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Abstract As the rapid advancement and diversity in the
computing systems, it is demanding to take the most
robust scheduling algorithm that guarantee an optimized
performance to execute manifold applications on large-
scale heterogeneous computing environments. This paper
present an adaptive application-aware job scheduling opti-
mization strategy for large-scale high throughput computing
in heterogeneous infrastructures. The proposed scheduling
optimization method is built on two main concepts. First, it
provides application-aware job distribution weights through
empirical data in large-scale heterogeneous infrastructures.
Here we adopt the concept of weight, which represent the
ratio of tasks that will be computed on each resource. The
weights can vary in terms of application type and are opti-
mized until the system get in steady status. Secondly, it offers
an adaptive control phase that is invoked by the weight adjust-
ment and resource scaling feature. The feedback data from
monitoring module is forwarded to the control phase in order
to adjust weights and over-provisioning ratio, and result in
enhancing overall balance between performances and utiliza-
tion of system. The experimental evaluation with the four
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realistic workload patterns demonstrates that, when com-
pared to the core-based scheme which distributes tasks in
proportions of each resource’s number of cores, the use of
our optimization method can achieve 62 % better average
throughput, 43 % shorter average queueing time, and 38 %
better average utilization of the entire resources in diverse
infrastructure environments by harnessing our adaptive mod-
ule.

Keywords Job scheduling optimization · Adaptive
evaluation · Application-aware · High-throughput computing

1 Introduction

As demand for computing resources is increasing, distributed
environments have evolved into versatile forms by employing
various emerging computational technologies. New proper-
ties of such systems lead to seek sophisticated solutions for
scheduling strategy as well as its optimization in order to
overcome the performance degradation and to leverage the
systems effectively. Moreover, properly scheduling scientific
computing jobs to the heterogeneous resources in order to
achieve good performance at low cost is still challenging
since performances vary depending on where or when the
applications are executed.

This paper presents an application-aware adaptive job
scheduling optimization strategy in heterogeneous infrastruc-
tures, especially for large-scale high throughput computing
applications. This optimization method has two main top-
ics. First, it offers application-aware job distribution weights
that are based on the empirical data in large-scale heteroge-
neous infrastructures. We exploit the concept of weight in
order to represent the ratio of tasks that will be computed
on each resource. The weights can vary in terms of applica-
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tion type and are optimized until that system get in steady
status. Secondly, it provides an adaptive control phase that
is invoked by the weight adjustment and resource scaling
feature. The feedback information from monitoring module
is forwarded to the control phase in order to adjust weights
and over-provisioning ratio, and lead to enhancing overall
balance between performances and economy of system.

We also design a service architecture model that delin-
eates how this approach can apply and operate in general. We
implement and demonstrate the algorithms along with mid-
dleware to compose our testbed. The experimental assess-
ment exploiting the four types of realistic workload pattern
proves that, when compared to the Core-based manner
which allocates tasks in proportions of each resource’s num-
ber of cores, our optimization approach can yield 62 % better
average throughput results, 43 % shorter average queueing
time, and 38 % better average utilization of the total resources
in diverse infrastructure environments by harnessing our
adaptive module. The rest of this paper is organized as fol-
lows. Section 2 discusses related works. Section 3 details the
service architecture model the proposed approaches work in
and main algorithms. We present our evaluation and its result
in Sect. 4. Finally, we conclude this paper in Sect. 5.

2 Related work

Regarding distributed computing systems, diverse job
scheduling schemes and their optimization methods have
been steadily researched and proposed in the last few
decades, (such as integrated systems and heterogeneous envi-
ronments). In this section, we will introduce some existing
researches focused on the three approaches as follows.

2.1 Application-aware

First, we introduce the studies related with application-
aware approach. Recently, there have been many researches
about scheduling algorithm for several data-intensive appli-
cations in data-analysis and HPC communities [5,6,18].
They insisted on a novel approach which is based on data-
locality, data size, location of storage, file transfer time and
network bandwidth to optimize scheduling of data-intensive
applications.

