-
fies, placing data centers under increasing pressure
to optimize operations and reduce costs. Fur-
thermore, to mitigate the growing environmental
impact, data centers have been actively pursu-
ing carbon emission reductions [29, 36]. The rapid
adoption of AI technologies has led to over a 200%
increase in data center workloads in recent years
[1, 7], and this trend shows no signs of slowing
down. Since carbon emissions are closely tied to
computation time and resource usage, balancing
the load among computing resources is essential to
minimize energy consumption and enhance overall
efficiency.

Although various prior studies have been con-
ducted to provide an inference service that guar-
antees optimal performance for similar objectives
[8, 23, 42, 45, 51], most studies have focused on
online inference services, emphasizing optimiza-
tion mainly from the user’s perspective. Moreover,
few studies have considered optimization from the
system or data center perspective, highlighting the
need for a more holistic approach that balances
user demands with efficient resource manage-
ment and scalability. In response to the increasing
demand for offline inference services, there is a
need for a scheduling design that simultaneously

2

2

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

analyzes the characteristics of both online and
offline inference, while also considering optimiza-
tions from the data center perspective, thereby
providing a “hybrid” service system. In a data cen-
ter composed of a heterogeneous cluster, orches-
trators such as Kubernetes[4, 50] and Mesos[2] are
used, offering a best-effort scheduling method that
provides generalized and limited features, but does
not offer fine-grained optimization capabilities.

Therefore, this paper proposes an online
learning-based scheduling framework for hetero-
geneous GPU clusters designed for deep learning
inference services. The framework offers auto-
mated tuning for both client-side and system-wide
resource optimization. On the client side, the
objective is to deliver an optimized container
environment that ensures compliance with the
user’s Service-Level Agreement (SLA), providing
high-performance and cost-efficient services. From
the system operator’s perspective, the framework
aims to minimize interference and fragmenta-
tion by incorporating affinity-aware co-scheduling
strategies, ultimately reducing operational costs
and improving overall resource efficiency.

The main contributions of this paper can be
summarized as follows:

• Analysis of the characteristics of two inference
tasks: online and offline.

• Provision of auto-tuning for the container run-
time environment to meet SLO (Service Level
Objective) requirements.

• Design of a scheduling system based on online
learning-based prediction for a hybrid (online +
offline) inference service.

The primary objective of this paper is to pro-
pose a system that enables data center operators
to optimize resource utilization while delivering
diverse high-performance inference services with
assured Quality of Service (QoS).

This paper is structured as follows. Section 2
explains the background knowledge and motiva-
tion, presenting various preliminary experiments
and their results. Section 3 discusses in detail the
structure of the proposed scheduling system, the
underlying prediction and tuning model, and the
scheduling method. Section 4 discusses the results
of a performance evaluation. Section 5 reviews
related works. Finally, Section 6 discusses the key
findings of this work and Section 7 presents the
conclusions.

2 Background and
Motivations

To provide scheduling for inference services, it
is important to understand the characteristics of
inference tasks. First, we will examine the charac-
teristics of the inference model and address related
issues.

2.1 Analyzing DL Inference and
Resource Usage

Inference is the process by which a trained
machine learning model derives conclusions or pre-
dictions from new data. It is primarily applied
to real-time data and provided as an online ser-
vice. Therefore, inference tasks often need to meet
strict latency requirements (i.e., SLA) to respond
to various queries in real time. Each inference
request can be executed individually, balancing
the user-defined performance preferences (latency,
accuracy) with resource utilization, or processed
in batches to handle multiple requests simul-
taneously. The common characteristics of these
inference tasks and the considerations for schedul-
ing them are summarized below.
Constraints of Applications Online inference
services generally require strict latency guaran-
tees to preserve user experience and must deliver
rapid responses (e.g., generating recommendations
within 100 ms to prevent user drop-off)[8]. These
tasks primarily involve latency-critical operations,
and maintaining high accuracy is equally cru-
cial, and such tasks are referred to as latency-
critical(LC) tasks. Accuracy is particularly impor-
tant in sectors such as healthcare and finance,
where errors can lead to significant consequences.
Thus, minimizing accuracy degradation while
achieving rapid response times is essential. Con-
versely, large language models (LLMs) performing
offline inference are typically referred to as batch
inference tasks. These tasks must adhere to SLOs
within specified timeframes (ranging from several
minutes to hours), making throughput the pri-
mary concern, and such tasks are described as
throughput-oriented(TO) tasks.
Resource Utilization Patterns Unlike train-
ing tasks, inference tasks generally require
sub-second response times and consume fewer
resources. Most inference tasks exhibit consis-
tent execution flows and predictable execution

3

3

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

times for fixed query inputs. When the input
size remains constant, resource usage and exe-
cution duration can be anticipated, enabling
fine-grained scheduling optimization[55]. However,
average GPU resource consumption per inference
task is relatively low, contributing to underuti-
lization of GPU resources[45]. In contrast, large
language models (LLMs), which have recently
garnered significant attention in AI, present dif-
ferent requirements than conventional inference
tasks. LLMs exhibit higher computational com-
plexity and consume substantially more memory
than other models. As a result, unlike stan-
dard inference workloads delivered as real-time
online services, LLMs are primarily deployed for
offline inference. Offline inference is conducted in
batches, differing from online inference that imme-
diately responds to individual requests in real
time. Additionally, as real-time responsiveness is
less critical, offline inference allows for greater
latency flexibility.
Considerations for Resource Sharing Tra-
ditional inference services (e.g., image classifi-
cation and object detection) primarily involve
the forward propagation stage and typically con-
sume fewer GPU resources, resulting in low GPU
utilization and reduced cost efficiency for infer-
ence tasks[22, 57]. The challenge of GPU under-
utilization has become increasingly pronounced
with rapid H/W advancements[45, 32]. Simultane-
ously executing multiple inference tasks offers sig-
nificant advantages by minimizing request latency
and maximizing resource utilization. However,
despite the benefits of increased resource utiliza-
tion and system throughput, GPU-sharing tech-
nologies introduce potential difficulties in meeting
latency requirements due to interference and the
added complexity of concurrent task execution.
Thus, when adopting GPU-sharing techniques, it
is essential to account for the affinity and inter-
ference among co-executing applications. Several
studies have explored improving resource utiliza-
tion in modern architectures by leveraging tempo-
ral resource sharing (e.g., NVIDIA Multi-Process
Service (MPS)[34]) and spatial resource sharing
(e.g., NVIDIA Multi-Instance GPU (MIG)[33])
technologies[11, 17, 44, 49]. Nevertheless, issues
related to resource utilization persist.
Resource Utilization Challenges in LLMs
Despite the high GPU and memory demands

of large language models (LLMs), low resource
utilization remains a persistent issue[16]. Fur-
thermore, sharing tasks that require significant
resources is challenging, indicating that resource
sharing alone is insufficient to resolve these ineffi-
ciencies. As a result, several critical factors must
be considered: (1) Users or developers conducting
inference tasks may misinterpret the application’s
resource requirements, potentially leading to over-
provisioning to meet performance objectives (e.g.,
latency or throughput). (2) In LLMs, input
sequence lengths are dynamic and difficult to pre-
dict, resulting in inefficient resource allocation and
underutilization of reserved resources. Moreover,
the memory requirements of batch inference tasks
vary significantly with request length, contribut-
ing to frequent Out-Of-Memory (OOM) errors. In
such cases, task scheduling order becomes crucial,
directly impacting overall system throughput[59].
When numerous long requests are prioritized,
head-of-line blocking may occur, causing a spike in
memory usage. Consequently, other requests may
experience delays or remain unprocessed due to
insufficient memory. To mitigate this, accurately
predicting performance based on request length
and assigning appropriate priorities is essential to
ensure fair job allocation.

As mentioned earlier, efficient scheduling is
required to enable the concurrent execution of
multiple tasks on a single GPU. However, dis-
tributed deployment across multiple GPUs is also
necessary to maximize throughput while adher-
ing to latency constraints. This underscores the
need for diverse scheduling strategies tailored to
application characteristics and balanced resource
provisioning.

Based on the aforementioned characteristics,
this paper highlights the following scheduling
objectives:

• Balanced task tuning that addresses the trade-
offs between latency, throughput, and cost

• Task allocation that ensures SLO compliance
(LC vs. TO) while maintaining system utiliza-
tion balance

• Interference-aware scheduling that considers job
characteristics (compute- or memory-intensive)

4

4

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Kernel Pairs Sequential Collocated SpeedUp

Conv2d-Conv2d 2.3ms 2.35ms 0.98x
TokenGen-TokenGen 1.6ms 1.45ms 1.10x
Conv2d-TokenGen 1.9ms 1.3ms 1.46x

Table 1: Experiment results of collocating
Compute-intensive with Memory-intensive kernels

2.2 Importance and Analysis of
Affinity

As kernels from a single DNN task run sequen-
tially due to data dependencies between them,
when one kernel fully utilizes GPU computation or
memory bandwidth, it often results in other GPU
resources being temporarily underutilized. There-
fore, as mentioned in the previous section, we
need to increase resource utilization by co-locating
kernels. In this case, co-locating the kernels that
have complementary resource demands or scale
can reduce performance interference between con-
current applications. Although data dependencies
constrain overlapping kernel execution within a
single DNN task, we can co-locate kernels from
different tasks or containers in a single GPU.
Thus, when we refer to complementary character-
istics as affinity, we consider the affinity between
co-running tasks to be an essential element in
scheduling. It is common in various studies[3, 20]
to meet affinity and reduce interference through
complementary allocation based on the resource
demands of applications. After considering the
robustness, it is common to find the optimal appli-
cation pairs that minimize interference, as seen
in previous studies, by examining the ratio of
solo-execution time to colocation-execution time.
However, in the inference service, considering the
latency-sensitive characteristics, it is inefficient to
spend additional time on calculations to provide a
slightly more optimal configuration for each task.
Therefore, in this study, only complementarity is
considered to minimize interference in inference
tasks, and the following characteristics are taken
into account for this purpose. The affinity between
applications can be evaluated from the following
two perspectives.

2.2.1 Workload Characteristics

In this section, we classify the kernels of the infer-
ence model discussed in this paper into compute-
intensive(CI), memory-intensive(MI) types based
on their characteristics, and present a performance
comparison according to these combinations. For
example, Convolution 2D, which is primarily used
in image models, is the compute-intensive ker-
nel, and Token Generation, which is mainly used
in LLMs, is the memory-intensive kernel. Table
1 compares the performance of tasks based on
kernel pairs, comparing the sequential execution
time, concurrent execution time, and the result-
ing performance improvement for each kernel pair.
In the case of compute-compute kernel pairs,
there is almost no performance improvement when
executed concurrently compared to sequential exe-
cution (0.98 times), which is due to both kernels
heavily utilizing computing resources, leading to
resource contention. On the other hand, in the
case of memory-memory kernel pairs, a perfor-
mance improvement of 1.10 times is observed dur-
ing simultaneous execution. The compute-memory
kernel pairs demonstrate a 1.46x performance
enhancement during concurrent execution, pri-
marily because the two kernels utilize different
resources, leading to less resource competition and
resulting in a performance advantage.

The characteristics of the model are deter-
mined through the profiling module discussed in
Section 3. By utilizing the Nvidia Night Com-
pute profiling tool [35], we calculate the ratio
of kernels in the target model where Compute

Throughput and Memory Throughput (or memory
bandwidth utilization) each exceed 50%, in order
to assess whether the model is Compute-intensive
or Memory-intensive. The exact equation is as
follows:

kernel# with Compute throughput ≥ 50

kernel# with Memory throughput ≥ 50
(1)

Equation 1 indicates the relative number of
compute-intensive kernels and memory-intensive
kernels within the application. If the result of
Equation 1 for the application is 1.2 or higher, it
is classified as compute-intensive; otherwise, it is
classified as memory-intensive. However, if either
the numerator or the denominator is 0, only the
number of non-zero kernels should be considered.

5

5

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

2.2.2 Model Variant

The basic structure of a deep learning model
contains several variants, adjusted to fit specific
goals or datasets. Although they fundamentally
share the same basic structure, they often vary
in the number of layers or the number of param-
eters [20, 21]. There are variants ranging from
lightweight ones for real-time inference, such as
those used in mobile applications, to large-scale
variants. The smaller the variant, the more it can
provide real-time services, utilizing fewer param-
eters and computational resources, which results
in lower memory consumption and computing
resource usage. However, this comes at the cost of
comparatively diminished quality (accuracy) rela-
tive to other variants. In the case of large variants,
they provide relatively high-quality, that is, highly
accurate results, but they require significantly
more parameters and computational resources.
Such variants already exist for each model (for
instance, in the case of ResNet[14], there are
lightweight versions like ResNet18 and ResNet34,
alongside larger variants such as ResNet50, 101,
and 152) and can be developed through hyperpa-
rameter tuning. The Clover system proposed by
Li et al. [23] demonstrated that mixing low and
high-quality variants among the various models
maintained high accuracy while also contribut-
ing to a reduction in carbon emissions. Based on
this idea, this work conducted experiments with
variants of opposing qualities on the same infer-
ence model to compare their throughput. Figure 1
shows a comparison of performance results by gen-
erating variants through various combinations of
YOLOv5[18] and ResNet. As a result, the greater
the difference in quality between the variants com-
bined, the higher the performance improvement
observed (Figure 1a).

Figure 1b calculates the amount of carbon
emissions by referencing the method from the
work[23] where indirect estimation based on com-
puting workload is adopted. The carbon emis-
sions were calculated based on the formula: Car-
bon Emissions = Energy Consumption * Carbon
Emission Factor, where Energy Consumption is
defined as the product of GPU utilization, GPU
power consumption, and the duration of usage.
Hence, the reduction in carbon emissions was
estimated based on the decrease in resource uti-
lization and execution time. This demonstrates

(a) Comparison of Normalized Throughput

(b) Accuracy on Carbon Emission Reduction across
Quality Combination

Fig. 1: Comparison of Performance and Accuracy,
Carbon Emission Reduction between Single Qual-
ity and Mixed-qualities

that running the mixed variant has almost no
impact on accuracy compared to performing the
single variant, while achieving high accuracy and
significantly reducing carbon emissions. Based on
these results, this study considers the combination
of variants under affinity conditions and applies
the combination of tasks with significant quality
differences to co-running scheduling for resource
sharing, e.g., low and high-quality combination.
The above experiment(Fig. 1b) has shown that
the greater the difference in quality between the
combined variants, the more it helps reduce car-
bon emissions. However, in this paper, the focus
is on applying the method of mixing variants to
task allocation to contribute to such results, rather
than addressing the specific degree of carbon emis-
sion reduction in detail. Unfortunately, the exact
degree of carbon emissions is not covered in this
paper.

