
Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Dyna-P: placement-aware dynamic partitioning for lightweight applications with modern
GPUs

This Accepted Manuscript (AM) is a PDF file of the manuscript accepted for publication after peer review, when applicable, but
does not reflect post-acceptance improvements, or any corrections. Use of this AM is subject to the publisher's embargo period
and AM terms of use. Under no circumstances may this AM be shared or distributed under a Creative Commons or other form of
open access license, nor may it be reformatted or enhanced, whether by the Author or third parties. By using this AM (for
example, by accessing or downloading) you agree to abide by Springer Nature's terms of use for AM versions of subscription
articles: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

The Version of Record (VOR) of this article, as published and maintained by the publisher, is available online at:
https://doi.org/10.1007/s10586-025-05284-2. The VOR is the version of the article after copy-editing and typesetting, and
connected to open research data, open protocols, and open code where available. Any supplementary information can be found on
the journal website, connected to the VOR.

For research integrity purposes it is best practice to cite the published Version of Record (VOR), where available (for example,
see ICMJE’s guidelines on overlapping publications). Where users do not have access to the VOR, any citation must clearly
indicate that the reference is to an Accepted Manuscript (AM) version.

https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://doi.org/10.1007/s10586-025-05284-2

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Dyna-P: Placement-aware Dynamic Partitioning for

Lightweight Applications with Modern GPUs

Theodora Adufu1 and Yoonhee Kim2*

1,2Department of Computer Science, Sookmyung Women’s University, 100 Cheongpa-ro
47-gil, Seoul, 04310, South Korea.

*Corresponding author(s). E-mail(s): yulan@sookmyung.ac.kr;
Contributing authors: theoadufu@sookmyung.ac.kr;

Abstract

Efficient GPU resource sharing is critical in dynamic cloud-based environments, particularly for
lightweight HPC applications and Small Language Models, which demand partial GPU resources
for execution. However, traditional scheduling frameworks fail to address intra-GPU and inter-node
resource fragmentation and dynamic placement challenges arising from the heterogeneity in each
application’s resource demand and job completion times. This leads to resource under-utilization
and scheduling delays in GPU clusters. This paper introduces Dyna-P, a novel scheduling framework
designed to dynamically adjust GPU partitions to minimize resource fragmentation while improving
system throughput and Makespan. Dyna-P proposes a Reconfiguration Last Placement policy which
recognizes that workloads consisting of lightweight applications can benefit more from uninterrupted
execution. Experimental results demonstrate that Dyna-P improves average throughput by up to
14.7% and reduces Makespan by 39% compared to state-of-the-art methods. These findings underscore
Dyna-P’s potential to improve resource allocation rates in multi-tenant GPU environments.

Keywords: Dynamic Partitioning, Spatial Sharing, GPU utilization, Placement, Fragmentation

1 Introduction

Modern Graphics Processing Units (GPUs) are
pivotal in accelerating workloads across diverse
fields, including Artificial Intelligence (AI), High-
Performance Computing (HPC), and scientific
research. The increasing prevalence of cloud-based
GPU environments [1, 2, 3, 4] and the recent
introduction of local inference serving platforms
like Ollama [5] have driven the need for efficient
resource management, particularly as workload
diversity continues to expand. Container orches-
trators like Kubernetes and KubeEdge[6, 7] play a
vital role in workload scheduling within resource-
constrained GPU cloud environments, such as

AI research institutes and edge servers. How-
ever, these systems face significant challenges in
efficiently managing GPU resources, particularly
for lightweight applications. These challenges are
intensified by the rapid adoption of Small Lan-
guage Models (SLMs), which introduce diverse
and unpredictable resource demands, and by
the irregular arrival of jobs, which complicates
scheduling and allocation strategies.

Similar to some HPC applications [8, 9], SLMs,
with their lightweight architecture and high effi-
ciency, often require partial GPU resources, cre-
ating a complex multidimensional bin-packing
problem [10, 11] with placement constraints; a

1

1

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

challenge yet to be fully addressed by existing
schedulers.

Existing GPU sharing methodologies can be
broadly classified into temporal and spatial shar-
ing techniques. Temporal sharing, which involves
alternating GPU access across time partitions,
often leads to performance degradation as a result
of frequent context switching. In contrast, spa-
tial sharing, enabled by technologies such as
NVIDIA’s Multi-Instance GPU (MIG), partitions
GPU resources into isolated partitions to support
concurrent execution. However, these approaches
are limited by static configurations, resource
fragmentation, and inefficiencies in addressing
dynamic job requirements.

This paper proposes Dyna-P, a dynamic par-
titioning framework designed to improve GPU
resource allocation rates for lightweight applica-
tions. Using inherent merge and split function-
alities, Dyna-P dynamically reconfigures partial
GPU partitions to minimize fragmentation and
maximize resource utilization. Dyna-P also pro-
poses a Reconfiguration Last Placement policy
to ensure uninterrupted execution of workloads.
Experimental evaluations highlight the following
key contributions:

• Analysis of lightweight applications on GPU
partitions to estimate required resources and
address over-provisioning (Sec. 2).

• Innovative use of NVIDIA’s merge and split
features for flexible GPU configurations and
minimization of intra-GPU fragmentation.

• A joint resource selection, placement, and
scheduling algorithm designed to enhance
throughput and minimize makespan by lever-
aging spatio-temporal workload characteristics
and placement awareness (Sec. 3).

The rest of the paper is organized as follows:
Section 2 highlights the motivations for this inves-
tigation. Section 3 describes the proposed Dyna-P
framework. Section 4, presents an evaluation of
Dyna-P through extensive experiments. Section
5 reviews related work, while Section 6 discusses
potential applications. Finally, Section 7 concludes
the paper.

2 Background and Motivation

In this section, scheduling in GPU cluster envi-
ronments is analyzed using Alibaba’s GPU cluster

Fig. 1: Relationship between requested resources
and scheduling delays using Alibaba’s GPU clus-
ter trace 2023[12]

trace from 2023 [12] to highlight the schedul-
ing challenges yet to be addressed by existing
schedulers.

As observed in Figure 1, consistent scheduling
delays are not only linked to irregular job arrival
patterns but also to the high variability in job
resource requirements. Workloads requiring small
GPU partitions often experience delays (Figure 1)
as traditional GPU runtime environments assign
full GPU resources to jobs which fail to fully uti-
lize them. This observation has led to a surge
in research focused on improving GPU utilization
[13, 14, 15, 16]. However, these do not consider
placement sensitivity and strategies to harvest
resource fragments to improve resource alloca-
tion rates and hence job queuing times. Research
into GPU sharing methodologies has focused on
temporal and spatial sharing(fine-grained and
coarse-grained), with the latter showing promise
in improving GPU utilization.

Fine-grained GPU sharing [17, 18, 19]
enhances hardware utilization at the SM or Com-
pute Unit (CU) level, thereby improving over-
all system throughput. For instance, NVIDIA’s
Multi-Process Service (MPS) [17] allows multiple
kernels to share GPU resources. However, fine-
grained sharing introduces challenges, including
interference among concurrently running work-
loads, where kernels may modify overlapping
memory locations. Additionally, the lack of strict
performance isolation makes MPS unsuitable for
multi-tenancy in GPU clusters.

Coarse-grained approaches, such as
NVIDIA’s Multi-Instance GPU (MIG) [20] and

2

2

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

(a) DistilGPT (b) Utilization (%)

(c) Phi-1 (d) Utilization (%)

Fig. 2: Performance comparison SLM workloads for different GPU configurations

AMD’s Compute Unit Masking [21], enable
resource partitioning into isolated partitions to
support concurrent execution. For NVIDIA’s
MIG, resource partitions are denoted by profiles
like 4g.24gb, where 4g represents the compute
capacity and 24gb refers to the associated memory
allocation. MIG supports limited levels of con-
currency, allowing up to seven workloads to run
concurrently on architectures like A100 or H100.
However, these configurations are static and
changing them to accommodate new jobs requires
stopping all active jobs, leading to inefficiencies
and delays [11]. NVIDIA’s merge and split fea-
tures address some limitations by enabling the
creation of new partitions from existing ones
without requiring full reconfiguration. However,
these operations are constrained by the physical
locations of available partitions and the place-
ment of active jobs, making dynamic scheduling
in online environments particularly challenging.

In multi-tenant GPU clouds, coarse-grained
spatial-sharing approaches like NVIDIA’s MIG

are often preferred due to resource isolation.
However, determining suitable partitioning and
resource allocation for inference jobs remains a
challenge; workloads are heterogeneous in their
resource demands.