Yang et al. [20] presented an application scheduling
framework that uses a uniform model to predict a kind of
applications such as cpu-intensive application, i/o-intensive
application, and different mixed applications. It leverages
performance interference by prediction techniques which
act as the core for an application scheduling in the virtu-
alized environment. They conduct various experiments and
the results show the effectiveness of the proposed method for
predicting the performance interference.

Gupta et al. [11] devised an application-characteristics
aware VM placement technique which is a combination
of HPC-awareness and cache-sensitibity awareness. It can
optimize resource allocation while being HPC-aware by
applying multi-dimensional on-line bin packing(MDOBP)
heuristics while ensuring that cross-application interference
is kept within bounds. They designed and implemented the
technique using OpenStack Nova [15] and compared it to
dedicated execution without their technique. The experiment
results show that it can improve the performance by up to
45 % compared to default scheduling method. However they
only considered the application-characteristics which is HPC
or Non-HPC in terms of cache.

For a given application, these papers analyzed its resource
usage, cpu, memory and i/o, etc. and proposed a scheduling
technique to optimize its performance in a single environ-
ment (i.e., homogeneous infrastructure).

2.2 Heterogeneous infrastructure

We review other approaches for building solutions to facil-
itate joint usage of computing resources, originating from
different types of distributed computing infrastructure and
addressing the need of simultaneously harnessing different
computing infrastructures.

Moca et al. [13] proposed a scheduling method in dis-
tributed computing infrastructures like Grids and Clouds by
suggesting a multi-criteria scheduling strategy based on the
Promethee algorithm. It fully implemented the Promethee
scheduler and recreated an hybrid DCI environment includ-
ing Internet Desktop Grid, Cloud and Best Effort Grid based
on real failure traces.

Mateescu et al. [12] suggested a complex and innovative
architecture for combining the benefits of the HPC, Grid and
Cloud technologies. In [12], they aim at combining the best
attributes of each technology, proposing a model for how sci-
entific workloads can be managed in such a hybrid computing
environment.

2.3 Adaptive mechanism

Chang et al. [7] dealt with the adaptive scoring job scheduling
algorithm to schedule compute-intensive and data intensive
tasks. The Job scores are adaptably computed by selecting
the most appropriate resource. The tasks are assigned to the
resources according to the cluster score. Local and global
updates are performed to get the newest status of resources
in the grid environment.

Berman et al. [3] introduced the resource selection prob-
lem with the AppLeS project, which provides an adaptive
capability to grid environment and considers a novel method-
ology for adaptive scheduling by allowing the deployment of
adaptive distributed applications. In [3], they implemented
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this adaptive scheme with two main objectives; Studying
adaptive scheduling for grid computing and applying these
results to some applications to verify their approach.

The work [4] presented an approach to improve the
process of the grid resource selection through a self-adaptive
capability to grid applications they designed. It can deal with
the dynamic environmental conditions using artificial intel-
ligence algorithm.

3 Proposed algorithm

3.1 Service architecture model

In this section, we begin with the description of the pro-
posed method by discussing the service framework we have
designed. Figure 1 illustrates an extended service architec-
ture model for the proposed approach. It is composed of three
classes and four major service modules, which effectively
control a bunch of tasks through a middleware layer in dif-
ferent computing infrastructures.

The undermost layer is System Layer, which could be
characterized as varied computing natures, such as Super-
computer, Cluster, Grid, and Cloud, etc.

Those infrastructures contained in the system layer are
handled by Middleware Layer, which aims to harness the
computing resources at best. The system can be either of mid-
dleware solutions, like Globus toolkit [8], HTCondor [9],
HTCaaS [16], and so on. The adopted middleware solution
needs additional features for it to effectively support several
services of the topmost class Service Layer.

Service Layer consists of four services that are Job Profil-
ing, Monitoring, Weights Adjustment, and Resource Scaling
services, where the latter two services belong to the Adaptive
module.