6

6

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Fig. 2: Performance Comparison by GPU Type for different models: latency(left), throughput (right)
(median normalized)

2.3 H/W and S/W Parameter
Tuning for Performance
Optimization

This section explains the necessity of tuning
parameters, such as resource and runtime settings
in inference services, and how they affect their
performance. It also empirically demonstrates
the configurations of related tuning parameters
through experiments.

2.3.1 The Necessity of Tuning

It is common for inference services to run in
container form. Therefore, optimizing container-
level configuration alone can significantly improve
inference performance and also reduce resource
provisioning costs. However, most studies focus
on tuning the model itself (adjusting parame-
ters, switching variants, or changing frameworks)
rather than tuning the container environment[42,
52], providing improvements in inference service
performance. Tuning the model itself offers users
optimized performance results, but there is a pos-
sibility of variants that may not yield the desired
outcomes. Moreover, the developer must provide
the model variant in the form of a container,
which takes additional time to configure the opti-
mal container. Providing an optimized container
environment through optimized resource alloca-
tion can improve performance by over 10x without
significantly affecting the results[51].

It is crucial to consider which parameters are
necessary to provide an optimized container envi-
ronment. Container-level tuning is possible from
both H/W and S/W perspectives, and the factors
that can directly impact performance are as fol-
lows. From a H/W perspective, we consider GPU

memory, GPU type, and the usage of Stream-
ing Multiprocessor (SM) including the sharing
ratio when sharing is used. From a S/W perspec-
tive, we consider the batch size. The number of
GPUs can be a consideration, but in the case
of inference applications, primarily using one or
fewer GPUs is common, except for certain specific
domains. Therefore, the number of SMs is taken
into account.

2.3.2 H/W Tuning

GPU Type With the rapid advancement of tech-
nology, various types of GPU accelerators are
being developed at a fast pace, each exhibit-
ing strengths and weaknesses in terms of their
characteristics. The goals differ depending on the
domain of the DL model, so the suitable GPU type
varies for each domain. For example, as shown in
Figure 2, the A100 demonstrates the best perfor-
mance in terms of throughput and latency across
all models, with superior memory and frequency.
However, as indicated in Table 2, the cost per
hour is very high (2x compared to the A30 and
4x compared to the RTX 4090), and the energy
efficiency is low (1/3x compared to the maximum
value). On the contrary, the RTX 4090 offers a low
cost per hour and high energy efficiency, providing
reasonable performance, especially for computer
vision models. In the case of the A30, it offers
lower performance (latency) compared to the two
GPUs in terms of speed, but its energy efficiency
is good, and it provides MIG, which can increase
throughput. Therefore, it is suitable for models
like Bert-base[10] when dealing with small-scale
datasets, or computer vision models when there is
sufficient deadline flexibility. In this way, selecting
the optimal GPU type considering the trade-off

7

7

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

GPU Types $/hour Energy Efficiency

A100 1.2 19.5TFLOPS/250W = 0.0624
A30 0.6 10.3TFLOPS*/165W =0.04876
RTX4090 0.394 82.6TFLOPS*/450W =0.1836

Table 2: Cost/time & Power consumption by
GPU type (based on FP32)[38, 37]

of Performance-Cost-Energy efficiency is essential
for users and the underlying resources. Through
this heuristic analysis, selecting the optimal GPU
type becomes easy. However, in real-time service,
the demand for resources, the environment, and
the resulting performance continuously change,
so predetermined heuristic rules cannot guaran-
tee optimal choices in all situations. Therefore,
an online-based analysis and optimization task is
needed to select a balanced optimal GPU type for
the inference service.

GPU Memory For inference services, GPU
memory occupancy methods can be categorized
into two types based on the model’s characteris-
tics: static and dynamic memory usage. Typically,
Vision models, for example, exhibit consistent
GPU memory utilization patterns during execu-
tion, provided that sufficient memory is allocated
to load the model and input images. However,
some language models in NLP are likely to require
additional memory allocation beyond the initial
memory requirements, depending on the parame-
ter size or sequence size during the intermediate
processes. Meeting this requirement is essential to
achieve optimal throughput results, as shown in
Figure 3a. The amount of GPU memory used can
vary depending on the target resource and avail-
able GPU memory size. The relationship between
GPU memory size and performance improvement
is not always linear; instead, performance gains
plateau beyond a certain point (knee point),
and this threshold varies across different models.
Figure 3b shows the performance changes accord-
ing to the increase in memory by application.
As seen in this result, it was found that certain
applications do not show performance improve-
ment even when additional memory is provided
after a certain level of memory increase. If we
provide optimal resources that match the model
and its parameters based on the performance bot-
tleneck threshold for each application, we can

(a) GPU memory utilization pat-
tern by model

(b) Performance according to
GPU Memory size

Fig. 3: Model Performance Comparison by Mem-
ory

maximize efficiency in terms of both performance
and resource utilization.

SM Usage Ratio As discussed in Section 2.1,
it is common to share GPUs for DL workloads
using either spatial or temporal methods. When
using temporal sharing technologies (e.g., MPS),
a fully isolated environment is not provided,
which can lead to certain applications preempt-
ing specific resources more than others, depending
on the characteristics of the concurrently run-
ning applications. For this reason, as discussed
in Section 2.2, scheduling that considers affin-
ity is performed. However, contention for com-
pute resources cannot be completely avoided even
among tasks with high affinity. By determining the
ratio of streaming multiprocessors (SMs) allocated
for sharing based on the computational load of
each task, resources can be utilized more efficiently
between tasks compared to when the ratio is not
specified [6]. Figure 4 compares the performance of
two application tasks with complementary charac-
teristics(high affinity) simultaneously on a single
GPU, while varying the MPS resource allocation
ratio.

8

8

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Fig. 4: Performance Comparison between models by MPS ratio: latency (left) and throughput (right)
(median normalized)

In the case of compute-intensive models like
BERT and GPT-2, setting the ratio based on pre-
dictions showed a greater performance improve-
ment than the default ratio setting, with a perfor-
mance difference of up to 50%.

However, in the case of some LLM models,
according to [16], extreme SM is used in certain
intervals. If the SM usage rate is fixed in this
case, it can actually lead to decreased resource
utilization efficiency. Therefore, it is necessary to
analyze and find the relationship between the per-
formance and the usage rate of SM according to
the application, and to apply tuning accordingly.

2.3.3 S/W Tuning

Batch Size Batching jobs are an effective
method to increase throughput because they allow
better utilization of the GPU cores in parallel.
However, increasing the batch size is not always
advantageous for all models[42]. Figure 5 depicts
performance degradation with a large batch size
due to their input size exceeding the GPU memory
capacity.

Increasing the batch size can improve through-
put; however, it also raises the computing load,
which may significantly extend batch process-
ing time and substantially increase latency. In
Figure 5b, it can be observed that latency itself
increases in proportion to the batch size. There-
fore, latency-critical tasks require careful tuning of
the batch size within the limits to avoid violating
the SLO. Similar to GPU memory, it is crucial to
identify an optimal tuning point for the batch size
considering the specific characteristics and objec-
tives of the target application, rather than simply
increasing the batch size indiscriminately.

(a) Relationship between Batch size and
Throughput

(b) Relationship between Batch size and
Latency

Fig. 5: Performance Comparisons by Batch size

Inter-relationship As demonstrated by the
relationship between application performance and
the tuning factors mentioned earlier, it was found
that simply increasing or parallelizing the avail-
able resources does not necessarily guarantee
performance improvement. It can rather cause
a decrease in performance, and it can also be
understood that the knee point differs for each
application. Thresholds exist that can cause per-
formance bottlenecks depending on each element,
but the thresholds for combined features vary

9

9

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

(a) ResNet (b) YOLOv5

Fig. 6: The inter-relationship between the Batch
size, GPU memory, and Latency(brighter colors
indicate higher throughput)

between applications. Figure 6 shows how the per-
formance of domain-specific representative appli-
cations ResNet, YOLOv5 varies according to the
combinations of H/W and S/W properties men-
tioned earlier. It shows that not only does per-
formance vary according to each parameter, but
the interrelationships between parameters also dif-
fer depending on the application. In Figure 6a,
which shows the results executed on ResNet, the
batch size steadily increases up to 128, but when
it exceeds 128, the throughput decreases. Further-
more, when the batch size is 16 or less, throughput
increases with the GPU memory size. However,
when the batch size exceeds 32, there is no dis-
cernable performance difference attributable to
the amount of memory. It is evident that simply
increasing the batch size is sufficient to main-
tain optimal performance. It can be observed that
the other two models also show different per-
formance improvement trends. This relationship
not only aids in performance prediction but also
serves as an important indicator that reveals the
optimal tuning point, which contributes to per-
formance improvement under the best conditions.
The FM (Factorization Machines)[41] based on
this paper can quickly capture the relationships
between features and predict performance based
on these interrelationships, making the tuning
process relatively easy.

2.4 Ecological Resource
Consumption

Recently, due to rapid climate change, ecological
computing has emerged as a major issue. Accord-
ingly, data centers are making various efforts
to improve energy efficiency and reduce carbon

(a) Comparison of power consumption
between GPU and CPU

(b) Relationship between SM util. and power con-
sumption[30]

Fig. 7: Performance Comparisons by Batch size

emissions from an environmental perspective[36].
Figure 7a shows the total power consumption of
the CPU and GPU[16] across five servers. Accord-
ing to the results, the GPU Node consumes up to
four times more power than the CPU. Therefore,
it is increasingly important to identify the fac-
tors contributing to increased power consumption
in GPU servers and to reduce them. Addition-
ally, it can be observed that even in a completely
idle state with a workload of 0, each server con-
sumes 60W, totaling 300W of power. Therefore,
it is preferable to distribute tasks overall to min-
imize idle resources rather than leaving resources
unused.

When the amount of computation is appro-
priate, Dynamic Voltage and Frequency Scaling
(DVFS) can achieve optimal efficiency, but main-
taining computation for excessively long periods
can lead to a decrease in efficiency. If many calcu-
lations are performed at once and this process is
repeated frequently, it can often lead to overload
in the system, resulting in a significant amount of
heat generation. As a result, the cooling system

10

10

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

also consumes a significant amount of additional
power. The relationship between utilization and
power consumption for the entire SM can be
confirmed through the single node in Figure 7b.
More than 90% of the time, intermittent and
a few peak points have little impact on power
consumption, but when SM utilization is main-
tained above 90% for more than 7-10 seconds, the
power consumption curve shows a sharp increase
[30]. Since carbon emissions are directly related
to power consumption, balanced load balancing
among computing resources is essential to reduce
them. In other words, it is important to distribute
the load evenly so that the computing node does
not fall into an idle or overload state. This helps
to avoid frequent peak loads and maintain a bal-
anced resource utilization. This can help reduce
overall carbon emissions.

In the following Section 3, we will discuss
OLTunes, which was designed based on various
experiments and findings conducted earlier, in
detail.

3 System Design

This paper proposes OLTunes, an auto-tuning sys-
tem for machine learning inference services on
heterogeneous GPU clusters. This section intro-
duces the main system design of OLTunes and
provides a detailed explanation of its key compo-
nents. The online-based prediction method used
for the proposed scheduling is also discussed in
detail and how it was applied in actual modeling
is explained.

3.1 Architecture

Figure 8 shows the overall system design. This sys-
tem targets heterogeneous GPU clusters orches-
trated through Kubernetes[50, 4]. OLTunes is
largely composed of three main parts based on
functionality: Profiler, Online Predictor & Auto-
tuner, and Scheduler. The basic service execution
process can be summarized as follows. When the
user requests an inference task, the Scheduler will
receive real-time performance prediction infor-
mation and optimal container information from
the Online Predictor & Auto-tuner based on the
parsed information and the profiled data. The
Scheduler makes the final scheduling decisions

Fig. 8: System Design of OLTunes

based on predicted information and the monitor-
ing data from each node, optimizing container
settings through Kubernetes’ Scheduler Module.

3.2 Profiler

Profiler is composed of Job Parser, Job Profiler,
Resource Profiler, and App Profiler.

Job Parser parses the requested user tasks and
helps quickly utilize the necessary information in
other modules. Job Profiler analyzes the execution
history of previously performed tasks. It collects
minimal data on newly registered models by eval-
uating them on available GPUs and storing the
results. This process is conducted offline. Resource
Profiler manages detailed information about the
target GPU or newly registered resources, e.g.,
GPU type, memory capacity, SM count, Thermal
Design Power(TDP), memory bandwidth, L1/L2
cache speed, and operates offline. This information
is used for prediction, optimization, and tuning.
App Profiler performs pre-profiling for the tar-
get or newly registered application and analyzes
its characteristics (compute/memory intensity).
This profiling is conducted offline using the Nvidia
Computing Profiler [35]. The characteristics are
determined by the formula in Equation 1, based
on the profiling results.

3.3 Online Predictor and
Auto-tuner

The Online Predictor and Auto-tuner pro-
vide accurate and rapid performance prediction
information about available resources for inference
tasks. It also provides tuning information required

11

11

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

for an optimal runtime environment that meets
the performance requirements of the user SLO. It
is composed of four modules. First, it transforms
the profiling information into feature vectors using
the FM (Factorization Machine) module, based
on the pre-execution information provided by
the Profiler. This feature vector is combined
with the minimal information of incoming new
requests. Performance predictions regarding avail-
able resources are made by the FTRL-Proximal
Module, which recommends the optimal runtime
configuration through the optimization process.
All of these processes will be carried out in real
time. The Auto-tuner retrieves optimal perfor-
mance and resource information for turning based
on task characteristics and user requirements,
ultimately selecting the final node and runtime
details. Based on that information, tuning is per-
formed for the task during scheduling, and the
appropriate runtime environment information is
updated. The Evaluator assesses the error rate
by comparing the actual performance with the
predicted performance after the execution of the
task. If the error rate exceeds θ, it quickly per-
forms re-training based on the latest data to
update the parameters.