In the remainder of this section, analysis on
resource sharing, utilization, and throughput for
lightweight applications is conducted to address
the following research questions.

• How can GPU partitions be effectively allocated
to workloads? (Sec. 2)

• What configurations and placements best
enhance performance for diverse workloads?
(Sec. 3)

• Which scheduling strategies improve resource
utilization and reduce fragmentation?(Sec. 3)

2.1 Resource Density, Scalability
and Performance

In this section, the performance of a specific
group of lightweight applications known as SLMs

3

3

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

is evaluated for performance on different resource
partitions.

According to [22], SLMs with parameters
between 0.1 Billion and 3 Billion require between
275 MB and 2456 MB of memory. Their mod-
est resource needs and efficiency in handling tasks
such as code generation, summarization, and text
classification have driven their adoption in mod-
ern GPU clouds. The allocation of Streaming
Multiprocessors (SMs), memory bandwidth, and
cache memory is thus critical to improving delays
and throughput[23] especially for batch inference
requests.

Figure 2 illustrates the execution of two repre-
sentative inference jobs, DistilGPT [24] and Phi-1
[25], to evaluate how resource density (allocated
GPU resources) impacts SLM performance and
GPU resource utilization. Using NVIDIA’s MIG,
isolated partitions of 1g.6gb, 2g.12gb, and 4g.24gb
on the NVIDIA A30 GPU were provisioned for
this investigation. Performance metrics, including
model throughput and P98th latency, were mea-
sured for each workload across batch sizes (1, 2,
4, 8, 16, 32, 64).

In Equation 1, model throughput (MT) mea-
sures the total number of input and output tokens
processed per second. P98th latency represents
the time required to complete 98% of inference
requests for a given batch size. In these bench-
mark experiments, inference requests with the
same input token length were executed 10 times
for each batch size and MIG partition.

MT =
Total tokens (Input + Output)

Inference time
(1)

From Figure 2, it is observed that the perfor-
mance of both applications deteriorates sharply
beyond a trade-off point (TP) on each parti-
tion. Figure 2 shows that P98th latency increases
significantly for smaller partitions (1g.6gb) com-
pared to the full GPU (4g.24gb). This is due to
resource constraints in smaller partitions, which
increase kernel launch times, computation delays,
and data fetching overheads, especially for larger
batch sizes.

In particular, DistilGPT shows higher
throughput than Phi-1 and less latency sensi-
tivity between batch sizes. In contrast, Phi-1
experiences a steep increase in latency and a

fall in model throughput between batch sizes
32 and 64 on the 1g.6gb partition, highlighting
its higher demand for compute resources and
the limitation posed by slower memory opera-
tions. Furthermore, Phi-1’s failure to execute on
the 1g.6gb partition underscores the challenges
of resource constraints, while DistilGPT’s low
resource utilization on 2g.12gb highlights the
challenge of balancing under-provisioning and
over-provisioning during scheduling. Additionally,
peak power utilization increases with batch size
and partition sizes for both applications how-
ever, the higher power usage for DistilGPT on
2g.12gb shows that selecting the right resource
partition ultimately affects the energy efficiency
and carbon footprints when serving inference.

Takeaway: Dynamic input parameters such
as batch sizes, affect the throughput and latency
of SLM inference across different partitions. Exe-
cuting applications with larger batch sizes on any
partition is less beneficial beyond a trade-off point.

2.2 Placement Sensitivity and
System Throughput

The effect of job placement preferences in improv-
ing performance has been studied for scheduling
scenarios[26, 27, 28] with heterogeneous resources.

Fig. 3: Desired spatio-temporal placement Sce-
narios with merge and split

From previous work [8] and as depicted in
(Figure 3), certain valid GPU configurations may
not be suitable for a given workload, despite the
logical availability of resources within a given
scheduling period. This phenomenon or unde-
sired placement is usually observed as systems
adapt to fluctuating incoming inference requests
when resources are scaled dynamically. This usu-
ally leads to resource fragmentation[12] and idle
GPU time.

4

4

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

(a) JCT, Makespan, STP (b) Resource utilization (c) Total energy dissipated

Fig. 4: Performance comparison of workloads for different GPU configurations

NVIDIA’s MIG sharing provides merge and
split features, which allow the dynamic creation
of new resource profiles to meet user QoS require-
ments without preempting all active jobs. While
these features can reduce the total time required
to complete all jobs (makespan) and improve sys-
tem throughput, their effectiveness is limited by
architectural constraints (Figure 3). When lever-
aged appropriately, they can improve resource
allocation and significantly enhance performance.

In multi-GPU cluster environments, inference
workloads are diverse in their QoS requirements,
arrival rates, model throughput (Sec. 2.1), and
utilization across different GPU resources. This
analysis explores the impact of placement strate-
gies on system throughput during the concurrent
execution of inference jobs across various MIG
configurations. By understanding how placement
sensitivity affects resource utilization, this work
aims to inform strategies for balancing workload
demands and maximizing system performance.

In Figure 4, an NVIDIA A30 GPU is stat-
ically partitioned into six configurations: (1g-
only: 1g.1g.1g.1g, Mixed-1: 1g.1g.2g, Mixed-2:
1g.2g.1g, Mixed-3: 2g.1g.1g, 2g-only: 2g.2g, and
4g-full: 4g). These configurations consist of both
homogeneous and heterogeneous (mixed) parti-
tions, with jobs assigned to GPU partitions using
a first-fit placement strategy. The inference work-
loads of four SLM models—DistilGPT [24], Phi-1
[25], CodeGen [29] and Flan-T5-Large [30]—arrive
in a First-Come-First-Served (FCFS) order for
execution.

Sequel to prior studies [9, 31, 32], the system
throughput (Equation 5 in Sec. 3.1.2) is calculated

as the weighted sum of the relative performance
of each GPU partition compared to a full GPU
resource. From Figure 4b, it is observed that with-
out GPU reconfiguration, the placement of jobs
for varying inference workloads leads to differ-
ent system throughput and job completion times
across configurations. Due to the variation in min-
imum resource requirements, partition allocations
for certain jobs, such as Phi-1, result in job fail-
ures in some configurations. This is evident in the
1g-only configuration, where the 1g.6gb partition
cannot satisfy Phi-1’s QoS requirements, leading
to execution failures.

Takeaway: Minimizing the trade-off between
system performance degradation and resource uti-
lization requires a scheduler that anticipates job
placement outcomes across diverse use-case sce-
narios in multi-tenant GPU clouds.

3 Placement-aware GPU
partitioning: Dyna-P

Dyna-P is a workload and placement aware spatial
sharing system designed to enhance GPU resource
utilization and reduce scheduling delays caused by
resource fragmentation. To achieve these objec-
tives, the scheduling framework must account
for both spatial and temporal requirements of
workloads. Spatial requirements involve allocat-
ing appropriate GPU partition sizes and ensuring
efficient utilization, while temporal requirements
address the dynamic nature of workloads, includ-
ing job arrivals, completions, and GPU resource
availability over time.

5

5

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Dyna-P comprises two main components:
Capacity Evaluator and Scheduling Unit,
and operates as described in the example scenario
below (Figure 5). The architecture is designed to
dynamically adapt GPU partitions and schedule
inference workloads in multi-tenant environments
so as to maximize system throughput while min-
imizing resource fragmentation and scheduling
delays.

Fig. 5: System Design of Dyna-P

In a multi-GPU environment, multiple ten-
ants submit jobs, with varying characteristics to a
shared queue, Q = (a bj , . . . , a bm). During work-
load submissions, users specify batch size b and
QoS requirements such as deadline (Da bj), while
also indicating that resources can be shared among
workloads. Users sometimes submit the same jobs
with different batch sizes; this variance in batch
sizes is represented by b in our nomenclature. For
this scenario, the main procedure of Dyna-P is
summarized as follows:

1. In an offline process, each submitted inference
job is profiled in a FCFS manner. The profil-
ing process records important characteristics of
the job, which are stored in a profile repository,
P (pa bj , ..., pa bm).

2. Using the workload profiles, the Batch-aware
Partition Predictor, considers the batch size,
b, of the inference job and addresses the issue
of resource over-provisioning by ensuring that
jobs receive resources which improve through-
put at low latencies. The Job Completion Time
of each job, JCTa bj ,gi , is then estimated using
the performance counters in the profiles.

3. Jobs are prioritized based on their QoS require-
ments (Da bj) and the branch-and-bound algo-
rithm is called to determine the most suitable
placement on each local GPU subject to users’
deadline constraints.