Job profiling service is in charge of three roles described
as follows. This service is mainly responsible of identifying
the type of applications (or jobtype). Then it decides and
calculates the initial distribution weight value for each of the

Fig. 1 Service architecture model

Fig. 2 Abstract flow of the
major modules

identified jobtype using accumulated job records. Finally,
it archives and manages the records of tasks once a job is
finished.

Monitoring service examines and collects all metadata
about jobs, workload, and resources. The monitoring ser-
vice continuously observes overall workloads of the system,
whilst taking into account both dynamically changing work-
load status and application type. This enables the system to
improve utility and capacity of computing resources. The
monitored information is sent to the ‘Adaptive Module’ and
used to control the degree of resources as well as the weight.

Adaptive module contains two services:Weights Adjust-
ment and Resource Scaling. Weights Adjustment service
regulates weight values depending on the feedback from
Monitoring Service. Resource Scaling service mainly has
in charge the control of a degree for over-provisioning
metric(i.e., vCPU /pCPU ratio). It is adaptably controlled
depending on the error rate monitored by system.

Figure 2 shows the abstract flows of the major modules
based on the aforementioned model. The optimizer, that has
one dedicated controller for both weight and resource scal-
ing, is exploited to balance system by adjusting distribution
rates and degree of over-provisioning. When the scheduling
module is carried out, it utilizes the optimized values and let
the monitoring module watch the status in pertinent aspects
to the above two controllers. The feedback results are for-
warded to the optimizer so as to tune the weights and the
degree of over-provisioning.

3.2 Proposed algorithm

In the following section, we will introduce the detailed proce-
dure of our adaptive job scheduling optimization. The whole
processes of the optimization are as follows.

Step 1: For each metajob M in which multiple subjobs are
contained, system identifies two properties that are job type
and the count of tasks.
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Table 1 Notations

Notaion Property Description

M { j0, . . . , jm } A set of metajobs

M[id] < jobtype T, cnt (tasks) N > A metajob

W j×r j : the num. of jobtypes A matrix for

r : the num. of resources a group of weight

each row is a set of sets

weights for specific jobtype

w jr r : id of Job type A weight for

r : id of resources resource distribu-

*: all elements tion

Rr r : id of Resource A resource

rv/p 0 < rv/p ≤ C Ratio of vCPU to

C : Maximum capacity pCPU

ER E R ≥ 0 , E R ∈ Q An error rate

Q is rational number

λ λ ≥ 0 , λ ∈ Q Threshold of
workloads

ε ε ≥ 0 , ε ∈ Q Threshold of error
rates

� � ∈ Q Adjustment value for
weights

P P ∈ { L O AD, E R RO R } Policies of adaptive
weight adjustment

Step 2: The system takes its distribution weights (w j∗) by
identifying the application type (i.e., job type), and allocates
tasks into resource queues regarding their weights.

Step 3: It figures the number of tasks to be submitted
for each resource through w∗r ∗ cnt (tasks) and counts the
number of resources where its quantity of workload exceeds
the threshold system made. After then, the system controls
weight values for all resources in accordance with its work-
load.

Step 4: Meanwhile, resource monitor module periodically
watches error rate ER. If rv/p is changed (where policy is
ERROR), then the system also regulates weights properly.

The below sections are about the algorithms which are
adopted in the aforementioned steps. The key notations that
the algorithms employs are listed in Table 1.

3.2.1 Job scheduling optimization algorithms

Step 1 and Step 2 correspond to following Algorithms 1 and
2.