To provide an optimal runtime environment
and tuning information for inference tasks, fast
and accurate real-time predictions for incoming
tasks are required. However, most studies pre-
dict performance through offline analysis, which
requires large-scale operational data. As a result,
if the available data is insufficient, it can sig-
nificantly impact initial modeling and accuracy.
This paper addresses these limitations by intro-
ducing online scheduling, which delivers accurate
and fast predictions for incoming inference tasks
with minimal information.

In the next section, the models utilized for
online prediction and tuning are examined in
detail.

3.3.1 FM-FTML-based Prediction
Model

The FM-FTML[48] algorithm was used for the
online prediction and optimization model. This
method combines Factorization Machine (FM)
and Follow-The-Regularized-Leader (FTRL)-
Proximal. In this paper, FM was used for
modeling, and the FTRL-Proximal algorithm

was used to learn the modeled data in an online
manner.

Factorization Machines (FM) were first intro-
duced by Steffen Rendle [41]. This FM model can
estimate all feature interactions, even in cases of
extreme data sparsity. FMs possess a versatile
nature, allowing them to replicate various factor-
ization models simply through feature engineering
with low computing complexity. This method (dif-
ferent from Linear Regression) ensures that all
interactions between pairs of features are modeled
using factorized interaction parameters.

In particular, the FM method has strengths
in modeling high-dimensional interactions. Even
if the number of features increases, the computa-
tional complexity increases linearly (O(kn), where
n is the number of features) because it uses a
method of one-dimensional representation. In pre-
vious studies, matrix-based feature vectors were
primarily used, or tree-based methods such as
Random Forest [47] and Gradient Boosting [31]
were mainly employed. This makes it inappro-
priate to provide as an online service, as the
computational complexity increases exponentially
with the number of features, requiring longer
training time. Moreover, FM has the significant
advantage of being able to quickly capture com-
plex relationships with minimal data. Using this
method, each set of regression tasks is defined to
have feature vectors, X = {x1, x2, . . . , xm}, and
each xi, for example, can be composed of xi =
[ai, bi, Ii,..., gi, ci] based on the variables in Table 3.
The goal is to estimate a function which, when
provided with as the input, can correctly predict
the corresponding target. For the input vector
xi, FM predicts the result using the following
equation 2.

ŷ(xi) = w0+

n∑
j=1

wjxi,j+

n∑
j=1

n∑
k=j+1

xi,jxi,k

m∑
f=1

vj,fvk,f

(2)
where w0 is global bias, w ∈ Rn are the weights
for feature vector (xi ∀i), V ∈ Rn×m is the weight
matrix for feature vector combination. m refers
the number of dimensions of the factorization
(number of data). Therefore, its complexity of
computation is O(nm).

Whether the parameter of the FM model is
optimal(accuracy of prediction) is evaluated using
a loss function (l). Each parameter is trained by

12

12

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

applying the values in the set of observed values,
S, to the loss function and minimizing their sum.

For regression, the least-square loss is used,
which is expressed as follows:

l(ŷ(xi), yi) = (ŷ(xi)− yi)
2 (3)

This paper performed modeling using the
Bi-FM method, referencing the improved
approach [56], as prediction and optimization are
required for two objectives. Based on the model
defined above, it is common to train the data and
derive results using methods such as stochastic
gradient descent (SGD), alternating least squares
(ALS), and Markov Chain Monte Carlo (MCMC).
However, these methods require a vast amount
of data to be used for training. In general, infer-
ence tasks tend to be requested in a streaming
manner, requiring immediate job scheduling. In
traditional offline learning, FM models need to
be retrained every time a new request arrives,
resulting in significant computational overhead.
This paper utilizes the Follow-The-Regularized-
Leader (FTRL)[26] to tackle this challenge, as
it is a validated and effective method for online
learning in production settings. FTRL employs a
distinct learning rate for each feature, utilizing
the adaptive learning rate approach that modifies
the learning rate according to the magnitude of
the preceding gradient. Consequently, training is
optimized by minimizing updates for frequently
occurring features while enhancing updates for
infrequently occurring features. This paper trains
the parameters modeled with FM using the
FTRL-Proximal method in an online manner.
The parameter learning method using FTRL is
described below. The overall process is illustrated
in Algorithm 1.

It largely consists of three steps: 1) Gradient
accumulation, 2) Adaptive learning rate, and 3)
Updating parameters (using Proximal term).

In step 1, gradient accumulation, all gradi-
ents(vectors representing the slope and direction
of the function) up to the current point are accu-
mulated and stored(line 4, zj is the accumulated
gradient, and gj(t) is the gradient at time t). In
step 2, the sum of the squares of the gradients is
used to adjust the learning rate for each parameter
(line 6, nj is the squared value of the accumu-
lated gradient for parameter j) When updating

Algorithm 1: FTRL for Factorization
Machine (FM)

Input: Hyperparameters η, ζ, λ1, λ2 > 0
Data: Initialize zj = 0,nj = 0,w = 0 for

all j
1 for t = 1 to T do
2 Receive gradient gj(t) at time t;
3 /* Gradient Accumulation: Update

accumulated gradient */

4 zj ← zj + gj(t);
5 /* Adaptive Learning Rate:

Update adaptive learning rate

*/

6 nj ← nj + gj(t)
2;

7 /* Proximal Term: Update

parameter wj */

8 if |zj | ≤ λ1 then
9 wj ← 0;

10 else

11 wj ← − zj−sgn(zj)λ1

(ζ+
√
nj)/η+λ2

;

12 Make prediction with updated wj ;

the model’s weights, the size of each step is deter-
mined by the learning rate. If the learning rate
is too large, it overshoots the optimal value; if
it is too small, the learning process slows down,
which also affects prediction speed. In step 3, the
Proximal term is used to update each parame-
ter. The update follows the formula in line 8-11.
Here, λ1 and λ2 are the L1 and L2 regularization
hyperparameters, respectively. In line 11, each
hyperparameter is used for L1 and L2 regulariza-
tion, η is a parameter for learning rate adjustment,
and ζ is a parameter for stability. sgn(x) denotes
the signum function, which returns −1 if x < 0, 0
if x = 0, and 1 if x > 0.

3.3.2 Prediction Modeling

Our solution devises an online approach that
requires little training data, works across various
scenarios, and is effective. The FTRL-Proximal
method is particularly useful when dealing with
sparse feature vectors. This is because the model
updates the weights for some feature values while
keeping others at 0 during the learning process.
This is referred to as L1 regularization(λ1 serves
this purpose in Algorithm 1). Therefore, as indi-
cated in the example(Table 3), some tasks do

13

13

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Candidate Values Data Type

Application (a) Models in Table 6 One-Hot Encoding (Categorical Data)
Batch size(b) 1, 4, 8, 16, 32, 64, 128, 256 One-Hot Encoding (Categorical Data)
Input(Seq) size (I) 0 < i <= 1280 Continuous Data
Parameter size (p) 0 < p <= 15B Continuous Data
GPU Memory used (m1) m = 2k, k ∈ N, 0 < m <= 40 One-Hot Encoding (Categorical Data)
GPU Memory total (m2) m = 2k, k ∈ N, 0 < m <= 40 One-Hot Encoding (Categorical Data)
GPU Type (g) A100, A30, GTX4090 One-Hot Encoding (Categorical Data)
SM (c) c = 5k, k ∈ N, 1 < c <= 100 One-Hot Encoding (Categorical Data)

Table 3: Example input data

not require features related to a single parameter
count, and certain data can focus on the impor-
tant features of the application for prediction and
optimization, even without batch size information.
Furthermore, by restricting the magnitude of the
weights through L2 regularization(line 11) it pre-
vents the model from excessive complexity and
sensitivity to data noise. In other words, it helps
ensure that specific weights do not take on exces-
sively large values and that the model generalizes
well to new data.

By applying the previously explained FM-
FTRL method, we can reveal how each infer-
ence task affects latency and throughput under
different running conditions and parameters on
various resources. This paper assumes that when
a new resource or model is registered, at least
a small amount of historical execution data
must exist for the inference models executed on
the target resource. In addition, using this, we
train the model through the process described
in Section 3.3.1. The targets for prediction
are latency(ŷ1i) and throughput(ŷ2i). The feature
vector(xi) used for analysis consists of the charac-
teristics of the application and the characteristics
of the resources. Table 3 shows an example of
the defined feature vector parameters. The exam-
ple consists of a total of 8 parameters. First, we
define each type of model as A = a1, a2, ..., am
and consider the characteristics related to the
application, including batch size(b), input size
(or sequence size) of the task(i), and parame-
ter size(p). In the case of parameter size, LLM
inference models related to NLP should be consid-
ered additionally because they differ from existing
inference models in the field of image recognition,
as the input size (or sequence length) and param-
eter size significantly affect performance. This will
be dynamically reflected according to the weight

adjustment, which is automatically optimized dur-
ing learning based on the ratio of tasks more
closely associated with their characteristics (reg-
ularization) and the importance of those tasks.
Characteristics related to resources include the
GPU types described in Section 2 (G = g1, ..., gz),
the utilization rate of the SM, and the GPU mem-
ory (usage and the memory capacity of the target
GPU). The memory and SM ratio can be defined
as continuous data, but they are defined as sparse
categorical data, except for parameters with a very
wide range. The reason is that FM-FTRL is more
efficient and effective, particularly for sparse data.
The range of each parameter is determined based
on the MIN and MAX values of the characteristics
of the target model or resource. Therefore, the pre-
dicted values (latency, throughput) for each task
are defined as ŷ1, ŷ2. In addition, each value is nor-
malized to be expressed between 0 and 1, which
will later undergo a denormalization process.

The characteristics of a resource can include
factors such as the number of CUDA or Tensor
cores and clock speed, in addition to memory size.
This allows for the inclusion of a wider variety of
GPUs, thereby enhancing prediction accuracy.

3.3.3 Tuning Modeling

Tuning modeling is the process of selecting the
optimal performance and resource according to
the characteristics and user requirements of the
task. The result of this process is specifically
used as a reference for selecting GPUs based
on resource information and determines whether
tuning should be performed on the selected
GPU, considering performance and runtime infor-
mation. When tuning is applied, the runtime
environment is updated to reflect the tuning
results. Therefore, the first step of this pro-
cess is to select the best three candidates of
(g, b, c,m, ŷ1k, ŷ

2
k) combinations(Dt, Equation 6)

14

14

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

such that their results of a single objective func-
tion f(t, g, k)(Equation 4) are maximized. In this
function, t is the ID of the submitted task being
targeted, g is the GPU type that belongs to G,
and k is the ID of the variable combination, where
0 ≤ k < K. The variable combinations con-
sist of tunable variables, e.g., batch size(b), used
GPU memory(m), SM%(c)), for turning, and the
total number of combinations K is the product
of the number of each variable, resulting in K =
|b| × |g| × |c| combinations.

f(t, g, k) = λ · 1
ŷ1k

+ (1− λ) · ŷ2k (4)

+ α ·max(0, Tt − ŷ′
1

k) + β · EPC(g)

subject to λ ∈ [0, 1)

Gt
candidate =

{
top2g∈G f(t, g, k)

}
(5)

Dt = {(gi, bk, ck,mk, ŷ
1
k, ŷ

2
k) | (6)

k ∈ [0,K), gi ∈ Gt
candidate}

The process of obtaining these tuning can-
didates consists of three steps as follows. First,
f(t, g, k) (Equation 4) is calculated for each combi-
nation of tunable variables based on the prediction
information of the target t. Second, the top 2
GPUs with the highest values are selected from
the calculated results(Equation 5). Finally, tuning
variable combinations (Dt) for the selected top 2
GPUs are extracted and stored(Equation 6).

In the objective function f(t, g, k), the part
‘λ∗ 1

ŷ1
k
+ (1−λ)∗ ŷ2k’ reflects the predicted latency

and throughput according to the latency weight
input by the user. In this case, the value of this
part increases as the latency decreases for latency-
critical job, and as the throughput increases for
throughput-oriented, since the larger λ is, the
more it is classified as a latency-critical job (LC,
defined in this paper as 0.5 or higher), while
jobs below 0.5 are categorized as throughput-

oriented. The second part ‘α · max(0, Tt − ŷ′
1

k)’
aims to provide the importance of the SLO and
the urgency of the approaching deadline. Here,
Tt represents the user-specified deadline so the
urgency is determined by the difference between
this deadline and the predicted execution time

of the task, and ŷ′
1
denotes the denormalization

value. Finally, ‘β ·EPC(g)’ reflects the power con-
sumption degree of the targeted GPU g, and β
denotes the overall system load intensity, which
is adjusted by the workload. As the workload
increases, the value of β also increases. This is
because higher workloads lead to greater utiliza-
tion of system resources, increasing the likelihood
of performance degradation or bottlenecks, which
can impact overall performance. In this study,
instead of using specialized equipment to accu-
rately measure power consumption, the following
formula is used to approximate Estimated Power
Consumption(EPC).

EPC(g) ≈ Pbase + (TDP(g)− Pbase)

× SM util.× Mem Used

Total Mem(g)
× ŷ1 (7)

In Equation 7, Bbase denotes the GPU’s base-
line power consumption (idle state power), and
TDP (g)(Thermal Design Power) represents the
maximum power consumption of the GPU. ŷ1k is
the predicted execution time of a specific task
performed on the GPU. The equation follows the
structure of baseline power plus variable power,
forming a realistic power consumption model that
estimates power usage based on limited infor-
mation, such as GPU utilization (SM, memory),
without relying on direct measurements [19].