4. During assignment, Dyna-P continuously mon-
itors the workload queue and GPU states.
and evaluates the GPU for potential resource
merges or splits when the physical parti-
tions differ from the partition required for
each placement. This step accounts for job
arrival patterns and anticipates upcoming
workload requirements by leveraging workload
profiles.This process repeats until the workload
queue is empty.

By proactively reallocating resources based on
estimated needs, Dyna-P minimizes delays and
improves scheduling efficiency.

3.1 Capacity Evaluator

Analyzing and allocating GPU resources to infer-
ence jobs is critical, as performance outcomes
heavily depend on the behavior of each work-
load. However, users often oversubscribe to GPU
clusters [33] in an attempt to improve execution
outcomes, which paradoxically leads to resource
under-utilization. Dyna-P leverages NVIDIA’s
Data Center GPU Manager (DCGM) profiling
tool [34] to collect job execution and utilization
metrics for batch inference jobs. With job pro-
files, the capacity evaluator predicts the most
suitable resource partition and the expected job
completion times for each job, as described below.

3.1.1 Batch-aware Partition Predictor

Dyna-P supports multi-GPU environments with
MIG-enabled GPUs, G = (G1, . . . , Gk), allowing
for both homogeneous and heterogeneous parti-
tioning. Each partition gi represents a fraction of
a GPU’s resources. It is assumed that inference
jobs require either partial or full GPU resources,
with gi satisfying 0 < gi ≤ Gk where Gk =
(g1, . . . , g|G|), the set of valid GPU partitions. The
maximum number of valid partitions vary per
GPU architecture; for instance on the A30 GPU,
|G|= 4 whilst |G|= 7 for A100 and H100 GPUs.

As illustrated in Figure 2, each inference job
shows a latency (Lat) and model throughput
(MT) trade-off for each combination of batch sizes

6

6

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

and resource partitions. This shows that latency
and model throughput must both be considered
simultaneously in order to select suitable resources
and ensure that user’s QoS (deadline) are satis-
fied. It is desirable that latency be at its minimum
while model throughput improves.

The Batch-aware Partition Predictor adapts
Li et al. [35]’s use of directed bipartite graphs to
match inference jobs of varying batch sizes a bj
to suitable GPU partitions gi, where a bj denotes
job a bj executed with user-specified batch size b.
Dyna-P’s graph-based approach efficiently models
the trade-offs between latency, model throughput,
and resource partitions. In the graph, one set of
nodes represents batch size variants a bj , and the
other set represents available GPU partitions gi.
A weighted edge, F (a bj , gi), between a bj and
gi represents the suitability of that partition for
executing the job with weights calculated using
Equation 2.

F (a bj , gi) = λ ·∆Lata bj ,gi +(1− λ) ·∆MTa bj ,gi

(2)
s.t. Lat(a bj , gi) +margin ≤ Da bj ∀gi, a bj

The weights balance latency minimization
(∆Lata bj ,gi) and model throughput maximiza-
tion (∆MTa bj ,gi) based on the parameter λ where
0 ≤ λ ≤ 1 is a configurable parameter that can be
tuned for different scenarios. The baseline metrics
Lbasegi

and MTbasegi
in Equations 3 and 4 are

measured for the maximum batch size (e.g. b = 64)
that the partition gi can accommodate. This rep-
resents the most resource-intensive scenario and
ensures that weights are normalized for consistent
comparisons.

∆Lata bj ,gi =
Lbasegi

− L(a bj , gi)

Lbasegi

(3)

∆MTa bj ,gi =
MT (a bj , gi)−MTbasegi

MTbasegi

(4)

Using this representation, BPP (Algorithm 1)
performs matching by identifying (a bj , gi) pair-
ings that maximize edge weights, prioritizing par-
titions that reduce latency and maximize model
throughput, while ensuring that QoS deadlines
Da bj are met. During the graph construction
phase, edges are created only if the memory and
compute requirements of a bj do not exceed the
capacities of gi. If the memory requirements of

the job do not exceed the partition capacity
(Mema bj ≤ Capgi), an edge is created, with its
weight F (a bj , gi) calculated based on Equation 2.
Invalid pairs are excluded at this stage to ensure
that only feasible assignments are considered.

Algorithm 1 Edge Creation with BPP

Require: Jobs Q = a b1, a b2, . . . , a bm
Require: Partitions Gk = g1, g2, . . . , g|G|
1: for job a bj ∈ Q do
2: for partition gi ∈ Gk do
3: if Mema bj ≤ Capgi then
4: F (a bj , gi)← λ ·∆Lata bj ,gi + (1−

λ) ·∆MTa bj ,gi

5: Add edge (a bj , gi, F (a bj , gi))
6: else
7: Exclude (a bj , gi)
8: end if
9: end for

10: end for

Suppose there are two inference jobs, a b1
and a b2, with batch sizes b = 16 and b = 32,
respectively. The available GPU partitions are
1g.6gb, 2g.12gb and 4g.24gb and they all satisfy
the OOM requirements of a 161, but 1g.6gb does
not meet the requirements of a 322. Then using
Equation 2, weights F (a bj , gi) are calculated for
each valid pairing as illustrated in Figure 6. Edges

Fig. 6: Batch-aware Partition Prediction Process

are created in the bipartite graph for these pairs,
ensuring that 2g.12gb and 4g.24gb are priori-
tized for a 322, while 1g.6gb, 2g.12gb and 4g.24gb
remain feasible for a 161. The weighted edge with
the highest F (a bj , gi) value is considered the most
suitable partition for the job. If multiple parti-
tions yield the same F (a bj , gi), the smallest slice

7

7

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

is selected as the tie-breaker to maximize resource
efficiency.

3.1.2 Performance Estimator: System
Throughput

The temporal aspect of scheduling is crucial
for improving system throughput in multi-tenant
environments. In Dyna-P, the performance esti-
mator determines the system throughput of work-
loads submitted by multi-tenants. With perfor-
mance counters collected for the application dur-
ing profiling, Dyna-P uses XGBoost regression
model [36] to estimate the job completion time
for each inference job on its predicted partition
(JCTa bj ,gi).

System throughput, TGk
, quantifies the effi-

ciency of allocated GPU partitions, gi in process-
ing inference jobs, a bj , while meeting user-defined
QoS constraints. Following prior work [9, 32, 37],
TGk

is calculated as the weighted sum of the
relative throughput of the inference workloads,
RTa bj ,gi , on each partition. Formally:

TGk
= mGk

·
i<W∑
i=1

RTa bj ,gi (5)

where RTa bj ,gi is the speed-up in of inference job
(a bj) executed on full GPU relative to its perfor-
mance on a partition gi. To account for idle GPU
partitions and ensure that the system through-
put reflects the actual utilization of the GPU for
any combination of concurrently executed jobs,
the weight, mGk

, is introduced. mGk
is the pro-

portion of the GPU resources used during any
concurrent execution of inference jobs relative to
the capacity of the whole GPU. The parameter W
represents the number of inference jobs executed
concurrently on a single GPU.

3.2 Scheduling Unit

Efficient resource allocation in private clusters and
multi-GPU environments is essential for minimiz-
ing makespan (the total job execution time) and
ensuring timely processing of new inference sub-
missions. Each GPU schedules jobs based on their
resource demands, available capacity (Ravail), and
inherent architectural and execution constraints.
This subsection discusses the constraints, alloca-
tion strategies and job placement considerations.

Key notations used in the scheduling unit are
summarized in Table 1.