Once a user submit a Metajob, it is indicated as a Metajob
data structure (line 1) where the job type could be defined as
various forms such as cpu or i/o-intensive, and so on (line 1).
Regarding the jobtype T the user submitted, the weight set is
decided so that it can dispatch tasks in the rate of weights it is
given (lines 1–1). Since we have defined a group of weights

Algorithm 1 Job Scheduling Optimization Algorithm
Require: a set of MetaJob M

1: while M do
2: MetaJob M = ( jobtype T, cnt (tasks) N)
3: // j = 0, 1, ..., T , ..., n − 1, J j = { cpu, i/o, mem, ... }
4: Switch (T )
5: case j:
6: wT ∗ ← W .getWeightSet( j);
7: default:
8: T ← detectJobType(M);
9: wT ∗ ← W .getWeightSet(T);
10: end switch
11: SubmitJobstoResources(wT ∗);
12: W ← WeightsAdjmt(LOAD);
13: end while

as j by r Matrix W where j is the count of jobtypes and r is
the number of resources, the proper row is returned accord-
ing to the jobtype (line 1). By using the returned weight
set, the system allocates resources to tasks (line 1) and here
calls Algorithm 2, which describes the assigning tasks into
resources in keeping with the weight values. At this point, the
system figures the number of tasks which will be dispatched
to each resource (wT r ∗ cnt (N )) and sends it to weight con-
troller module in order to be used for overload measurement.
After the submission, the system controls weights W by send-
ing the policy ‘LOAD’, which will be handled in the following
subsection (line 1).

Algorithm 2 Job Submission Algorithm
Require: a set of Weights W1×r
1: i : resource ID
2: for all w ∈ W1×r do
3: if i == 0 then
4: M [ 0 : (N * w j i ) -1 ] ← Ri
5: else
6: M [ N *

∑i−1
t=0 w j t : (N *

∑i
t=0 w j t ) -1 ] ← Ri

7: end if
8: end for

3.2.2 Adaptive weights adjustment algorithm

Algorithm 3 is a procedure which adjusts the weight values
considering workload status. It is divided in two main parts.
One part is that policy is in ‘LOAD’(line 3–3), where the
monitoring module observes the quantity of workload for
each resource, and regulates the weights W . Initially, the
system measures the workload threshold (λ, line 3), as shown
on the following Eq. 1,

threshold(m) =
⎧⎨
⎩

0 if n = 0∑n
i=n−m+1 M[i].N

m
if n > 0

(1)
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Algorithm 3 Adaptive Weights Adjustment
Require: Policy P
1: Switch (P)
2: case L O AD:
3: λ ← threshold(m);
4: if cnt(Rload>λ) == 0 then
5: Stay_Current_weight( );
6: else if cnt(Rload>λ) == cnt(Total R) then
7: InitializeWeights(W );
8: else if cnt(Rload>λ) > 0 then
9: X ← set of Rload>λ

10: W j×r ← matrix of w ; // w(0,0), ..., w( j−1,r−1)

11: for all x ∈ X do
12: w∗x ← w∗x - �

13: end for
14: for all y ∈ Xc do

15: w∗y ← w∗y +
� · X.si ze

Xc.si ze
16: end for
17: end if
18: case E R RO R:
19: C ← set of Ri∈cloud ;
20: W j×r ← array of w ; // w(0,0), ..., w( j−1,r−1)

21: for all x ∈ C do
22: w∗x ← w∗x + �

23: end for
24: for all y ∈ Cc do

25: w∗y ← w∗y -
� · C.si ze

Cc.si ze
26: end for
27: end switch
Ensure: Wupdated ← setW eight Set (W )

where m is the number of recent metajobs and n is the lat-
est id of the metajob in the system. This λ keeps reflecting
the most recent status of workload by analyzing the fresh-
est records of jobs. After deciding λ, the system counts the
resources(Rload>λ), where workload exceeds λ. It keeps the
current weight values (line 3–3) if Rload>λ does not exists,
while the weight set will be initialized if the count is identical
to the R number of total resources (line 3–3). It is because
we consider the present weight values to be untrustworthy.
In case the count becomes higher than zero (lines 3–3), it
decreases the weight values of all the resources where work-
load exceeds the threshold. In the meantime, it also increases
them for the rest of the resources. �, which is the amount
to be adjusted, can vary depending on the the number of
resources.