For example, assuming that the GPUA has
a TDP of 300W (16GB gpu memory) and
the GPUB has 200W (12GB), if the perfor-
mance prediction for Task1 is as follows: (GPUA,
b=8, c=0.7, m1=8GB, m2=16GB, Latency=12s)
and (GPUB , b=8, c=0.7, m1=6GB, m2=12GB,
Latency=19s), and also assuming that the base
power consumption value for all GPUs is 60W,
the approximate power consumption of each GPU
for Task1 can be calculated as follows(refer to the
notation from Table 4); EPC(A)≈ 60 + (300-60)

× 0.7 × (8/16) × 12 = 1068, EPC(B)≈ 60 + (200-60)

× 0.7 × (6/12) × 19 = 991 Therefore, a higher score
is assigned to GPUB because it was determined
that running it at GPUB is more cost-effective.

In contrast, as the second example, if the
performance of Task 2 is (GPUA, b=8, c=0.2,
m1=8GB, m2=16GB, Latency=2s) and (GPUB ,
b=8, c=0.2, m1=6GB, m2=12GB, Latency=3.5s
), the approximate power consumption of each
GPU for Task2 can be calculated as follows:

15

15

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

EPC(A)≈ 60 + (300-60) × 0.2 × (8/16) × 2 =

108, EPC(B) ≈ 60 + (200-60) × 0.2 × (6/12) × 3.8

= 113.2 As a result, GPUA is selected. There-
fore, it is tuned to select a relatively cost-effective
GPU through the objective function. This result
varies depending on the workload intensity and
the utilization of the GPU.

3.4 Scheduling

Scheduler module is composed of the Main
Scheduler, Monitor, Feedback Manager, Script
Generator, Affinity Checker, and Task Queues
(QLC ,QTO, main queue).

Once the task receives prediction and tun-
ing information through the two parts described
earlier, it accumulates in the main queue and
is dequeued when the Scheduler is called, then
inserted into either QLC or QTO. For each task,
priorities are set based on the prediction results,
and communication with the Monitor module
is established to receive available GPU informa-
tion. The Affinity Checker examines the affinity
between tasks within the batch and new tasks
based on the characteristic information of the
model determined by the App Profiler in the
Profiler module. Ultimately, tasks are scheduled
based on the pod generation script created by
the Script generator for Kubernetes. Detailed pro-
cess of scheduling will be covered in the upcoming
algorithm section. The Feedback Manager assists
in re-scheduling by adjusting priorities when a
deployment of a batch composed of determined
resources fails (due to reasons such as resource
configuration changes or system overload), and
it adjusts the batch allocation frequency based
on the failure rate. The Monitor is responsi-
ble for two roles: resource and task monitoring.
Through Kubernetes, it receives real-time infor-
mation about available resources and stores GPU
utilization data provided by the monitoring dae-
mon running on each node, while also conveying
the requested information to the scheduler.

3.4.1 Algorithms

Algorithm 2 and 3 show the main scheduling
process of OLTunes (refer to Table 4 for nota-
tion). This consists of three main stages: resource
selection, batch creation, tuning/batch schedul-
ing/feedback stage. The basic principle of this
scheduling is to create batches based on batch

time window(Wtime) and batch size (batchlimit).
The batchlimit (memory capacity of target gpu)
is filled by the memory requirements of the tasks
that make up this batch, or if the memory capac-
ity is not filled, the configured batch is deployed
once the batch time window is reached.

A user request corresponds to one task, which
is defined as follows:

Taski = [(model, variant), λi, deadlinei, Di] (8)

It includes model name(id) and its variant infor-
mation(as specified in Table 6), and the values for
λ and deadline are provided by the user. λ rep-
resents the degree of importance for latency and
throughput and is specified by the user in the fol-
lowing range of the inference classification. For
online inference(LC), λ is assumed to take val-
ues between 0.5 and 1 (excluding 1), while for
offline inference(TO), λ takes values between 0
and 0.5. Depending on the λ, the tasks are clas-
sified into Latency-Critical(LC) and Throughput-
Oriented(TO) and inserted into the respective job
queues (QLC ,QTO). The deadline is the user’s
SLO, and the tasks must be executed with latency
within it. Di stores the information for tuning,
obtained from the results of the Tuning Modeling
in Section 3.3.3 after the prediction.

The tasks that come in real-time are parsed
into a format that can be analyzed by the
Job Parser. Based on that information, the
task information(Taski) is updated by pre-
dicting performance data(Di) for the existing
computational resources, and then the task is
inserted to main queue. After that, the sched-
uler dequeues the existing tasks from main
queue, and decides task’s priority depending on
the urgency(deadline/avg.latency, the smaller the
value, the higher the priority), then inserts them
into task queues(QLC ,QTO). Both queues are
then sorted in ascending order through a Pri-
orityQueue. In case of tasks with the same pri-
ority value, the Shortest Job First principle is
followed(line 6-7).

As the first step, the list of available GPU
resources is obtained from the monitoring infor-
mation. In the available GPU list(Algorithm 2,
line 9; Algorithm 3, line 1) GPUs that are fully
empty and are partitioned(for example, MIG-
enbled GPU). In case all GPUs are occupied, a
GPU with more than 80% available capacity or a

16

16

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Algorithm 2: Schedule Tasks

Input: Qlc, Qto, Wtime, gpuavail, batch sizemax

Output: Wtime, Qlc, Qto

1 Function Schedule():
2 tlast batch ← current time();
3 batchcurr ← [];
4 memcurr ← 0 ;
5 while true do
6 heapify(Qlc);
7 heapify(Qto);

8 /* Step 1: Select the GPU with the lowest utilization */

9 target gpu← getResources(gpuavail);
10 batchlimit ← target gpu[‘mem size’] ;

11 /* Step 2: Process both queues sequentially for batching, ensuring optimal

GPU match */

12 for Q ∈ [Qlc, Qto] do
13 while Q is not empty and memcurr < batchlimit do
14 (latency, task)← getFirst(Q);
15 tremain ← currenttime() - tlast batch;
16 if batchlimit −memcurr − task[‘gpumem’] > minmem and tremain < Wtime and

len(batchcurr) < batch sizemax then
17 if fitForBatch(task, targetgpu, batchcurr) then
18 Add task to batchcurr;
19 pop(Q);
20 memcurr ← memcurr + task mem;

21 /* Step 3: Tuning, deploying and feed-backing the batch */

22 if batchcurr is not empty then
23 if memcurr < batchlimit then
24 autotune(batchcurr);

25 result ← assignBatchToGPU(batchcurr, targetgpu) ;
26 if result then
27 feedback(batchcurr);

28 Reset batchcurr and memcurr;
29 tlast batch ← current time() ;

30 Wtime ← adjustTimeWindow(Qlc, Qto,Wtime);
31 update(Qlc, Qto,Wtime);

soon-to-be-ready GPU, due to the early comple-
tion of a task or when the longest task in the batch
is expected to be more than 80% complete, will be
included even if tasks are currently running. Once
the list of available GPUs is completed, the one
with the lowest utilization in the list is selected as
the target gpu.

Secondly, the batch is formed according to
its GPU memory capacity, starting with the LC
task(line 12-20). As long as it does not exceed the
batch capacity(target memory limit, batchlimit) or
the current time from the start of scheduling is
within the Wtime, or the number of current tasks
in this batch won’t exceed batch sizemax, the task
will be added to the batch.

17

17

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Algorithm 3: Additional Functions

1 Function getResources(gpuavail):
2 /* Get the GPU from the node

with the lowest utilization

*/

3 target gpu← sorted(gpuavail, key =
gpu.utilization)[0];

4 if target gpu is None then
5 target gpu←

getSoonestAvailableGPU();

6 return target gpu

7 Function fitForBatch(task, target gpu,
batchcurr):

8 /* Check if the given task fits to

the target batch */

9 return target gpu[‘id’] ∈ task[‘opt gpus’]
10 and isAffinityHigh(task,

batchcurr)

11 Function
adjustTimeWindow(Qlc, Qto,Wtime):

12 /* Dynamically adjust the time

window based on the load */

13 lc ratio← len(Qlc)
len(Qlc)+len(Qto)

;

14 if lc ratio > ρlc then
15 /* Decrease time window, minimum

Wminms */

16 return max(Wtime − w,Wmin)

17 else
18 /* Increase time window, maximum

Wmaxms */

19 return min(Wtime + w,Wmax)

20 Function feedback(batchcurr):
21 /* Updating priority of batch curr

higher & putting them into Q lc
*/

22 /* Adjusting Wtime lower,

batch sizemax lower */

After that, it checks whether the task is suit-
able to be included in the batch(line 17). Through
the function fitForBatch() (Algorithm 3, line 7),
it checks whether the GPU included in targetgpu
is part of the task’s Di (since Di holds the
top-2 GPUs info. with the best performance for
the given task) and check affinity (function
isAffinityHigh(), Algorithm 3 line 10) with the
existing tasks if there are already tasks added
within the batch. Affinity checking, as mentioned
earlier in Section 2.2, is determined by considering

both the workload characteristics and the variant
of the model between tasks within a batch and the
new task, and the detailed process of determining
affinity is explained in Section 3.4.2. Therefore, the
task will only be included in the batch if it meets
those two conditions(line 18). Once the selection
process for the LC tasks is completed, the same
process will be carried out for the TO tasks. After
creating the batch, the Step 3 proceeds, which
includes tuning, deployment, and feedback.

The tuning (line 24) is performed when the
batch is not completely filled — that is, when
there is available space within the target GPU’s
memory capacity (batchlimit). In this case, the
performance of the task (latency for LC, through-
put for TO) is adjusted in the direction that
maximizes it, using the setting combination infor-
mation of D that each task possesses, within the
capacity of the available resources. The tuning is
carried out starting with tasks related to through-
put increase(TO), as it adjusts the batch size.
The task to which tuning is applied has its run-
time information updated according to the tuning
results, and this is reflected during container allo-
cation. The detailed process of auto-tuning will
be explained in Section 3.4.3. Once tuning is
complete, secondly, the batch will be assigned to
the targetgpu. If the targetgpu is already allo-
cated due to an unexpected situation or if the
allocation fails due to unexpected events such
as delays from previous tasks, the corresponding
batch is re-inserted into Qlc with a higher prior-
ity through the feedback() process (Algorithm 2,
line 26; Algorithm 3, line 20). In this situation,
the feedback enhances processing speed by slightly
reducing the batch window.

Finally, the time slot is initialized. Based on
the system load, the batch window is adjusted,
mixing the remaining tasks with incoming tasks
for re-scheduling.

3.4.2 Affinity Modeling

The function isAffinityHigh()(Algorithm 3,
line 10) evaluates the suitability of a new task
to be included in the target batch by examining
the affinity between the new task and the tasks
already present in the batch. This determination
is based on two aspects: workload characteristics
and variant.

18

18

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Table 4: Notation

Notation Description

Qlc Queue for LC tasks
Qto Queue for TO tasks
Wtime Batch window time
tlast batch The timestamp of the last batch submission
tremain The remaining time within the current Wtime

batchlimit The maximum memory capacity available on the selected GPU
batchcurr The list of tasks in the current batch
batch sizemax The maximum allowable number of tasks for a single batch
memcurr The cumulative memory capacity of tasks in the current batch
λ The ratio that decides whether it is LC(0.5< λ ≤1) or TO(0< λ ≤0.5) by user
ρlc The upper limit of LC workload ratio in the system, default 0.7
Wmin The minimum available value of Wtime, default 50ms
Wmax The minimum available value of Wtime, default 1000ms
w The adjustment value of Wtime, default 10ms

First, affinity checking using workload charac-
teristics is performed by applying the following
formula to all tasks in the target batch.

a(TaskA,TaskB) = 100× 1

1 + e−|∆ratio|
(9)

where∆ratio = ratio(A)− ratio(B)
In the above equation 9, ratio(X) is the result of
the equation 1 for the model used in TaskX . A
higher ratio means the task is highly compute-
intensive, while a lower ratio means the task is
highly memory-intensive. The difference in ratios
is calculated by computing the absolute difference
between the ratios (Eq 1) of two tasks’ appli-
cations. A larger difference indicates that one
task is more compute-intensive, while the other
is more memory-intensive, suggesting complemen-
tary resource usage. The affinity score is calculated
by applying the sigmoid function [53] to ∆ratio,
mapping the difference to a score between 0 and
100. The sigmoid function ensures that small
differences result in lower scores, while larger dif-
ferences yield higher scores. Therefore, the final
affinity between Tasknew and the target batch is
calculated as the average of the individual affini-
ties with each task in the batch and is expressed
as follows(N is the number of tasks in the batch
before adding new task).

affworkload =
1

N

N∑
i=1

a(Tasknew,Task i) (10)

For affinity based on model variants, the degree
is determined by the combination of the model
variants of the tasks in the batch and the new task,
following the conditions below.

v(Tasknew,Task i) =


100, high+ low

50, low + low

0, high+ high

(11)

Once the individual affinities between Tasknew
and all tasks in the target batch are determined,
the final affvariant value is derived by calculating
the average overall affinity, similar to the work-
load characteristic-based method in Eq 10. The
final affinity of the new task is determined by
the average of the two affinity values. The task
can be included in the batch only if this value
meets or exceeds thresholdaffinity. The function
isAffinityHigh() returns true in this case. The
default value of thresholdaffinity is 70 and can
be adjusted depending on the system load level,
but this is not covered in detail in this paper. For
this affinity calculation, the workload characteris-
tics of the model are pre-defined offline, and the
maximum allowable batch size (batch sizemax) is
set to 4. As a result, the computational overhead
is negligible.

19

19

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Fig. 9: Scheduling example scenario

3.4.3 Auto-tuning

The function autotune()(Algorithm 3, line 24)
is the step for updating and adjusting vari-
able parameters to maximize throughput in
Throughput-Oriented (TO) jobs or to reduce
latency in Latency-Critical (LC) jobs. Referring
to a set of tuning variable combinations D,
as defined in Section 3.3.3, tuning is applied
only if performance improves based on the tar-
geted GPU’s records. If performance decreases or
remains unchanged, tuning is not applied. The
tuning procedure is as follows.