Table 1: Notations

Notation Remarks
Q Workload queue with submitted inference

jobs, Q = (a bj , ..., a bm)
a bj Inference job submitted to the queue, Q
Da bj Deadline of job a bj
Gk A partition-enabled local GPU
gi Valid MIG partition on GPU G
CGk

Predefined valid configurations per GPU
JCTa bj ,gi Predicted JCT of a bj on gi
RTa bj ,gi Relative performance of a bj on a gi
mGk

Weight representing the proportion of
GPU which is currently being utilized

TGk
Total system throughput achieved on a
local GPU

bTGk
Highest expected throughput on a local
GPU

SPGk
Set of feasible placements
(a bj , gi), ..., (a bm, gn) on GPU Gk

W Level of concurrency for GPU sharing, the
maximum of which is |G|

B A set of inference jobs evaluated for place-
ment on a GPU as a batch

Ravail Available GPU resources for allocation
Rreq Required resources for executing inference

jobs in Batch, B
Ea bj Time spent executing a bj
Cr Cost of reconfiguring a local GPU
Cw Cost of waiting for active jobs to complete
β Threshold for reconfiguration
xGk

,
yi,a bj

Binary variables to indicate architectural
and execution constraints

zgi,gi , sgi Binary variables to indicate merge or split
respectively

Architectural constraints

GPU resource sharing varies by architecture and
vendor. AMD uses flexible CU allocation and
MxGPU virtualization, while NVIDIA’s MIG
provides hardware-enforced partitioning for pre-
dictable performance. In NVIDIA GPU architec-
tures (A30, A100, H100, etc.) MIG partitions a
GPU, Gk, into predefined configurations, CGk

,
each comprising of a unique set of MIG instances,
gi per Gk. Only one configuration can be active
per GPU at a time, indicated by a binary variable
xGk
∈ {0, 1}: ∑

i∈CGk

xGk
= 1, ∀Gk (6)

8

8

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Execution constraints

Each inference job, a bj , must be placed on a
valid GPU partition, gi, within the feasible place-
ment set SPGk

= ((a bj , gi), . . . , (a bm, gn)). Jobs
and partitions must adhere to the following rules:
First, a single job cannot be assigned to mul-
tiple partitions simultaneously. Second multiple
jobs cannot execute on the same partition con-
currently. Third, after a job a bj is completed,
its assigned partition becomes available for reuse.
The binary variable yi,a bj ∈ 0, 1 indicates whether
a job a bj can be placed on a partition gi:

If yi,a bj == 1, =⇒ job a bj can execute∑
i∈gi

yi,a bj ≤ 1, ∀a bj
(7)

yi,a bj + yi,aj+1
≤ 1, ∀i, a bj ̸= aj+1

If job a bj completes⇒ yi,a bj = 0
(8)

Reconfiguration Last Placement, RLP

Dynamic GPU partitioning minimizes makespan
while adapting to evolving resource demands.
When new jobs arrive with different resource
requests yet logical resources cannot meet resource
demands due to physical partitioning constraints,
reconfiguration is required to harvest resource
fragments and ensure jobs are placed efficiently
to maximize system throughput and minimize
makespan. This often happens when a job is com-
pleted and there are other jobs waiting in the
queue. During reconfiguration, all active jobs must
be preempted, introducing overhead costs (Cr).

Dyna-P first evaluates whether merging or
splitting available resources is feasible and ben-
eficial. For instance, while merging 2g and 1g is
infeasible on an NVIDIA A30 GPU, it is sup-
ported on A100 and H100 GPUs. Additionally,
only partitions adjacent each other can be merged.
Binary variables zgi,gi ∈ 0, 1 and sgi ∈ 0, 1 indi-
cate whether a partition can be merged or split
respectively:

If zgi,gi == 1, =⇒ Instances can be merged

(9)
If sgi == 1, =⇒ Instance can be split (10)

If reconfiguration is remain necessary due to infea-
sible merge or split operations, Dyna-P evalu-
ates whether reconfiguration is worthwhile despite
the potential throughput gain from utilizing idle
partitions. This requires considering the cost of
stopping active jobs and reconfiguring (Cr) the
full GPU, and the cost of waiting (Cw) for all
active jobs to complete in order to run the next
eligible job in the queue despite the logical avail-
ability of resources. The scheduler must balance
the trade-off between reconfiguring the GPU (Cr)
to improve throughput gains and waiting until
other partitions become physically available (Cw).

From Equation 11, the reconfiguration cost Cr

includes: α, a fixed overhead incurred during the
reconfiguration process, Ea bj , the time already
spent by active jobs in batch B(a bj), during exe-
cution and a penalty penj , if QoS is not met.
β is the maximum acceptable cost difference for
reconfiguration. In order for reconfiguration to
take place, Dyna-P first ensures that all active
jobs are expected to meet their deadline despite
preemption.

Cr − Cw ≤ β

∀i, timecurrenta bj ,gi + JCTa bj ,gi ≤ Da bj

where

Ea bj = timecurrenta bj ,gi − timestarta bj ,gi

Cw = JCTa bj ,gi −max (Ea bj + penj)

Cr = α+ max
a bj∈Bstopped

(Ea bj), ∀B(a bj)

(11)
The Reconfiguration Last Placement policy

ensures that reconfiguration is performed only as
a last resort, prioritizing resource assignments to
existing partitions whenever possible to minimize
the frequency of costly reconfigurations.

3.2.1 Dyna-P Scheduler

Dyna-P schedules inference jobs using a branch-
and-bound (BnB) algorithm to plan placements
on GPUs and leverages the merge and split fea-
tures of NVIDIA MIG to minimize fragmentation
on GPUs.

Scheduling begins when users submit jobs to
the queue,Q = (a bj , ..., a bm). Each user provides
QoS requirements (e.g., deadline Da bj) for execu-
tion. The profiler profiles applications off-line on a
First-Come-First-Served (FCFS) basis and stores

9

9

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

each profile, P (pa bj , ..., pa bm), in a repository.
Performance counters collected during off-line pro-

Algorithm 2 Dyna-P Scheduler

Input: Q = (a bj , ..., am), P (pa bj , ..., pam), W , G =

(G1, . . . , Gk)
1: function Scheduler(P,Q,W,Gk)
2: while |Q| ̸= 0 do
3: for a bj in Q do
4: gi ← Predpart(pa bj)

5: JCTa bj , gi ← Perf(pa bj)

6: Q(a bj)← Update(gi, JCTa bj , gi)
7: end for
8: G← Sort(G,minFM)
9: ▷ Minimize fragmentation

10: for Gk in G do
11: W ← SetW(Q,Gk(Ravail))
12: ▷ Set concurrency
13: BestB ← BnB(Q,W)
14: if BestB == ∅ then
15: continue to next Gk
16: end if
17: ▷ MIG controller
18: if SPGk

̸= SPBestB then
19: if zgi,gi == 1 then
20: Merge(SPGk

, SPBestB)
21: else
22: if sgi == 1 then
23: Split(SPGk

, SPBestB)
24: else
25: Cr ← Cr(SPGk

, SPBestB)
26: Cw ← Cw(SPBestB , SPGk

)
27: if Cr − Cw <= β then
28: continue to next Gk
29: else
30: Reconfig(SPGk

, SPBestB)
31: end if
32: end if
33: end if
34: end if
35: for a bj in BestB do
36: Assign(a bj , gi)
37: end for
38: end for
39: end while
40: end function

filing with DCGM include GRACT, DRAMA,
TENSOR, MEMORY USAGE, and JCT. These
counters provide a detailed understanding of the
behavior of each job in various GPU configura-
tions, and are used by the partition predictor
(PREDPART) and performance estimator (PERF)
during scheduling.

Algorithm 2 shows the joint allocation, place-
ment and scheduling of inference jobs on mul-
tiple GPUs in a single node to meet the QoS
requirements of the user while improving resource

utilization and throughput. While the queue Q
is not empty (|Q| > 0), the partition predic-
tor (PREDPART) determines the required resources
for each inference job. The performance estimator
(PERF) predicts the JCT of the job based on pro-
filed metrics and updates the information of each
job (lines 2-7).

The scheduler selects the GPU with the min-
imum Fragmentation Measure (minFM > 0,
Equation 12) in Line 8 to ensure effective uti-
lization. By so doing, smaller jobs are prioritized
for execution, reducing the Head-of-Line blocking
that can occur otherwise.

minFM = 1−
∑m

i=1 Alloc partitionsi
Total partitions

(12)

For each GPU, Dyna-P calls Algorithm 3 in

Algorithm 3 Job Placement with BnB

Input: Q, W
Initialize: bTGk

= 0, B = ∅, TGk
, BestB = ∅

1: function BnB(Q,W)
2: for B ⊆ Q, where |B| ≤W do
3: if Rreq(B) ≤ Ravail(Gk) then

4: TGk
← mGk

·
∑i<W

i=1 RT (a bj , gi)
5: if TGk

> bTGk
then

6: bTGk
← TGk

7: BestB ← B
8: end if
9: else

10: Prune subset B
11: ▷ Resource constraints
12: end if
13: end for
14: if bTGk

== 0 then
15: return ∅ ▷ Log: Invalid Batch
16: end if
17: return BestB
18: end function

Output: BestB

Line 13, to find the batch of jobs BestB, that
best maximizes throughput. The window size or
the number of jobs considered for scheduling at a
time, W , is dynamically tuned based on available
resources (Ravail) until the maximum concurrency
for the GPU architecture, |G|, is reached.

10

10

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Algorithm 3 ensures that both architectural
and execution constraints are met while respect-
ing user-defined QoS. After determining the set of
applications with the highest throughput, BestB,
Dyna-P executes the jobs using the ASSIGN func-
tion after checking whether placement based on
the current partition SPGk

meets the placement
demands of BestB, SPBestB . This prioritizes the
Reconfiguration Last Placement policy and min-
imizes unnecessary reconfigurations. After recon-
figurations, jobs are assigned to partitions that
maximize throughput while reducing fragmenta-
tion and overhead (Lines 18-36).