Step 1: Detect Performance Changes - extract
the GPU records from D for each task. If there is
only one record, tuning is not performed. Extrac-
tion is carried out only if there are two or more
records. For Throughput-Oriented (TO) jobs, tun-
ing is performed only if the predicted through-
put increases when the batch size increases. For
Latency-Critical (LC) jobs, tuning is performed
only if latency decreases when the batch size
increases.

Step 2:Perform Tuning - the maximum pos-
sible batch size is derived through a prediction
module. Tuning is applied only if the memory size
of the best-performing record in D at the current
batch size is within the given memory capacity
(predicted memory + remaining memory).

When tuning is performed, the container envi-
ronment for the corresponding task is reconfigured
and applied. Once tuning is applied to one task, no
further tuning is performed on other tasks within
the same batch, and the batch is finalized for
submission.

3.4.4 Scenario

Figure 9 shows an example scenario of the pro-
posed scheduling. In this example, each task is rep-
resented by a circle or ellipse, where LC tasks are
shown in white and TO tasks in gray. Compute-
Intensive(CI) and Memory-Intensive(MI) indi-
cate the model characteristics of the task, repre-
senting compute-intensive and memory-intensive,
respectively. V1 and V2 signify high and low
variants. Additionally, b1 to b11 represent the
configured batches by scheduler, while “Submit
1∼5” marks the point at which the final batch,
having either reached the batch limit (batchlimit)
or Wtime and completed tuning, is submitted to
the GPU. W ′

time indicates the adjusted and mod-
ified batch window time. The GPU lists on the
right side of Figure 9 represent the target GPUs
(the further to the right, the more recent the list).

There are two periodically inserted queues,
QLC and QTO, in which each task is assigned a
priority and is awaiting resource allocation.

In the case of b1-b3(Submit 1), the batches
are configured considering affinity, and all three
batches are completed before Wtime and deployed
to the corresponding GPUs. In this case, tuning
is not applied due to either insufficient available
GPU memory. There are cases, like b4, where a
task that fits the GPU’s capacity is allocated and
deployed immediately without adding any further
tasks(Submit 2) .

On the other hand, in the cases of b5 and
b7, Wtime is reached without fully utilizing the
capacity of the respective GPUs (GPUx, GPUy).
As a result, batch formation ends without adding
further tasks, and tuning is performed within the
available space(Submit 3) When TO and LC tasks
are mixed, tuning is applied to TO tasks first (b5).
If the batch consists only of LC tasks, tuning is
applied to the tunable tasks (b7).

After Submit 3, the scheduler checks the sys-
tem load to determine if the ratio of LC tasks
exceeds a certain threshold, and Wtime is adjusted
(in this case, reduced to W ′

time). This adjustment
aims to increase the deployment speed of batches
to process the tasks waiting in the queue more
quickly. In the case of b9, due to the reduced
window(W ′

time), the capacity of the corresponding
GPU (GPUi) is not fully utilized. Additionally,
the task in the batch cannot be tuned (increas-
ing the model’s parameter does not contribute to

20

20

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

latency reduction), resulting in the deployment of
the batch including a single task. For b10, the first
two tasks, task1 (MI+v1) and task2 (MI+v2),
have high affinity, so they are placed in the same
batch. When task3 is added, the overall affin-
ity score exceeds thresholdaffinity, allowing the
batch to be formed. Similarly, in b11, the short-
ened W ′

time results in only one task being included
in the batch. Even if the task does not fully uti-
lize the maximum GPU capacity during tuning,
the model’s performance knee point is referenced,
and parameter(s) is adjusted within the available
range to maximize performance.

In this scenario, the feedback process is not
reflected; however, if there is a failed batch among
the deployed batches, it is reallocated with high
priority, and Wtime is readjusted.

4 Evaluation

Evaluation is performed to answer the following
key questions:

• How much data was used for analysis compared
to other commonly used models, how accurate
was it, and how long did it take(overhead)?

• Does it provide reasonable queuing time,
latency, and throughput in terms of service?

• Does it meet the user’s SLO?
• From a resource perspective, is it considered
resource efficiency, and is the load evenly dis-
tributed among the nodes?

• Is it energy efficient?

4.1 Experimental Setup and Testbed

In general, a data center is composed of multiple
clusters. However, in this study, experiments were
conducted first limited to a single cluster com-
posed of heterogeneous GPU servers to validate
the proposed method. The cluster is configured
with the nodes specified in Table 5. We tested
the latest DRA (Dynamic Resource Allocation)
feature and applied a scheduling technique using
CRD (Custom Resource Definitions) with Kuber-
netes [50] v1.20.0. For analysis and profiling, a
separate GPU A100-40G is used. The target mod-
els and their information are outlined in Table 6.
For vision modeling, ResNet-18, 50, and 152[15],
as well as the YOLOv5[18] are used, while in
the NLP field, the LLM models BERT[10] and
GPT2[39] were adopted. The user SLO for the

request was based on the latency specified in
Table 6. The λ value that distinguishes LC/TO
is set to 0.5 < λ for vision modeling tasks and
λ ≤ 0.5 for NLP (LLM) tasks, for 90% of the
work. This is because inference tasks generally
have latency constraints, but among them, NLP
(LLM) often handles large batch datasets that
generate multiple sentences from a large text
dataset, rather than quickly responding to a single
large input. Therefore, it can be considered more
throughput-oriented. However, some tasks are sen-
sitive to latency, so it was limited to 10%. The
input data parameters and ranges used for perfor-
mance prediction and analysis are as shown in the
above Table 3.

4.1.1 Workloads

The workload was reconstructed in terms of
parameters through a job simulator based on the
existing service-based request arrival distribution
for the targeted model. This performance evalu-
ation has two main purposes for configuring the
workload: i) performance comparison based on
the model, and ii) stress testing (performance
comparison based on workload patterns). To cre-
ate a realistic workload for the experiment i), we
selected the average request arrival rates shown
in Table 7, which are based on the mean invoca-
tion request rates of the top 10 most frequently
executed functions in the Microsoft Azure Func-
tions trace [28, 43]. This was referenced from
[45]. Additionally, models corresponding to LLM
(NLP, TO tasks) are configured by mixing the
two workloads using the request patterns and
parameters from the 2023 Azure LLM inference
trace [27] provided by Microsoft Azure Function,
to measure the performance of each model. For
the configuration of the workload for the stress
test, Uniform and Poisson request arrival distri-
butions were used. In the case of the uniform
distribution, it is a request pattern found in fields
such as autonomous driving (obstacle detection).
The Poisson distribution is primarily a pattern
observed in the application domain of real-time
DNN applications (speech recognition). There-
fore, we utilize the actual inference service trace
from Baidu’s Apollo Autonomous Driving Sys-
tem[13] (an open autonomous driving platform)
and the provided trace based on the two distribu-
tions. Experiments will be conducted with three

21

21

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Table 5: System Overview

Controller
Computing nodes

GPU RTX4090 A100-40G A30-24G

Memory 32GB GPU# 1 5 2
Kubernetes

v1.30.0
Arch. Ada Lovelace Ampere Ampere

Version Memory1 24GB 40GB 24GB
OS Ubuntu 20.04.6 LTS Memory Type GDDR6X HBM2e HBM2e

SM # 128 108 56
OS Ubuntu 20.04.6 LTS
CUDA Ver. 12.3 11.8 12.3
TDP2 450W 250 W 165 W

Analytics Node

GPU , GPU# Ampere A100, 1
OS Ubuntu 20.04.6 LTS

Size Type Model Variants Dataset Metric Batch Size Latency SLO Params#

S Image Classification ResNet 18 ImageNet[9] Accuracy [1 - 256] 10ms 20M
M Object Detection YOLOv5 5n, 5X COCO[24] 85% mAP [1 - 256] 25ms, 45ms 2.6M, 97M
L LLM BERT Base, medium SQuADv2[40] F1 score [1 - 128] 150ms 110M
XL Image Classification ResNet 50,152 ImageNet Accuracy [1 - 128] 80ms, 170ms 25M, 60.2M
XXL LLM GPT2.0 - SQuADv2 0.88 F1 Score [1 - 128] 200ms 1.5B

Table 6: Information of the Target Inference Models (Used full-precision for all models)

Model Uniform Poisson

ResNet(18) 70 60
YOLOv5 50 40

ResNet(50,152) 40 25
BERT-base 10 5
GPT 2.0 3 2

Table 7: RPS for each model

configurations: Uniform, Poisson, and Real-world
trace.

4.1.2 Baseline

This paper compares performance considering the
following baseline.

Prediction.

• Matrix Factorization(MF)[54]: it is a col-
laborative filtering method that decomposes a
large matrix, like user-item interaction data,
into two smaller matrices to capture latent fea-
tures and predict missing values. Commonly
used in recommend systems, it helps predict
user preferences for items based on interaction
data, such as ratings or purchase history. Addi-
tionally, it is applied in areas like dimensionality
reduction and topic modeling in text mining.

• Random Forest Regression(RFR)[47]:
Random forest regression is an ensemble learn-
ing method that constructs multiple decision
trees during training and combines their out-
puts to improve prediction accuracy, handling
complex, non-linear relationships in data. It is
usually used for predicting continuous values
in applications like finance, healthcare, environ-
mental science, and marketing due to its ability
to handle complex, non-linear relationships.

Scheduling.

• Orion[45]: Resource utilization is maximized
by placing best-effort tasks and high-priority
tasks together in spatial resource sharing. In
job allocation, the affinity between tasks con-
siders the characteristics of the tasks (compute-
intensive, memory-intensive). However, since
there is no condition regarding GPU selection
in Orion’s Scheduling Policy, we will select the
target GPU using a best-effort approach for
comparison with this study.

• MLaaS[52] by Alibaba(Reserving-and-
packing): In the MLaaS system, the reserving-
and-packing (R&P) policy is applied for
scheduling on a heterogeneous GPU cluster.
This method intentionally reserves high-end
GPUs (primarily high-performance GPUs with

22

22

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

NVLinks) for high-GPU tasks, while pack-
ing and allocating other workloads to GPUs
that are less powerful or regular in perfor-
mance. Therefore, tasks focused on performance
are assigned to high-performance servers, while
tasks that prioritize parallelism over perfor-
mance are allocated to other servers.

4.1.3 Metrics

The performance of OLTunes is evaluated in three
categories. The metrics for each category are as
follows.

• Prediction performance: prediction latency,
error rate (RMSE), accuracy (R-Square), sam-
pling count

• Service Performance: p50 latency (ms)= avg
JCT + avg. queuing time, p99 tail latency(ms),
Throughput(inputs per sec), Accuracy Loss
rate(%), SLO violation rate(%)

• Cluster-level Performance: resource utiliza-
tion(%), power consumption (%)

4.2 Experimental Results

4.2.1 Prediction Performance

This indicates whether the FM-FTML model has
made accurate and fast predictions compared to
other models. To compare predictive performance,
we examine the relationship between various fea-
tures in a general manner and compare Matrix
Factorization with the FM-FTML method used
for predictions. In addition, this study demon-
strates the superiority of the methods used by
targeting Random Forest Regression, which is
frequently employed for prediction in various
research studies. First, we compare three mod-

Model RMSE R-Square Latency(sec) Train time(sec)

FM-FTRL 0.5681 0.8772 0.0012 0.0634
MF 1.3358 -0.1873 0.0046 0.0628
RFR 0.9655 0.7275 0.0017 0.0952

Table 8: Comparison of error rate and performance
by model

els using approximately 1,400 data to evaluate
their error rates, accuracy, and performance. For
comparison, the accuracy is evaluated using root
mean squared error (RMSE) and R-square, while

Fig. 10: Number of samples required to reach the
optimal accuracy in terms of RMSE, R-Squared
(left: RMSE, right: R-Squared)

performance is compared through analysis speed
and training time. RMSE is the value obtained
by squaring the average difference between the
model’s predicted and the actual values, and
then taking the square root of that result. This
allows us to measure the magnitude of predic-
tion errors as an indicator, which allows us to
understand on average how much the predictions
differ from the actual values, with lower values
being preferable. R-squared is a statistical mea-
sure that indicates how well a model explains the
data. Values closer to 1 indicate better explana-
tory power, suggesting that the model fits the
data well. Table 8 shows the comparison results
of the three models. When using the FM-FTRL
method, the RMSE shows an improvement of
approximately 57% and 40% in R-Square values
compared to the Matrix Factorization (MF) and
Random Forest (RF) models, respectively (x1.57,
x1.41). In the case of R-Square, the FM-FTRL
model shows an improvement of x6.68 compared
to the MF model and x1.21 compared to the RF
model. In terms of accuracy, it is quite similar
to the RF model, but shows significantly better
accuracy compared to the MF model. In terms of
latency and training time, it showed performance
of approximately x3.8 and x0.99 compared to MF,
with training times being quite similar. Compared
to RF, it demonstrated faster performances of
x1.4 and x1.5, respectively.

Figure 10 compares the number of samples
required to achieve optimal accuracy in terms
of RMSE and R-Square. The reason for setting
RMSE=1.3 and R-Squared=0.5 as the optimal
accuracy criteria in the experiment is that these
values are established based on the scale and range
of similar problems and datasets, serving as an
acceptable performance level. It is an appropri-
ate benchmark indicating that an acceptable level

23

23

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

of predictive accuracy was achieved. The results
show that the FM-FTRL model can make pre-
dictions with the least amount of data, around
500 samples. This indicates that the system can
efficiently adapt to performance prediction even
when new models or GPU specifications are intro-
duced. In particular, the left graph of Figure 10
shows that as the data increases, the speed at
which accuracy improves is faster compared to the
other two models. Additionally, the right graph
of Figure 10 shows that the model used in this
study provides the highest explanatory power for
the variability in the data.

4.2.2 Service (Application)
Performance

This section compares the performance of the
service, specifically from the application perspec-
tive, to the baseline research to see the extent
of improvement. To answer the question, “Does
it provide reasonable queuing time, latency, and
throughput in terms of service?” as mentioned ear-
lier, performance comparison is performed based
on the model and workload.

Performance Comparison between Mod-
els: Figure 11 shows the performance comparison
results (p50 latency, p99 tail latency, through-
put) based on the five models. In Figure 11a, the
faint bar represents the average queueing time,
and the bold color part represents the job com-
pleting time (JCT). Overall, MLaaS showed poor
performance for lightweight models S and M,
while achieving comparatively better performance
for the larger models L, XL, and XXL. For the
two S and M models, the average latency took
112 times longer for queueing time and 2 times
longer for JCT compared to OLTunes. The p99
tail latency took about 60 times longer on average.
The small model experienced significant queuing
delays, primarily due to the relatively low pro-
portion of regular GPUs among the GPUs used
in this experiment and the high proportion of
small models in the workloads. On the other hand,
for larger models (L, XL, XXL), the queueing
time was 1.28 times slower compared to OLTunes
and the JCT showed almost similar results. In
the case of p99 tail latency, MLaaS was approx-
imately 3.14 times faster. This can be attributed
to OLTunes’ scheduling method, which allocates a
mix of relatively high and regular resources based

on utilization, in contrast to MLaaS, which pri-
marily allocates high-performance resources for
models with high GPU demands. In the case
of Orion, OLTunes showed good performance in
terms of p50 tail latency for the overall model.
In particular, the difference was more pronounced
in BERT(L) and GPT2(XXL), which are mainly
focused on TO tasks. The reason for the long
queueing time is that Orion’s scheduling method
prioritizes high-priority tasks, primarily focusing
on LC tasks, which results in relatively longer
queueing times for TO tasks. As a result, the per-
formance of the L and XXL models, which focus
on TO tasks, was inferior to that of the S, M, and
XL models (vision models) with the high-priority
LC tasks. In terms of p99 tail latency, OLtunes
was up to 7 times faster than Orion. In terms of
throughput, OLTunes shows performance that is
7 times higher than that of MLaaS, which had
poor performance with models of sizes S and M,
and about 1.8 times lower compared to models
of sizes L, XL, and XXL. Compared to Orion,
OLTunes achieved an overall higher throughput
of more than 1.01x. In particular, it is 1.54 times
higher in the L and XXL models. When comparing
the performance improvements in latency, it can
be observed that there is a smaller performance
difference in throughput. This suggests that the
throughput of the L and XXL models tends to be
lower on average compared to the overall model,
which likely contributes to the relatively smaller
performance gap.

Performance Comparison by Workload
Pattern: the second experiment compared the
effectiveness of each scheduling method in han-
dling the workload by varying the pattern for
the stress test, relative to OLTunes and other
competing schemes. Figure 12 compares the per-
formance (p99 tail latency, throughput) according
to three workload patterns(uniform, poisson, real-
world trace).

p99 tail latency(Figure 12a) shows that when
the workload is uniform, all three methods
exhibit similar performance with little difference
(within 1.12x). However, in the case of Orion, the
JCT was the highest among the three methods
in the uniform pattern. This seems to be due to
delays caused by performance bottlenecks, as this
experiment was set to select GPUs based on best-
effort, in contrast to MLaaS and OLTunes, which

24

24

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

(a) P50 Latency

(b) p99 tail Latency

(c) Throughput

Fig. 11: Comparison of performances by models,
(a) Patterned bar is Queuing Time, Colored bar
means JCT(Job Completing time)

utilize specific criteria for GPU selection. The dif-
ference in throughput is also less than 0.04%.
The poisson pattern has the characteristic that
tasks arrive randomly. Additionally, even if the
total number of tasks within a set period is the
same, the arrival times can be unpredictable. The
R&P Scheduling method of MLaaS showed rela-
tively poor performance in terms of queueing time
compared to JCT. This can be attributed to a
surge in latency caused by a lack of resources, as

low GPU tasks that were not reserved ended up
clustering around limited resources due to irregu-
lar task arrivals. Relatively high-throughput low-
GPU tasks were delayed, canceled, or re-executed
due to deadline violations, resulting in the low-
est throughput outcomes. In the case of Orion,
its focus on high-priority tasks led to increased
delays for TO tasks, resulting in the poorest per-
formance. However, in terms of throughput, the
average throughput was higher because the focus
was on processing LC tasks, which have a rela-
tively high range of throughput values. OLTunes
demonstrated stable performance. This adjusts
the processing speed of batches according to the
type of tasks, which means it is less affected by
sudden increases in tasks, thereby ensuring sta-
ble outcomes in terms of latency and throughput.
In the case of real-world traces, there are sudden
bursty and irregular patterns that mix the two
previous patterns. The R&P of MLaaS showed
a sudden surge in latency when high GPU tasks
overwhelmed the reserved resources, leading to an
unstable pattern. Throughput also increased when
high GPU tasks exhibited a bursty pattern, result-
ing in a situation where all reserved resources
were allocated and waiting times rose. As a result,
the peak of the resource occurred frequently, and
particularly for High GPU Tasks, there was a
low throughput. Orion showed the poorest perfor-
mance in the real-world pattern. This is because
Orion’s scheduling algorithm is designed to min-
imize latency, focusing primarily on high-priority
tasks. As a result, when these tasks come in a
bursty manner, there is often an indefinite wait
for low-priority tasks, leading to improper distri-
bution of tasks and a simultaneous increase in the
waiting time (queueing time) for all tasks.

In the case of OLTunes, the instability of the
task pattern and arrival pattern has led to fre-
quent training on the task history, resulting in
a slight increase in latency. However, it showed
overall stable performance. OLTunes increases the
priority and reallocates tasks that are delayed due
to feedback control when the prediction accuracy
decreases due to an unstable pattern, preventing
immediate deployment of the batch. It appears to
have produced stable results because it provides
adaptive scheduling based on the workload.

Accuracy and SLO satisfaction: figure 13
shows how effective it is to consider Variants with
Affinity when using OLTunes. The base used for

25

25

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

(a) p99 Latency Comparison

(b) Throughput Comparison

Fig. 12: Comparisons by Workload Patterns; Pat-
terned bar is Queuing Time, Colored bar means
JCT(Job Completing time)

comparison is the accuracy when running a single
model on 1 GPU. It can be observed that there
is a minimal accuracy degradation of within 4%,
indicating a minimal loss of accuracy.

Figure 14 shows the results of how well
OLTunes meets user SLOs. When targeting
1k tasks uniformly, both MLaaS and OLTunes
exhibit similarly low SLO violation rates. How-
ever, in the case of the Poisson Pattern, the
scheduling method of MLaaS resulted in an
increased violation rate due to increased latency
for high-GPU tasks. In real-world trace, a simi-
lar result was observed where both tasks violated
user SLO due to latency caused by load peaks.
The Orion’s scheduling method primarily focused
on LC scheduling, and since the TO tasks, which
had relatively flexible deadlines, were queued, the
user SLO violation rate remain low. However, dur-
ing the real-world trace, the Orion’s scheduling
method showed a significant increase in viola-
tions due to the indefinite waiting of low-priority
tasks. In the case of OLTunes, it increased priority

based on the proximity of the deadline and pre-
dicted latency, while also considering the schedul-
ing speed and tuning degree according to the load,
with deadline proximity taken into account dur-
ing the tuning process. As a result, it mostly
satisfied user SLOs across all three workload pat-
terns. The cases where SLOs cannot be guaranteed
occur during the initial scheduling phase, when
new information is added to the analysis of work
history, leading to an increase in prediction errors
during the initial process. In this way, it can be
seen that OLTunes effectively supports accuracy
and deadline satisfaction, which are most closely
related to the user’s QoS.

Fig. 13: Accuracy Loss Comparison

Fig. 14: SLO Violation

4.2.3 Cluster-level Performance

Cluster-level performance analysis demonstrates
how efficiently and balanced OLTunes consumed
resources across heterogeneous GPU resources for
various workloads.

GPU Utilization: Figure 15 compares the
utilization of heterogeneous GPUs based on work-
load patterns with OLTunes and competing meth-
ods. In the case of GPU memory, all three studies

26

26

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Fig. 15: Comparison of utilization by GPU according to workload pattern

Fig. 16: Comparison of Power Consump-
tion Estimate (Normalized to OLTunes)

Fig. 17: Power Consumption CDF of
OLTunes and MLaaS

utilized it to its maximum capacity, making a
comparison unfeasible. Therefore, the results pre-
sented here focus solely on a comparison of GPU
(SM) utilization. G1 and G2-3 are regular GPUs
(G1 and G2-3 belong to different nodes), while
G4-8 are high-performance GPUs.

Under a uniform pattern load, as shown in
Figure 15(a), all scheduling methods exhibit sta-
ble average utilization results. However, MLaaS
shows lower utilization on some GPUs compared
to Orion and OLTunes. This is likely due to the
lack of consideration for the affinity of tasks shared
within a single GPU, even though the full capacity
of GPU memory is utilized. In Figure 15(b), under
the Poisson pattern, dynamic utilization results
are observed. MLaaS exhibits significant variation

in GPU utilization overall. It frequently showed
a change of up to 2x. Additionally, when a spe-
cific task increases, there are moments when the
load concentrates on certain GPUs, causing peak
loads and overloading the resources. In the case of
Orion, GPU utilization was consistently high on
average, but some GPUs experienced frequent uti-
lization fluctuations. These fluctuations reached
up to approximately 60%. In the case of OLTunes,
there was some volatility when the load on the
LC sharply increased or when models with insuffi-
cient data for training were introduced, requiring
re-training. Otherwise, overall, stable results were
observed. This is because runtime considerations,
resource selection, batch size, and deployment fre-
quency adaptively change according to the load.
Lastly, in (c) Real-world Trace, due to the bursty
pattern, when the load is not properly managed,
a utilization imbalance—where a rich-get-richer
and poor-get-poorer phenomenon—may occur.
This phenomenon was observed in MLaaS, where
compute-intensive tasks became bursty, leading
to the monopolization of high-performance GPUs.
As a result, these GPUs experience overload, while
the remaining regular GPUs remain close to idle.
In the case of Orion, since most of the work is
LC-related, there were fewer tasks considered as
BE, which led to a decrease in utilization. In
particular, there was a significant fluctuation in
utilization depending on the characteristics of the
incoming tasks. In the case of OLTunes, since the
tasks are focused on LC work scheduling during
specific periods, it has slightly impacted latency.
However, the load was evenly distributed across
utilization, and the variation in average utilization
remains under 10%.

Environmental Impacts: In the following,
power consumption estimated based on GPU uti-
lization is analyzed and compared. The power

27

27

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

consumption in this experiment is an approxi-
mation, derived from the Estimated Power Con-
sumption formula outlined in Section 3.3.3. This
estimation is based on the number of calculations
performed by tasks executed every 2 seconds on
each GPU, as well as the corresponding GPU
utilization. Figure 16 presents the results of the
average comparison.

MLaaS showed about 6.5 times more power
consumption compared to OLTunes, while Orion
showed about 3 times more. It resulted in rel-
atively high consumption because it primarily
assigns long and computation-intensive tasks on
high-performance resources. When high GPU
tasks surged, peak loads frequently occurred on
high-performance resources, and as discussed in
Section 2, the increase in power consumption due
to overload likely resulted in actual power usage
being significantly higher. In the case of Orion,
the estimated power consumption increased in
several instances of overload. OLTunes gener-
ally maintains stable GPU utilization and selects
resources considering relatively low power con-
sumption among the target resources for task
scheduling, which is why it showed somewhat
lower results compared to the other two methods.

Figure 17 shows the CDF of the average power
consumption calculated for each GPU. It is only
compared with the MLaaS that had the high-
est power consumption results. The base power
consumption(Pbase) of the GPU is 60W, which
indicates that the resource is in an idle state.
In the case of MLaaS, it can be observed that
about 3-5% of the GPUs were in an idle state.
When using R&P scheduling, in unstructured
workload patterns like real-world traces, situations
can arise where tasks suddenly surge and then
the arrival intervals widen sharply. In this case,
during time slots without tasks, some GPUs may
remain idle, or certain tasks (high or low GPU
tasks) may surge, leaving GPUs that are not allo-
cated to those tasks in an idle state. The second
point to note is that each GPU type (A30, A100,
RTX4090) shows a tendency to surge as they
approach their respective TDPs of 165W, 250W,
and 450W. This means that all heterogeneous
GPUs are using their maximum power, which indi-
cates that overloads were frequent. A load with an
appropriate number of resources for subordinates
and a consistent pattern may have shown more
energy efficiency and better performance results.

In contrast, OLTunes tends to have no idle
state GPUs and mostly stays in a lower power con-
sumption range rather than at maximum power
for extended periods. Therefore, it showed over-
all optimized and more energy-efficient results.
This not only improved energy efficiency but also
helped reduce resource management costs.

5 Related Works

With the active provision of deep Learning-based
applications as online services, there has been a
variety of research on management and schedul-
ing targeting large-scale inference workloads in
GPU data centers. Resource sharing technologies
have advanced not only for inference services but
also to enhance GPU efficiency for deep learn-
ing applications themselves. Consequently, various
studies on scheduling that consider affinity have
been conducted to reduce interference among co-
running tasks. These studies were compared with
the present study in three aspects as follows.

Auto-tuning Inference system For sys-
tems that provide inference services, active
research has been conducted to reduce the balance
between latency and cost, aiming to offer users
a cost-effective runtime that guarantees perfor-
mance. INFaaS[42] generates variant candidates
from existing models based on user requirements
and other parameters (e.g., batch size, H/W con-
figuration, and H/W-specific parameters). After
performing profiling for each variant, INFaaS
selects the model variant with the least cost
based on resource consumption using a heuristic
approach. To meet guaranteed latency require-
ments and improve cost efficiency for the current
load, two-level auto-scaling is implemented. In this
study, the primary target was a relatively short
execution time and a small-scale image classifi-
cation model. Additionally, it focused solely on
the user’s perspective of cost-efficiency and scal-
ability, without considering the aspects of data
center resources that require load balancing and
cannot provide infinite scaling, such as utilization
and system throughput. Wang et al., proposed
auto-tuning inference system Morphling[51] that
takes system aspects into account. It explores
optimal settings to optimize resource provisioning
configurations, ensuring cost-effectiveness while
providing performance that guarantees user SLOs.
Their study, similar to the present study, combines

28

28

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

offline meta-modeling and online few-shot learning
methods to provide rapid predictions and tunings.
However, this work only considers the impact of
GPU time-sharing and fails to consider the affinity
or interference level of co-running tasks. Further-
more, despite conducting experiments on a cluster
configured with Kubernetes, they could not deter-
mine the overall cluster resource utilization as
the experiments primarily focused on the cost of
exploration and the number of processing requests
per second.