Worst-case Analysis

Algorithm 2 runs until all jobs(a bj) in the queue
are scheduled. Dyna-P’s BPP (Algorithm 1) has
a time complexity of O(|Q| · |G|), where |Q| is
the number of jobs in the queue and |G| is the
number of partitions possible on the GPU archi-
tecture. Sorting the GPUs based on the minFM

takes O(|G|log|G|). The branch-and-bound algo-
rithm efficiently determines suitable allocations
by exploring possible combinations of concurrent
executions to maximize system throughput while
reducing the exhaustive search space [38] from
|Q!| to O(2|W |). The worst-case time complexity of
Dyna-P’s scheduler is therefore O(W ·(|G| log |G|+
2|W |), where W is the number of jobs from queue
Q evaluated, |G| is the number of partitions, and
2|W | is the worst-case for Algorithm 3

3.2.2 Implementation

Dyna-P, implemented with Bash and Python
scripts, integrates all components (Figure 5) and
scheduling across multi-GPUs in a node. Specif-
ically, Dyna-P’s BPP is implemented in Python
to match job profiles with the most suitable
GPU partitions. The Performance Estimator uses
XGBoost regression[36] to estimate job com-
pletion times based on performance counters.
The branch-and-bound algorithm, implemented in
Python, identifies the set of Jobs BestB which
maximize throughput. With bash scripts, Dyna-
P evaluates the system for reconfigurations and
autonomously manages partition placements and
UUIDs through NVIDIA’s MIG APIs[39].

Figure 7 illustrates two scheduling scenarios:
(i) legacy scheduling using static partitioning with
FCFS-based execution, and (ii) Dyna-P.

(a) Job arrival schedule

(b) Job scheduling and execution with time

Fig. 7: Scheduling example with static partition-
ing and Dyna-P

At time, t = 30 for instance, although
resources are logically available, they remain phys-
ically unavailable due to improper placement,
leading to under-utilization. Job C has to wait
in the queue, reducing the overall throughput of
the GPU. With Dyna-P, resources are dynam-
ically evaluated for reconfiguration and reallo-
cated, enabling job C, to execute while considering
active job deadlines. This adaptive reconfigura-
tion utilizes fragmented slices, ensuring jobs like
C and F complete on time and reduces overall
Makespan(t=285). In contrast, static partitioning
suffers from head-of-line (HOL) blocking from job
B, preventing timely execution of jobs C and F ,
leading to missed deadlines and longer Makespan.

4 Evaluation

Dyna-P is evaluated for efficiency, scalability, and
sensitivity to workload and scheduling character-
istics using the system configuration described
in Table 2. The experiments are carried out
on a system equipped with two MIG-enabled

11

11

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Table 2: System Configuration and Inference Job Description

Component Specification Model Params Size Description
GPU Device(s) A30 x 2 DistilGPT 82 M Small Text generation
Memory & Bandwidth 24GB & 933.1 GB/s Codegen 350 M Medium Code generation
Thermal Design Power 165 W Flan-T5-Large 770 M Medium Text-to-text
CUDA Ver. & Drivers 12.2 & 535.171.04 Codellama 1 B Large Code generation
DCGM Version 3.1.3 Phi-1 1.3 B Large General purpose

(a) Average JCT (b) Average Makespan (c) STP

(d) CDF of JCTs (e) E2E Process Decomposition (f) Process decomposition (%)

Fig. 8: Performance and utilization comparison between different approaches.

NVIDIA A30 GPUs to support dynamic partition-
ing. NVIDIA DCGM is used to collect profile met-
rics, and CUDA version 12.2 ensures compatibility
with the latest GPU features.

A total of 50 Small Language Model (SLM)
inference jobs with variants based on batch sizes
ranging from 1 to 64 are submitted to the sys-
tem. The evaluation focuses on three major met-
rics: Job Completion Time (JCT) which is the
time taken to complete individual inference jobs,
Makespan which is the total time required to
execute all submitted jobs and System Through-
put (STP) [32][37] defined as the weighted sum
of throughput per partition, normalized to a full
GPU.

Dyna-P is compared with alternative shar-
ing approaches: Baseline, StaCon, MISO[32] and

ORACLE. For StaCon, a pre-set MIG configu-
ration (2g.12gb, 1g.6gb, 1g.6gb) is used without
workload characterization. This configuration is
based on empirical studies of job sets.

Baseline represents executions on a full GPU
without sharing resources and serves as a per-
formance baseline for maximum capacity. MISO
is a state-of-the-art scheduler adapted to run on
NVIDIA A30 GPUs. MISO profiles jobs during
initial execution to predict resource allocations for
subsequent runs. However, for fair comparisons,
all jobs executed using MISO are pre-profiled.
ORACLE, like Dyna-P, implements a placement-
aware scheme however, it has prior knowledge of
the partition sizes, job completion times and the
job arrivals and thus does not incur costs due to
poor predictions. Dyna-P is thus not expected to
outperform ORACLE.

12

12

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

4.1 Efficiency Analysis

This section evaluates Dyna-P’s ability to improve
system throughput (STP) and makespan.

JCT, Makespan and STP

Figure 8 compares Dyna-P’s Job Completion
Time (JCT), Makespan and System Through-
put (STP) with the alternative approaches. From
Figure 8a, Dyna-P improves JCT by 33.18% rel-
ative to StaCon and offers comparable JCT to
MISO for most jobs. In Figure 8b, Dyna-P reduces
makespan by 39.03% relative to StaCon and
12.14% relative to MISO by using NVIDIA MIG’s
merge and split for dynamic spatial sharing. Dyna-
P achieves 14.7% higher STP compared to StaCon
due to its dynamic resource allocation based on
workload characteristics as shown in Figure 8c.
ORACLE with prior knowledge experiences slight
improvements in Makespan compared to Dyna-P.

Figure 8d illustrates the individual job perfor-
mance under each approach. Noticeably, StaCon
exhibits job failures at JCT=0, due to out-of-
memory (OOM) issues, emphasizing the impor-
tance of workload characterization. Dyna-P, ORA-
CLE and MISO mitigate these failures by profiling
workloads and allocating resources accordingly. In
all, Dyna-P tends to achieve slightly lower JCTs
for shorter running jobs whilst MISO performs
better with longer running jobs. ORACLE shows
the same trend as Dyna-P since the gains in
ORACLE are mainly observed during placements.

The end-to-end (E2E) execution process is fur-
ther decomposed to show the activities involved
in running all 50 inference jobs using the listed
approaches. As shown in Figure 8e and 8f,
Baseline experiences the longest queuing time as
jobs execute sequentially, delaying new arrivals.
Dyna-P and ORACLE, using the RLP policy,
reduce queuing times by balancing job restarts
to increase concurrent executions while manag-
ing waiting times subject to user deadlines. Given
that merge and split operations are negligible (∼
1
8 th secs), the overhead stems from reconfigura-
tions. In contrast, MISO incurs overheads due to
reconfiguration on job arrival and check-pointing.

Utilization and Eco-friendliness

The average resource utilization (SM, memory)
for each approach is compared in Figure 9. Dyna-
P achieves an average of 99.8% SM and 32.5%

memory utilization due to efficient concurrent exe-
cutions. ORACLE and MISO shows similar SM
utilization (99.8% and 97.05% respectively) but
slightly lower memory utilization. Figure 9 also
evaluates peak power utilization of each approach.

Fig. 9: Utilization Comparison

Both Dyna-P and MISO exhibit peak power
usage slightly exceeding the GPU’s Maximum
Thermal Design Power (165W), increasing the risk
of thermal throttling during peak periods. In clus-
ter settings, approaches such as power capping and
Dynamic Voltage and Frequency Scaling (DVFS)
have been proposed to mitigate thermal throttling
in modern GPUs [31].

Fig. 10: Power capping for MISO and Dyna-P

Figure 10 explores NVIDIA’s power cap-
ping to mitigate these risks, showing the effects on
JCT, Makespan and System Throughput. Under

13

13

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Fig. 11: Workload awareness: Performance comparison for workloads with different batch sizes

capped power limits (100W–160W), STP drops by
33.44% for Dyna-P and 34.80% for MISO. Despite
the reduction, Dyna-P’s batch-aware partition
prediction and ability to harvest free resources
result in a lower makespan (50.3% reduction) com-
pared to MISO (53.89%). These findings highlight
Dyna-P’s eco-friendliness, a critical requirement
to reduce thermal throttling and carbon emissions
in GPU clusters.

4.2 Workload-awareness Analysis

In Figure 11, the impact of batch sizes on JCT,
Makespan, and STP is evaluated using two work-
load types with 10 inference jobs each on a single
A30 GPU: (a) small batch sizes(1-8) and (b) large
batch sizes (32-64) respectively.

Dyna-P achieves higher concurrency by assign-
ing smaller partitions with minimum latency and
throughput trade-off to jobs, resulting in better
makespan and STP compared to MISO. However,
this concurrency slightly increases average JCT
due to fewer resources per job.

Dyna-P, ORACLE and MISO outperform Sta-
Con, which suffers from inflexible resource allo-
cations. Dyna-P’s dynamic partitioning ensures
comparable STP and makespan to MISO, with
better resource utilization. In general, Dyna-
P demonstrates workload awareness, dynami-
cally adapting resource allocations to maximize
throughput and minimize delays.

Also, successful reconfigurations in Dyna-P are
affected by the prediction of job completion times
using the XGBoost regressor thus, the effect of
errors in prediction is evaluated in this section. An
error margin of 15% is generated and added to the
predicted job completion times, before resource
allocations. (Figure 12) shows the comparison of
how these errors affect the makespan using each
approach as well as the reconfiguration count.

Fig. 12: Sensitivity to Error

It is observed that with the error margin
added, Dyna-P experiences 2 additional reconfig-
urations and 8.09% longer makespan, relative to
the original execution. While this is undesirable,
Dyna-P has a better makespan by 13.6% than
MISO, despite the errors. It also has fewer number
of reconfigurations in both cases.

4.3 Scalability Analysis

Dyna-P’s scalability is evaluated using two exper-
iments: the first is conducted on a single NVIDIA
A30 GPU and the second is a simulation to evalu-
ate the effectiveness of Dyna-P in harvesting GPU
resources for the deployment of 5000 jobs on a
20-node GPU cluster where each node has 8 x
A100-40GB GPUs. These experiments assess the
system’s ability to handle an increasing number of
jobs and adapt to varying job arrival rates.

Concurrent Jobs

This experiment investigates how each approach
performs as the number of concurrently sched-
uled jobs increases for a single GPU. Figure 13
shows that Dyna-P demonstrates scalability with
a gradual increase in Makespan as the number of
jobs rises. Dyna-P, ORACLE and MISO exhibit
a sharp increase in STP as more jobs are added,

14

14

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Fig. 13: Performance comparison for increased concurrency on single GPU

(a) Makespan per arrival rate (b) Number of reconfigurations

Fig. 14: Performance comparison for Large-scale workloads

indicating their ability to handle concurrent work-
loads effectively. As the number of jobs exceeds
four, MISO tends to allocate larger resources over
multiple execution rounds, leading to a reduction
in STP. In contrast, Dyna-P and ORACLE assign
smaller resource partitions for concurrent jobs,
maintaining higher STP.

Simulation with Different Arrival Rates

GPU sharing is known to improve resource allo-
cation rates whilst reducing the number of GPUs
allocated to jobs. This ultimately reduces the long
task wait times. Alibaba workload trace is used to
generate a 5000 job-mix for this experiment. Batch
sizes from 1 to 64 as in preliminary experiments
are assigned to the jobs according to a uniform dis-
tribution. For these experiments, a count is kept
of the number of scheduling decisions made using
each approach as the workloads are increased by
1000 workloads at a time. With the maximum
concurrency on the A100-40GB being 7, the simu-
lation environment is able to accommodate up to
1120 concurrent jobs at a time.

From Figure 14, Dyna-P is able to efficiently
allocate the minimal necessary GPU resources to

jobs using its BPP and thus improves Makespan
whilst ensuring user’s QoS. It is also able to adapt
to the partition profiles of the A100 GPU showing
its effectiveness on different GPU architectures. As
the arrival rate increases, the makespan for Dyna-
P, Oracle, and MISO increase by 11.76%, 17.86%,
and 14.67% respectively. Dyna-P and ORACLE,
adapting to increased workloads, are seen to har-
vest more resource fragments and thus experience
fewer reconfigurations (748 and 746 respectively).
MISO, on the other hand, increases the number of
reconfigurations to 756 GPUs, unable to make use
of the resource fragments available across GPUs
and leading to scheduling delays similar to the
scenario in Figure 1.

5 Related Work

Extensive research has explored GPU sharing
techniques, particularly focusing on fine-grained
and coarse-grained spatial sharing methods to
maximize resource utilization. Table 3 provides a
comparative overview of related works and high-
lights the distinct contributions of Dyna-P.

15

15

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Table 3: Comparison of Related Works and
Dyna-P

Research
Work

Sharing Type FR P MG DR

BoF[12] MIG ✓ × ✓ ×

MISO[32] MIG/ MPS × × ✓ ✓

Gpulet[38] MPS × × × ×

GSLICE[40] MIG × × ✓ ×

Orion[41] CUDA streams × × × ×

Dyna-P MIG ✓ ✓ ✓ ✓

FR: Fragmentation Reduction, P : intra-GPU Placement,
MG: Multi-GPU, DR: Dynamic Reconfiguration

GSLICE [40] identifies knee-points of dimin-
ishing returns for resource allocation and lever-
ages adaptive batching for inference workloads
to ensure SLO requirements. However, the MPS-
based sharing employed is limited to single GPU
environments.

Tan et al. [11] framed DNN serving on
MIG-enabled GPUs as a reconfigurable machine
scheduling problem. Their genetic algorithm
improves GPU partition assignments to maxi-
mize throughput and minimize latency relative
to SLOs. However, their approach allocates one
job per partition without maximizing co-sharing
within MIG partitions.

Li et al. [32] proposed a method for predicting
isolated GPU partition sizes for a job using MPS.
While this improves isolation and performance,
their approach focuses on accurate partitioning
rather than adapting to diverse workloads. Addi-
tionally, MISO does not maximize the resource
utilization of per GPU as it focuses on load
balancing rather than minimizing fragmentation,
limiting its effectiveness in multi-GPU scenarios.

Weng et al. in their paper, Beware of Frag-
mentation (BoF) [12], leverage a CUDA Runtime
API interception approach deployed in a produc-
tion cluster that runs a mixture of training and
inference tasks and increases resource allocation
rates by minimizing fragmentation. While they
discuss the problem of fragmentation in GPU clus-
ters, they do not consider the inherent intra-GPU
placement constraints of modern GPUs.

GPUpool [37] demonstrated fine-grained shar-
ing through simulations by introducing a pro-
grammable kernel launch parameter to control
concurrency. This approach improves QoS for
large batches and minimizes CUDA and MPS lim-
itations through interference modeling however, it
does not guarantee isolation.

Orion [41] explored CUDA streams to co-
locate inference workloads on shared GPUs
demonstrating workload-awareness during
resource sharing. Although this improves utiliza-
tion, it does not support multi-GPU scenarios or
incorporate workload diversity.

Dyna-P addresses the gaps in existing
approaches by predicting suitable GPU parti-
tions based on workload-specific characteristics,
ensuring efficient resource allocation and min-
imizing under-utilization. Leveraging NVIDIA
MIG’s merge and split functionalities to dynam-
ically adapt to evolving workloads, Dyna-P
reduces fragmentation and improves concurrency
in multi-GPU environments while maintaining
high throughput and QoS guarantees.

6 Discussions

Recent advancements in green computing,
resource-efficient application development, and
GPU partitioning schemes highlight the growing
need for dynamic resource sharing. Modern GPU
architectures such as NVIDIA’s Ampere, Hopper
and Blackwell, as well as AMD’s MI300[42, 43]
feature similar GPU partitioning schemes, mak-
ing Dyna-P adaptable across different platforms.
Dyna-P enables efficient workload-to-partition
mapping, improving resource allocation to max-
imize throughput and addressing fragmentation
issues arising from inefficient placements in shared
GPU environments and can easily be integrated
with orchestrators like Kubernetes. This section
examines Dyna-P’s operation with heteroge-
neous workloads and discusses its architectural
limitations.

Inference in EdgeAI

GPUs are increasingly driving EdgeAI innova-
tion, serving as high-end edge servers that enhance
performance, reduce latency, and improve scala-
bility for AI/ML, vision, security, and other edge
computing applications. As edge GPU platforms

16

16

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

become more capable, lightweight models are fre-
quently deployed at the edge, leading to dynamic
inference request patterns that require adaptive
resource scaling to prevent fragmentation and
under-utilization.