Scheduling system on Heterogeneous
GPU cluster There are various researches to
present a scheduling method in order to per-
form the DL application on heterogeneous GPU
cluster. MLaaS[52] presents an in-depth exami-
nation of extensive workload traces from Alibaba
and highlights the optimized scheduling method
to cover both high-GPU and low-GPU tasks.
It employs a simple reserving-and-packing(R&P)
to schedule high and low-GPU tasks. It also
focuses on the advantages of GPU sharing in real-
world GPU data centers. S.J. Subramanya et al.
present Sia[46] to schedule adaptive DL jobs on
heterogeneous resources to get better cluster per-
formance. In this work, spatial multiplexing is
adopted to enhance GPU utilization while maxi-
mizing goodput. H. Zhang et al.[58] also present a
model-serving system based on online algorithm.
It introduces a model serving system with a two-
level architecture to ensure reliable goodput even
under unpredictable workloads. This is achieved
by utilizing preemptions and the batching charac-
teristics specific to each model. In addition, [5, 25,
12] also proposed research to optimize the cluster-
level Scheduler for improving work performance
and reducing latency on heterogeneous GPU clus-
ters. Most of the research focuses on large-scale
training tasks.

Affinity/sharing With the advancement of
GPU sharing technology and the active sup-
port for its application within Kubernetes, efforts
are underway to provide optimal performance in
resource sharing at a rapid pace. Strati et al.
conducted research to maximize resource utiliza-
tion by co-locating best-effort tasks and high-
priority tasks for spatial resource sharing through
Orion[45]. This places the two tasks together in a
way that minimizes interference, considering the
characteristics of the tasks. However, when focus-
ing solely on inference as in this study, no matter

how throughput-oriented it may be, latency con-
siderations cannot be ignored. Therefore, when
applying the method proposed by Orion to these
tasks, as shown in the previous experiments, there
are limitations in improving utilization. Shen et
al.[44] proposes a cluster-level optimization sys-
tem for DNN-based video analysis in GPU dat
acenters. Their study utilizes a heuristic approach
to select requests that will co-run on the same
GPU and identifies the optimal batch size that
meets the SLO, while exploring a best-fit com-
bination of tasks that satisfies latency require-
ments and maximizes utilization. As their study is
focused on the model for video analysis, it does not
consider the characteristics of inference models
like the rapidly increasing LLMs or heterogeneous
GPUs.

6 Discussion

Dynamic MIG Partitioning The scheduling
of OLTunes adjusts the MIG partitions of the
target GPU in advance through the MIG config-
uration manager when configuring batches with
GPUs that support MIG, provided that there is
available GPU memory remaining above a certain
threshold even after auto-tuning. After changing
the settings, include the available resource list for
the next batch in the empty partition. The MIG
settings can be dynamically changed as needed to
further enhance GPU utilization. However, this
paper did not address the dynamic configuration
in detail. Future work will focus on the dynamic
configuration of the optimized MIG.

Various features consideration for Auto-
tuning This paper considers only the batch size
for tuning S/W feature. By adjusting additional
features such as precision or the number of layers,
it is possible to provide tuning that aligns with
the user’s SLO. Future work will aim to offer
more refined tuning by considering additional
S/W features.

7 Conclusion

This paper proposed OLTunes, a resource schedul-
ing framework for the efficient management of
deep learning inference tasks in a heterogeneous
GPU cluster environment. OLTunes has been
designed with a hybrid scheduling method that

29

29

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

combines the characteristics of both online and
offline inference tasks, meeting the requirements
necessary for each task. Through this, an opti-
mal resource utilization plan that satisfies both
the fast responsiveness of latency-critical tasks
and the high throughput of throughput-oriented
tasks has been presented. OLTunes minimized
resource fragmentation and reduced interference
between tasks through auto-tuning and dynamic
scheduling, ensuring efficient resource allocation.
In particular, by utilizing FM-FTML-based online
learning to optimize predictive performance, this
paper has derived the optimal application envi-
ronment and resource selection that meets SLA.

Through performance evaluation, OLTunes
achieved the following results compared to exist-
ing resource management systems under various
realistic inference load conditions:

• It demonstrated the potential to enhance over-
all GPU utilization by up to 58% on average,
contributing to the resource efficiency in hetero-
geneous GPUs.

• It improved p99 tail latency and average job
completion time (JCT) by up to 49% and
7.17% respectively, enhancing the response per-
formance of latency-sensitive tasks.

• On average, OLTunes achieved improvements of
29.5% in latency and 29% in throughput across
various workloads, while also reducing opera-
tional costs and energy consumption through
balanced GPU utilization.

• It ensured QoS by reducing SLO violations by
up to 92% compared to recent studies.

This paper proposed a new approach for
the efficient management of deep learning infer-
ence tasks in heterogeneous cluster environments,
demonstrating the potential to maximize oper-
ational efficiency in data centers and provide
high-performance inference services that meet the
diverse needs of users. In the future, we will further
expand the application scope of OLTunes based on
various real-time and non-real-time task scenarios,
and conduct performance evaluations targeting a
wider range of the latest GPUs to validate the
scheduling method proposed in this study. In this
way, we would like to contribute to the sustainable
development of AI services and the improvement
of operational efficiency in data centers.

Acknowledgements. This work was sup-
ported by the National Research Foundation
of Korea(NRF) grant funded by the Korea
government(MSIT) (No.2021R1A2C1003379).

We appreciate the high-performance GPU
computing support of HPC-AI Open Infrastruc-
ture via GIST SCENT.

References

[1] AI and the Data Center: Challenges and
Investment Strategies. [Accessed Sept 2024].
url: https://www.informationweek.com/
it- infrastructure/ai- and- the- data- center-
challenges-and-investment-strategies.

[2] Apache Mesos. [Accessed Sept 2024]. url:
https://mesos.apache.org/.

[3] Eishi Arima et al. “Optimizing Hardware
Resource Partitioning and Job Allocations
on Modern GPUs under Power Caps”. In:
Workshop Proceedings of the 51st Interna-
tional Conference on Parallel Processing.
2022, pp. 1–10. doi: https ://doi .org/10 .
1145/3545008.3545017.

[4] Brendan Burns et al. “Borg, Omega, and
Kubernetes”. In: ACM Symposium on Oper-
ating Systems Principles (SOSP). ACM,
2016, pp. 70–87. doi: https://doi.org/10.
1145/2986772.2986816.

[5] Shubham Chaudhary et al. “Balancing Effi-
ciency and Fairness in Heterogeneous GPU
Clusters for Deep Learning”. In: Proceed-
ings of the Fifteenth European Conference
on Computer Systems. 2020, pp. 1–16. doi:
https://doi.org/10.1145/3342195.3387521.

[6] Seungbeom Choi et al. “Multi-model
machine learning inference serving with gpu
spatial partitioning”. In: arXiv preprint
arXiv:2109.01611 (2021).

[7] Peter Corcoran and Anders Andrae. Emerg-
ing Trends in Electricity Consumption for
Consumer ICT. Tech. rep. National Univer-
sity of Ireland, Galway, 2013. url: https :
//researchrepository.universityofgalway.ie/
handle/10379/3563.

[8] Daniel Crankshaw et al. “Clipper: A Low-
Latency Online Prediction Serving System”.
In: 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI
17). 2017, pp. 613–627.

30

30

https://www.informationweek.com/it-infrastructure/ai-and-the-data-center-challenges-and-investment-strategies
https://www.informationweek.com/it-infrastructure/ai-and-the-data-center-challenges-and-investment-strategies
https://www.informationweek.com/it-infrastructure/ai-and-the-data-center-challenges-and-investment-strategies
https://mesos.apache.org/
https://doi.org/https://doi.org/10.1145/3545008.3545017
https://doi.org/https://doi.org/10.1145/3545008.3545017
https://doi.org/https://doi.org/10.1145/2986772.2986816
https://doi.org/https://doi.org/10.1145/2986772.2986816
https://doi.org/https://doi.org/10.1145/3342195.3387521
https://researchrepository.universityofgalway.ie/handle/10379/3563
https://researchrepository.universityofgalway.ie/handle/10379/3563
https://researchrepository.universityofgalway.ie/handle/10379/3563

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

[9] Jia Deng et al. “ImageNet: A Large-Scale
Hierarchical Image Database”. In: 2009
IEEE Conference on Computer Vision and
Pattern Recognition. IEEE. 2009, pp. 248–
255. doi: https://doi.org/10.1109/CVPR.
2009.5206848.

[10] Jacob Devlin. “BERT: Pre-Training of
Deep Bidirectional Transformers for Lan-
guage Understanding”. In: arXiv preprint
arXiv:1810.04805 (2018).

[11] Aditya Dhakal, Sameer G. Kulkarni, and
K.K. Ramakrishnan. “Gslice: Controlled
Spatial Sharing of GPUs for a Scalable
Inference Platform”. In: Proceedings of the
11th ACM Symposium on Cloud Computing.
2020, pp. 492–506. doi: https://doi.org/10.
1145/3419111.3421284.

[12] Juncheng Gu et al. “Tiresias: A GPU Clus-
ter Manager for Distributed Deep Learn-
ing”. In: 16th USENIX Symposium on Net-
worked Systems Design and Implementation
(NSDI 19). 2019, pp. 485–500. doi: https:
//doi.org/10.5555/3311880.3311921.

[13] Mingcong Han et al. “Microsecond-Scale
Preemption for Concurrent GPU-
Accelerated DNN Inferences”. In: 16th
USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22).
Carlsbad, CA: USENIX Association, July
2022, pp. 539–558. isbn: 978-1-939133-28-1.
url: https://www.usenix.org/conference/
osdi22/presentation/han.

[14] Kaiming He et al. “Deep Residual Learning
for Image Recognition”. In: Proceedings of
the IEEE Conference on Computer Vision
and Pattern Recognition. 2016, pp. 770–778.
doi: https://doi.org/10.1109/CVPR.2016.
90.

[15] Kaiming He et al. “Deep Residual Learning
for Image Recognition”. In: Proceedings of
the IEEE Conference on Computer Vision
and Pattern Recognition. 2016, pp. 770–778.
doi: https://doi.org/10.1109/CVPR.2016.
90.

[16] Qinghao Hu et al. “Characterization of
Large Language Model Development in the
Datacenter”. In: 21st USENIX Symposium
on Networked Systems Design and Imple-
mentation (NSDI 24). 2024, pp. 709–729.

[17] Paras Jain et al. “Dynamic Space-Time
Scheduling for GPU Inference”. In: arXiv
preprint arXiv:1901.00041 (2018), pp. 1–8.

[18] Glenn Jocher. YOLOv5 by Ultralytics (Ver-
sion 7.0). Computer software. 2020. url:
https://doi.org/10.5281/zenodo.3908559.

[19] Kiran Kasichayanula et al. “Power aware
computing on GPUs”. In: 2012 Symposium
on Application Accelerators in High Perfor-
mance Computing. IEEE. 2012, pp. 64–73.
doi: https ://doi .org/10.1109/SAAHPC.
2012.16.

[20] Sejin Kim and Yoonhee Kim. “Co-
scheML: Interference-Aware Container
Co-Scheduling Scheme Using Machine
Learning Application Profiles for GPU
Clusters”. In: 2020 IEEE International
Conference on Cluster Computing (CLUS-
TER). IEEE. 2020, pp. 104–108. doi:
https://doi.org/10.1109/CLUSTER49012.
2020.00020.

[21] Z. Lan. “Albert: A Lite BERT for
Self-Supervised Learning of Language
Representations”. In: arXiv preprint
arXiv:1909.11942 (2019).

[22] Matthew LeMay, Shijian Li, and Tian Guo.
“Perseus: Characterizing Performance and
Cost of Multi-Tenant Serving for CNNMod-
els”. In: 2020 IEEE International Confer-
ence on Cloud Engineering (IC2E). IEEE.
2020, pp. 66–72. doi: https://doi.org/10.
1109/IC2E48712.2020.00014.

[23] Baolin Li et al. “Clover: Toward Sustainable
AI with Carbon-Aware Machine Learning
Inference Service”. In: Proceedings of the
International Conference for High Perfor-
mance Computing, Networking, Storage and
Analysis. 2023, pp. 1–15. doi: https://doi.
org/10.1145/3581784.3607034.

[24] Tsung-Yi Lin et al. “Microsoft COCO: Com-
mon objects in context”. In: European con-
ference on computer vision. Springer. 2014,
pp. 740–755. doi: https://doi.org/10.1007/
978-3-319-10602-1 48.

[25] Kshiteej Mahajan et al. “Themis: Fair and
Efficient GPU Cluster Scheduling”. In: 17th
USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI
20). 2020, pp. 289–304.

[26] Brendan McMahan. “Follow-the-
Regularized-Leader and Mirror Descent:

31

31

https://doi.org/https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/https://doi.org/10.1145/3419111.3421284
https://doi.org/https://doi.org/10.1145/3419111.3421284
https://doi.org/https://doi.org/10.5555/3311880.3311921
https://doi.org/https://doi.org/10.5555/3311880.3311921
https://www.usenix.org/conference/osdi22/presentation/han
https://www.usenix.org/conference/osdi22/presentation/han
https://doi.org/https://doi.org/10.1109/CVPR.2016.90
https://doi.org/https://doi.org/10.1109/CVPR.2016.90
https://doi.org/https://doi.org/10.1109/CVPR.2016.90
https://doi.org/https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.5281/zenodo.3908559
https://doi.org/https://doi.org/10.1109/SAAHPC.2012.16
https://doi.org/https://doi.org/10.1109/SAAHPC.2012.16
https://doi.org/https://doi.org/10.1109/CLUSTER49012.2020.00020
https://doi.org/https://doi.org/10.1109/CLUSTER49012.2020.00020
https://doi.org/https://doi.org/10.1109/IC2E48712.2020.00014
https://doi.org/https://doi.org/10.1109/IC2E48712.2020.00014
https://doi.org/https://doi.org/10.1145/3581784.3607034
https://doi.org/https://doi.org/10.1145/3581784.3607034
https://doi.org/https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/https://doi.org/10.1007/978-3-319-10602-1_48

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Equivalence Theorems and l1 Regulariza-
tion”. In: Proceedings of the Fourteenth
International Conference on Artificial Intel-
ligence and Statistics. JMLR Workshop and
Conference Proceedings. 2011, pp. 525–533.
doi: https://doi.org/10.48550/arXiv.1010.
1163.

[27] Microsoft. Azure LLM Inference Trace
2023: Dataset for Large Language Model
Inference, 2023. Accessed on [Sep 2024].
url: https : / / github . com / Azure /
AzurePublicDataset / blob / master /
AzureLLMInferenceDataset2023.md.

[28] Microsoft. Azure Public Dataset: Open
Datasets for Machine Learning. Accessed on
[Sep 2024]. 2020. url: https://github.com/
Azure/AzurePublicDataset.

[29] S. Mittal and J. S. Vetter. “A Survey of
Methods for Analyzing and Improving GPU
Energy Efficiency”. In: ACM Comput. Surv.
47.2 (2014), pp. 1–23. doi: https://doi.org/
10.1145/2636342.

[30] Seyed Morteza Nabavinejad, Sherief Reda,
and Masoumeh Ebrahimi. “BatchSizer:
Power-Performance Trade-Off for DNN
Inference”. In: Proceedings of the 26th Asia
and South Pacific Design Automation Con-
ference. 2021, pp. 819–824. doi: https://doi.
org/10.1145/3394885.3431535.

[31] Alexey Natekin and Alois Knoll. “Gradient
Boosting Machines, a Tutorial”. In: Fron-
tiers in Neurorobotics 7 (2013), p. 21. doi:
https://doi.org/10.3389/fnbot.2013.00021.

[32] NVIDIA Hopper, Ampere GPUs Sweep
Benchmarks in AI Training (2022).
[Accessed Sept 2024]. url: https ://blogs .
nvidia .com/blog/2022/11/09/mlperf - ai -
traininghpc-hopper/.

[33] Nvidia Multi-Instance GPU (MIG) User
Guide, 2021. [Accessed Sept 2024]. url:
https://docs.nvidia.com/datacenter/tesla/
mig-user-guide/.

[34] Nvidia Multi-Process Service (MPS), 2021.
[Accessed Sept 2024]. url: https : / /docs .
nvidia . com / deploy / pdf / CUDA Multi
Process Service Overview.pdf.

[35] NVIDIA Nsight Compute. Online; accessed
22 August 2024. url: https : / /developer .
nvidia.com/nsight-compute.

[36] The Washington Post. World is on Brink
of Catastrophic Warming, U.N. Climate

Change Report Says, 2023. [Accessed Sept
2024]. url: https://www.washingtonpost.
com / climateenvironment / 2023 / 03 / 20 /
climate-change-ipcc-report-15/.

[37] Price per Time for GPU. [Accessed Sept
2024]. url: https://salad.com/pricing.

[38] Price per Time of Ampere GPU. [Accessed
Sept 2024]. url: https ://massedcompute .
com/faq - answers/?question=Can+you+
provide+ information+on+the+pricing+
models+for+NVIDIA+RTX+A30+and+
A100+GPUs+ in+cloud+environments%
2C + including + any + discounts + or +
promotions+that+may+be+available%3F.

[39] Alec Radford et al. “Language Models are
Unsupervised Multitask Learners”. In: Ope-
nAI Blog 1.8 (2019), p. 9.

[40] Pranav Rajpurkar, Robin Jia, and Percy
Liang. “Know What You Don’t Know:
Unanswerable Questions for SQuAD”. In:
arXiv preprint arXiv:1806.03822 (2018).

[41] Steffen Rendle. “Factorization Machines”.
In: 2010 IEEE International Conference on
Data Mining. IEEE. 2010, pp. 995–1000.
doi: https://doi.org/10.1109/ICDM.2010.
127.

[42] Francisco Romero et al. “INFaaS: Auto-
mated Model-Less Inference Serving”. In:
2021 USENIX Annual Technical Conference
(USENIX ATC 21). 2021, pp. 397–411.

[43] Mohammad Shahrad et al. “Serverless in
the Wild: Characterizing and Optimizing
the Serverless Workload at a Large Cloud
Provider”. In: 2020 USENIX Annual Tech-
nical Conference (USENIX ATC 20). 2020,
pp. 205–218. url: https : / / doi . org / 10 .
48550/arXiv.2003.03423.

[44] Haichen Shen et al. “Nexus: A GPU Cluster
Engine for Accelerating DNN-Based Video
Analysis”. In: Proceedings of the 27th ACM
Symposium on Operating Systems Princi-
ples. 2019, pp. 322–337. doi: https://doi .
org/10.1145/3341301.3359658.

[45] Foteini Strati, Xianzhe Ma, and Ana
Klimovic. “Orion: Interference-Aware, Fine-
Grained GPU Sharing for ML Applica-
tions”. In: Proceedings of the Nineteenth
European Conference on Computer Systems.
2024, pp. 1075–1092. doi: https://doi.org/
10.1145/3627703.3629578.

32

32

https://doi.org/https://doi.org/10.48550/arXiv.1010.1163
https://doi.org/https://doi.org/10.48550/arXiv.1010.1163
https://github.com/Azure/AzurePublicDataset/blob/master/AzureLLMInferenceDataset2023.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureLLMInferenceDataset2023.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureLLMInferenceDataset2023.md
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://doi.org/https://doi.org/10.1145/2636342
https://doi.org/https://doi.org/10.1145/2636342
https://doi.org/https://doi.org/10.1145/3394885.3431535
https://doi.org/https://doi.org/10.1145/3394885.3431535
https://doi.org/https://doi.org/10.3389/fnbot.2013.00021
https://blogs.nvidia.com/blog/2022/11/09/mlperf-ai-traininghpc-hopper/
https://blogs.nvidia.com/blog/2022/11/09/mlperf-ai-traininghpc-hopper/
https://blogs.nvidia.com/blog/2022/11/09/mlperf-ai-traininghpc-hopper/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://www.washingtonpost.com/climateenvironment/2023/03/20/climate-change-ipcc-report-15/
https://www.washingtonpost.com/climateenvironment/2023/03/20/climate-change-ipcc-report-15/
https://www.washingtonpost.com/climateenvironment/2023/03/20/climate-change-ipcc-report-15/
https://salad.com/pricing
https://massedcompute.com/faq-answers/?question=Can+you+provide+information+on+the+pricing+models+for+NVIDIA+RTX+A30+and+A100+GPUs+in+cloud+environments%2C+including+any+discounts+or+promotions+that+may+be+available%3F
https://massedcompute.com/faq-answers/?question=Can+you+provide+information+on+the+pricing+models+for+NVIDIA+RTX+A30+and+A100+GPUs+in+cloud+environments%2C+including+any+discounts+or+promotions+that+may+be+available%3F
https://massedcompute.com/faq-answers/?question=Can+you+provide+information+on+the+pricing+models+for+NVIDIA+RTX+A30+and+A100+GPUs+in+cloud+environments%2C+including+any+discounts+or+promotions+that+may+be+available%3F
https://massedcompute.com/faq-answers/?question=Can+you+provide+information+on+the+pricing+models+for+NVIDIA+RTX+A30+and+A100+GPUs+in+cloud+environments%2C+including+any+discounts+or+promotions+that+may+be+available%3F
https://massedcompute.com/faq-answers/?question=Can+you+provide+information+on+the+pricing+models+for+NVIDIA+RTX+A30+and+A100+GPUs+in+cloud+environments%2C+including+any+discounts+or+promotions+that+may+be+available%3F
https://massedcompute.com/faq-answers/?question=Can+you+provide+information+on+the+pricing+models+for+NVIDIA+RTX+A30+and+A100+GPUs+in+cloud+environments%2C+including+any+discounts+or+promotions+that+may+be+available%3F
https://massedcompute.com/faq-answers/?question=Can+you+provide+information+on+the+pricing+models+for+NVIDIA+RTX+A30+and+A100+GPUs+in+cloud+environments%2C+including+any+discounts+or+promotions+that+may+be+available%3F
https://doi.org/https://doi.org/10.1109/ICDM.2010.127
https://doi.org/https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.48550/arXiv.2003.03423
https://doi.org/10.48550/arXiv.2003.03423
https://doi.org/https://doi.org/10.1145/3341301.3359658
https://doi.org/https://doi.org/10.1145/3341301.3359658
https://doi.org/https://doi.org/10.1145/3627703.3629578
https://doi.org/https://doi.org/10.1145/3627703.3629578

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

[46] Suhas Jayaram Subramanya et al. “Sia:
Heterogeneity-Aware, Goodput-Optimized
ML-Cluster Scheduling”. In: Proceedings of
the 29th Symposium on Operating Systems
Principles. 2023, pp. 642–657.

[47] Vladimir Svetnik et al. “Random Forest: A
Classification and Regression Tool for Com-
pound Classification and QSAR Modeling”.
In: Journal of Chemical Information and
Computer Sciences 43.6 (2003), pp. 1947–
1958. doi: https : / / doi . org / 10 . 1021 /
ci034160g.

[48] Anh-Phuong Ta. “Factorization Machines
with Follow-the-Regularized-Leader for
CTR Prediction in Display Advertising”.
In: 2015 IEEE International Conference
on Big Data (Big Data). IEEE. 2015,
pp. 2889–2891. doi: https : / /doi . org /10 .
1109/BigData.2015.7364082.

[49] Cheng Tan et al. “Serving DNNModels with
Multi-Instance GPUs: A Case of the Recon-
figurable Machine Scheduling Problem”. In:
arXiv preprint arXiv:2109.11067 (2021).

[50] The Kubernetes Authors. Kubernetes:
Production-Grade Container Orchestration.
Version 1.0, released in 2015. Ongoing
development, latest version available online.
2014. url: https://kubernetes.io.

[51] Luping Wang et al. “Morphling: Fast, Near-
Optimal Auto-Configuration for Cloud-
Native Model Serving”. In: Proceedings of
the ACM Symposium on Cloud Computing.
2021, pp. 639–653. doi: https://doi.org/10.
1145/3472883.3486987.

[52] Qizhen Weng et al. “MLaaS in the Wild:
Workload Analysis and Scheduling in Large-
Scale Heterogeneous GPU Clusters”. In:
19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI
22). 2022, pp. 945–960. doi: https ://doi .
org/10.5555/3530524.3530605.

[53] Wikipedia contributors. Sigmoid function
— Wikipedia, The Free Encyclopedia.
[Online; accessed 3-January-2025]. 2024.
url: https : / / en . wikipedia . org / w /
index.php?title=Sigmoid function&oldid=
1261826297.

[54] Hong-Jian Xue et al. “Deep Matrix Factor-
ization Models for Recommender Systems”.

In: Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelli-
gence (IJCAI-17). 2017, pp. 3203–3209. doi:
https://doi.org/10.24963/ijcai.2017/447.

[55] Zhisheng Ye et al. “Deep Learning Workload
Scheduling in GPU Datacenters: A Survey”.
In: ACM Computing Surveys 56.6 (2024),
pp. 1–38. doi: https ://doi .org/10 .1145/
3638757.

[56] Ezgi Yıldırım, Payam Azad, and Şule
Gündüz Öğüdücü. “biDeepFM: A Multi-
Objective Deep Factorization Machine for
Reciprocal Recommendation”. In: Engineer-
ing Science and Technology, an Interna-
tional Journal 24.6 (2021), pp. 1467–1477.
doi: https://doi.org/10.1016/j.jestch.2021.
02.008.

[57] Chengliang Zhang et al. “Enabling Cost-
Effective, SLO-Aware Machine Learning
Inference Serving on Public Cloud”. In:
IEEE Transactions on Cloud Computing
10.3 (2020), pp. 1765–1779. doi: https ://
doi.org/10.1109/TCC.2020.3008910.

[58] Hong Zhang et al. “SHEPHERD: Serving
DNNs in the Wild”. In: 20th USENIX Sym-
posium on Networked Systems Design and
Implementation (NSDI 23). 2023, pp. 787–
808. doi: https://doi.org/10.1145/3600006.
3613175.

[59] Zixuan Zhou et al. “A Survey on Efficient
Inference for Large Language Models”. In:
arXiv preprint arXiv:2404.14294 (2024).

33

33

https://doi.org/https://doi.org/10.1021/ci034160g
https://doi.org/https://doi.org/10.1021/ci034160g
https://doi.org/https://doi.org/10.1109/BigData.2015.7364082
https://doi.org/https://doi.org/10.1109/BigData.2015.7364082
https://kubernetes.io
https://doi.org/https://doi.org/10.1145/3472883.3486987
https://doi.org/https://doi.org/10.1145/3472883.3486987
https://doi.org/https://doi.org/10.5555/3530524.3530605
https://doi.org/https://doi.org/10.5555/3530524.3530605
https://en.wikipedia.org/w/index.php?title=Sigmoid_function&oldid=1261826297
https://en.wikipedia.org/w/index.php?title=Sigmoid_function&oldid=1261826297
https://en.wikipedia.org/w/index.php?title=Sigmoid_function&oldid=1261826297
https://doi.org/https://doi.org/10.24963/ijcai.2017/447
https://doi.org/https://doi.org/10.1145/3638757
https://doi.org/https://doi.org/10.1145/3638757
https://doi.org/https://doi.org/10.1016/j.jestch.2021.02.008
https://doi.org/https://doi.org/10.1016/j.jestch.2021.02.008
https://doi.org/https://doi.org/10.1109/TCC.2020.3008910
https://doi.org/https://doi.org/10.1109/TCC.2020.3008910
https://doi.org/https://doi.org/10.1145/3600006.3613175
https://doi.org/https://doi.org/10.1145/3600006.3613175

	Oltunes: Online learning-based auto-tuning system for DL inference in heterogeneous GPU cluster