Dyna-P’s directed bipartite graph approach
allows for seamless addition and removal of par-
tition profiles and model variants based on key
characteristics such as parameter count, batch
sizes, and utilization patterns. This adaptabil-
ity ensures efficient scheduling of inference jobs,
improving model and partition selections for max-
imum throughput, particularly as small language
models (SLMs) gain popularity and evolve.

Mixed Inference and Training Workloads

In environments such as autonomous vehicles,
Neural Network must continuously adapt to
dynamic conditions as vehicles move. This necessi-
tates simultaneous GPU resource provisioning for
both inference and training tasks, requiring effec-
tive resource sharing to minimize wait times and
maximize utilization.

To achieve this, Dyna-P’s Batch-aware Parti-
tion Predictor (BPP) determines the number of
requests to batch and the most suitable resource-
to-batch size ratio. By leveraging profiled hard-
ware performance counters, Dyna-P estimates
model behavior and job completion times, allow-
ing for simultaneous scheduling of inference and
training requests. This minimizes reconfigura-
tions, ensuring efficient dynamic resource alloca-
tion without compromising performance.

High Performance Computing Workloads

Research on HPC resource allocation [9, 8, 31, 37,
41] has shown that certain scientific benchmark
applications (e.g. SCAN, LavaMD, Heartwall,
Gaussian) do not fully saturate GPU resources,
making them suitable for GPU sharing. Prior
work [9, 8] has demonstrated that compute and
memory intensities can be leveraged to further
optimize GPU resource sharing at a finer granu-
larity. Dyna-P can extend this approach by max-
imizing resource utilization for tenants running
multiple jobs with varying compute and memory
demands, while still benefiting from the isola-
tion provided by hardware-level partitioning. This
ensures efficient GPU allocation for heterogeneous

HPC workloads, improving both job throughput
and system efficiency.

Limitations

As discussed, Dyna-P is designed to sched-
ule diverse workloads that require partial GPU
resources. Thus, large-scale AI/HPC applications
like Large Language Models (LLMs) that require
multiple GPUs for training and inference, are
beyond the scope of the current implementation.

Also, Dyna-P is unable to migrate active jobs
when the GPU requires reconfiguration. This is as
a result of the lack of inter-partition communica-
tion in modern GPU architectures. This restric-
tion reduces the potential for real-time load bal-
ancing and elastic resource allocation for bursty
workloads during execution. Enhancing partition
communication capabilities could further improve
dynamic GPU reconfiguration, allowing for more
efficient utilization of fragmented resources in
cluster-wide deployments.

7 Conclusion

In this paper, we introduced Dyna-P, a resource
allocation, job placement, and scheduling frame-
work designed to improve GPU utilization in
multi-tenant environments. By analyzing work-
load characteristics and using NVIDIA’s merge
and split, Dyna-P effectively assigns GPU parti-
tions and co-locates compatible workloads to max-
imize resource usage while maintaining workload
performance.

Our evaluation shows that addressing resource
fragmentation enables Dyna-P to improve system
throughput and minimize Makespan by harvesting
unused resources for other jobs. Its combination
of fine-grained and coarse-grained sharing strate-
gies provides a flexible, workload-aware approach
to resource management, making it suitable for
multi-GPU environments in modern GPU clus-
ters.

Acknowledgments. This work was sup-
ported by the National Research Foundation
of Korea(NRF) grant funded by the Korea
government(MSIT) (No.2021R1A2C1003379).

17

17

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

References

[1] Amazon Web Services. Recommended GPU
instances. Last accessed, December 22, 2024.
url: https://docs.aws.amazon.com/ko kr/
dl-ami/latest/devguide/gpu.html.

[2] IBM Cloud. IBM Cloud Server’s NVIDIA
GPU. Last accessed, December 22, 2024.
url: https://www.ibm.com/kr-ko/cloud/
gpu?mhsrc=ibmsearch a&mhq=GPU.

[3] Google Cloud. Cloud GPU. Last accessed,
December 22, 2024. url: https : / / cloud .
google.com/gpu?hl=ko.

[4] Run.ai. GPU Scheduling. Last accessed,
December 22, 2024. url: https://www.run.
ai/guides/multi-gpu/gpu-scheduling.

[5] Ollama. Ollama. Last accessed, December
22, 2024. url: https://ollama.com/.

[6] Google Cloud. About GPUs in GKE. Last
accessed, December 22, 2024. url: https://
cloud.google.com/kubernetes-engine/docs/
concepts/gpus.

[7] KubeEdge. KubeEdge: A Kubernetes Native
Edge Computing Framework. Last accessed,
December 22, 2024. url: https://kubeedge.
io/.

[8] T. Adufu, J. Ha, and Y. Kim. “Exploring
the Diversity of Multiple Job Deployments
over GPUs for Efficient Resource Sharing”.
In: 38th International Conference on Infor-
mation Networking (ICOIN 2024). 2024.

[9] T. Adufu, J. Ha, and Y. Kim. “An Analysis
of Efficient GPU Resource Sharing for Con-
current HPC Application Executions”. In:
KNOMS Review 25.1 (Sept. 2022).

[10] Wikipedia Contributors. Bin-packing prob-
lem. Last accessed December 22, 2024. url:
https://en.wikipedia.org/wiki/Bin packing
problem.

[11] C. Tan et al. Serving DNN Models with
Multi-Instance GPUs: A Case of the Recon-
figurable Machine Scheduling Problem. 2021.
url: https://doi.org/10.48550/arXiv.2109.
11067.

[12] Q. Weng et al. “Beware of Fragmenta-
tion: Scheduling GPU-Sharing Workloads
with Fragmentation Gradient Descent”. In:
2023 USENIX Annual Technical Conference
(USENIX ATC 23). 2023, pp. 995–1008.
doi: 10.5555/3555555.3569555.

[13] A. Dhakal et al. Spatial Sharing of GPU
for Autotuning DNN models. arXiv preprint
arXiv:2008.03602, 2020. url: https://arxiv.
org/abs/2008.03602.

[14] A. Ferikoglou et al. “Resource Aware GPU
Scheduling in Kubernetes Infrastructure”.
In: PARMA-DITAM@HiPEAC. 2021.

[15] M.-C. Chiang and J. Chou. “DynamoML:
Dynamic Resource Management Opera-
tors for Machine Learning Workloads”. In:
CLOSER. 2021.

[16] G. Yeung et al. “Towards GPU Utilization
Prediction for Cloud Deep Learning”. In:
USENIX Workshop on Hot Topics in Cloud
Computing. 2020.

[17] NVIDIA. Multi-Process Service (MPS).
Last accessed, October 17, 2023. url: https:
//docs.nvidia.com/deploy/mps/index.html.

[18] H. Zhao et al. “Tacker: Tensor-CUDA
Core Kernel Fusion for Improving the
GPU Utilization while Ensuring QoS”. In:
2022 IEEE International Symposium on
High-Performance Computer Architecture
(HPCA). 2022, pp. 800–813. doi: 10.1109/
HPCA53966.2022.00064.

[19] H. Zhao et al. “Exploiting Intra-SM Par-
allelism in GPUs via Persistent and Elas-
tic Blocks”. In: 2021 IEEE 39th Inter-
national Conference on Computer Design
(ICCD). 2021, pp. 290–298. doi: 10.1109/
ICCD53106.2021.00054.

[20] NVIDIA. Multi-Instance GPUs. Last
accessed, October 17, 2023. url: https :
//docs.nvidia.com/datacenter/tesla-/mig-
user-guide/index.html.

[21] Michael Larabel. The AMD Radeon Graph-
ics Driver Makes Up Roughly 10.5% Of The
Linux Kernel. Phoronix.com, October 2020.
url: https : / / www . phoronix . com / scan .
php ? page = news item& px= Linux - 5 . 9 -
AMDGPU-Stats.

[22] Zhenyan Lu et al. Small Language Models:
Survey, Measurements, and Insights. 2024.
arXiv: 2409.15790 [cs.CL]. url: https://
arxiv.org/abs/2409.15790.

[23] Chien Van Nguyen et al. A Survey of Small
Language Models. 2024. arXiv: 2410.20011
[cs.CL]. url: https://arxiv.org/abs/2410.
20011.

[24] Hyung Won Chung et al. Scaling
Instruction-Finetuned Language Models.

18

18

https://docs.aws.amazon.com/ko_kr/dl-ami/latest/devguide/gpu.html
https://docs.aws.amazon.com/ko_kr/dl-ami/latest/devguide/gpu.html
https://www.ibm.com/kr-ko/cloud/gpu?mhsrc=ibmsearch_a&mhq=GPU
https://www.ibm.com/kr-ko/cloud/gpu?mhsrc=ibmsearch_a&mhq=GPU
https://cloud.google.com/gpu?hl=ko
https://cloud.google.com/gpu?hl=ko
https://www.run.ai/guides/multi-gpu/gpu-scheduling
https://www.run.ai/guides/multi-gpu/gpu-scheduling
https://ollama.com/
https://cloud.google.com/kubernetes-engine/docs/concepts/gpus
https://cloud.google.com/kubernetes-engine/docs/concepts/gpus
https://cloud.google.com/kubernetes-engine/docs/concepts/gpus
https://kubeedge.io/
https://kubeedge.io/
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://doi.org/10.48550/arXiv.2109.11067
https://doi.org/10.48550/arXiv.2109.11067
https://doi.org/10.5555/3555555.3569555
https://arxiv.org/abs/2008.03602
https://arxiv.org/abs/2008.03602
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://doi.org/10.1109/HPCA53966.2022.00064
https://doi.org/10.1109/HPCA53966.2022.00064
https://doi.org/10.1109/ICCD53106.2021.00054
https://doi.org/10.1109/ICCD53106.2021.00054
https://docs.nvidia.com/datacenter/tesla-/mig-user-guide/index.html
https://docs.nvidia.com/datacenter/tesla-/mig-user-guide/index.html
https://docs.nvidia.com/datacenter/tesla-/mig-user-guide/index.html
https://www.phoronix.com/scan.php?page=news_item&px=Linux-5.9-AMDGPU-Stats
https://www.phoronix.com/scan.php?page=news_item&px=Linux-5.9-AMDGPU-Stats
https://www.phoronix.com/scan.php?page=news_item&px=Linux-5.9-AMDGPU-Stats
https://arxiv.org/abs/2409.15790
https://arxiv.org/abs/2409.15790
https://arxiv.org/abs/2409.15790
https://arxiv.org/abs/2410.20011
https://arxiv.org/abs/2410.20011
https://arxiv.org/abs/2410.20011
https://arxiv.org/abs/2410.20011

Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

2022. doi: 10 . 48550/ARXIV.2210 .11416.
url: https://arxiv.org/abs/2210.11416.

[25] Suriya Gunasekar et al. “Textbooks
Are All You Need”. In: arXiv preprint
arXiv:2306.11644 (2023).

[26] Kshiteej Mahajan et al. Themis: Fair and
Efficient GPU Cluster Scheduling. 2019.
arXiv: 1907.01484 [cs.DC]. url: https://
arxiv.org/abs/1907.01484.

[27] Hanyu Zhao et al. “HiveD: Sharing a GPU
Cluster for Deep Learning with Guaran-
tees”. In: 14th USENIX Symposium on
Operating Systems Design and Implementa-
tion (OSDI 20). USENIX Association, Nov.
2020, pp. 515–532. isbn: 978-1-939133-19-9.
url: https://www.usenix.org/conference/
osdi20/presentation/zhao-hanyu.

[28] Zhenhua Han et al. “Scheduling Placement-
Sensitive BSP Jobs with Inaccurate
Execution Time Estimation”. In: July
2020, pp. 1053–1062. doi: 10 . 1109 /
INFOCOM41043.2020.9155445.

[29] Erik Nijkamp et al. A Conversational
Paradigm for Program Synthesis. 2022. doi:
10.48550/ARXIV.2210.11416. url: https:
//arxiv.org/abs/2210.11416.

[30] Hyung Won Chung et al. Scaling
Instruction-Finetuned Language Models.
2022. doi: 10 . 48550/ARXIV.2210 .11416.
url: https://arxiv.org/abs/2210.11416.

[31] E. Arima et al. Optimizing Hardware
Resource Partitioning and Job Allocations
on Modern GPUs under Power Caps. 2023.
url: https : / /doi . org / 10 . 1145 / 3547276 .
3548630.

[32] B. Li et al. “MISO: exploiting multi-instance
GPU capability on multi-tenant GPU clus-
ters”. In: Proceedings of the 13th Symposium
on Cloud Computing. 2022.

[33] Noman Bashir et al. “Take it to the
limit: Peak prediction-driven resource over-
committment in datacenters”. In: Proceed-
ings of the Sixteenth European Conference
on Computer Systems. EuroSys ’21. Asso-
ciation for Computing Machinery, 2021,
pp. 556–573. doi: 10.1145/3447786.3456259.

[34] NVIDIA. Data Center GPU Manager
(DCGM) 3.1. Last accessed, May 7, 2024.
url: https://docs.nvidia.com/datacenter/
dcgm/latest/user-guide/feature-overview.
html.

[35] Baolin Li et al. “Clover: Toward Sustainable
AI with Carbon-Aware Machine Learning
Inference Service”. In: Proceedings of the
International Conference for High Perfor-
mance Computing, Networking, Storage and
Analysis. ACM, Nov. 2023, pp. 1–15. doi:
10.1145/3581784.3607034. url: http://dx.
doi.org/10.1145/3581784.3607034.

[36] F. Pedregosa et al. “Scikit-learn: Machine
Learning in Python”. In: Journal of
Machine Learning Research 12 (2011),
pp. 2825–2830.

[37] X. S. Tan et al. “GPUPool: A Holistic
Approach to Fine-Grained GPU Sharing in
the Cloud”. In: Proceedings of the Interna-
tional Conference on Parallel Architectures
and Compilation Techniques (PACT). 2023.
doi: 10.1145/3559009.3569650.

[38] S. Choi et al. “Multi-model Machine Learn-
ing Inference Serving with GPU Spatial Par-
titioning”. In: PARMA-DITAM@HiPEAC.
2021.

[39] NVIDIA. GPU Management and Deploy-
ment: Multi Instance GPU Management.
Last accessed, January 20, 2025. url: https:
/ / docs . nvidia . com / deploy / nvml - api /
group nvmlMultiInstanceGPU.html.

[40] A. Dhakal, S. G. Kulkarni, and K. K.
Ramakrishnan. GSLICE: Controlled Spatial
Sharing of GPUs for a Scalable Inference
Platform. Accessed December 22, 2024. url:
https://arxiv.org/abs/2011.03897.

[41] F. Strati, X. Ma, and A. Klimovic. Orion:
Interference-aware, Fine-grained GPU
Sharing for ML Applications. 2024.

[42] AMD. AMD CDNA 3 Architecture. https :
/ / www . amd . com / content / dam / amd /
en/documents/ instinct - tech- docs/white -
papers/amd-cdna-3-white-paper.pdf. Last
accessed, March 9, 2025.

[43] AMD. Deep dive into the MI300 compute
and memory partition modes. https : / /
rocm . blogs . amd . com / software - tools -
optimization / compute - memory - modes /
README . html. Last accessed, March 9,
2025.

19

19

https://doi.org/10.48550/ARXIV.2210.11416
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/1907.01484
https://arxiv.org/abs/1907.01484
https://arxiv.org/abs/1907.01484
https://www.usenix.org/conference/osdi20/presentation/zhao-hanyu
https://www.usenix.org/conference/osdi20/presentation/zhao-hanyu
https://doi.org/10.1109/INFOCOM41043.2020.9155445
https://doi.org/10.1109/INFOCOM41043.2020.9155445
https://doi.org/10.48550/ARXIV.2210.11416
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
https://arxiv.org/abs/2210.11416
https://doi.org/10.1145/3547276.3548630
https://doi.org/10.1145/3547276.3548630
https://doi.org/10.1145/3447786.3456259
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.html
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.html
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.html
https://doi.org/10.1145/3581784.3607034
http://dx.doi.org/10.1145/3581784.3607034
http://dx.doi.org/10.1145/3581784.3607034
https://doi.org/10.1145/3559009.3569650
https://docs.nvidia.com/deploy/nvml-api/group__nvmlMultiInstanceGPU.html
https://docs.nvidia.com/deploy/nvml-api/group__nvmlMultiInstanceGPU.html
https://docs.nvidia.com/deploy/nvml-api/group__nvmlMultiInstanceGPU.html
https://arxiv.org/abs/2011.03897
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://rocm.blogs.amd.com/software-tools-optimization/compute-memory-modes/README.html
https://rocm.blogs.amd.com/software-tools-optimization/compute-memory-modes/README.html
https://rocm.blogs.amd.com/software-tools-optimization/compute-memory-modes/README.html
https://rocm.blogs.amd.com/software-tools-optimization/compute-memory-modes/README.html

	Dyna-P: placement-aware dynamic partitioning for lightweight applications with modern GPUs