The second part concerns the ‘ERROR’ policy’s state
(lines 3–3) and is triggered by Resource Scaling Service,
which conducts adaptive virtual machine scaling and thus
causes weight adjustments. That is, if the policy is set as
ERROR, it is led by the fluctuation of over-provisioning ratio,
and thus weight adjustment is required so that system can
maintain the overall balance. In this method, the adjustment
is carried out only when the ratio of scaling increases. The
system elevates the weights of the resources where the scal-
ing up is made (line 3–3), while reducing weight values for

the other resources (line 3–3). The above weights tuning are
invoked for the weights of the entire application types.

Algorithm 4 Adaptive Resources Scaling
Require: ER, rv/p
1: while True do
2: if ER > ε && rv/p > 1 then
3: rv/p – – ;
4: else
5: rv/p ← MIN[ rv/p + +, MAX(rv/p) ]
6: if rv/p increases then
7: W ← WeightsAdjmt(ERROR);
8: end if
9: end if
10: Return rv/p ;
11: sleep(Interval) ;
12: end while
Ensure: rv/p

3.2.3 Adaptive resources scaling algorithm

Algorithm 4 corresponds to the Step 4 we explained earlier.
It is responsible of scaling the resources(which are virtual
machines) up & down, relying on the error rates they incur.
Here, the most essential parameter is rv/p, which is obtained
from Eq. 2,

rv/p = vC PU

pC PU
, 0 < rv/p ≤ C (2)

where rv/p denotes the number of virtual cores (vC PU )
mapping on to a physical core (pC PU ). A constant C is
the maximum capacity of virtual cores that cloud solution
offers.

E R refers to the rate of Error Occurrence. The errors
may be arose when virtual machine is in the unreliable or fail-
ure status, or has more workloads than it can accept during the
run-time. Moreover, their amount can be different depend-
ing on the type of jobs (applications) that are running on the
virtual machine. If the error rate is higher than ε and the ratio
of vC PU to pC PU is not the minimum available capacity,
the system diminishes the ratio by 1 (lines 4–4). In contrast,
the ratio would rise until C (lines 4–4) and Weight Adjust-
ment would be carried out by calling the policy ‘ERROR’
(lines 4–4). This adaptive resource scaling process is period-
ically performed in the cycle of Interval.

3.3 Example

To understand the proposed approach, let us consider by pre-
senting a simple example where collective jobs with three
kinds of job types (e.g., cpu, i/o, mem.) are submitted
into two kinds of resources that are cluster and cloud. Sup-
pose that an initial weight array W which is three by two
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array according to the above conditions is described as the
following Eq. 3,

W ini t =
⎡
⎣

w00 w01

w10 w11

w20 w21

⎤
⎦ =

⎡
⎣

0.55 0.45
0.70 0.30
0.55 0.45

⎤
⎦ (3)

where the elements included in the same row have same type
of job, and the ones that are contained in equal column are the
weights for the identical physical resource. In this example,
from the first to third rows (w0∗, w1∗, w2∗) is a set of weights
when job type is cpu, i/o or mem-intensive, respectively.
The columns(w∗0, w∗1) correspond to the resources that are
cluster, cloud, respectively.

Consider that users submit three number of metajobs
sequentially and that system have to distribute the tasks onto
the existing resources. According to the steps we explained
before, the system goes in to identify type of metajobs and the
number of tasks each metajob has. Let the ids of all metajobs
be consecutive numbers from 1 to 3. Let each metajob have
the following properties: M[1] =<1,30000>, M[2] =
<2,150000>, M[3] =<0,70000>. The system takes
one row of W that corresponds to the jobtype to be sub-
mitted in order to allocate tasks into resource queues. The
system would adopt w1∗ for the first metajob and, dispatch
tasks onto cluster and cloud at a rate of .55 and .45, respec-
tively. For the second metajob, it would follow a rate of .70
and .30. Assumed that all metajobs are submitted, and then
the number of tasks queueing in the resources would be 169
and 81 M, respectively. If new metajob is arrived to the sys-
tem at this point of time, the weight value will be controlled,
since λ is 83333.3333 (see Eq. 1), thus the overload in cluster
is occurred as the condition that cnt (Rload>λ) > 0 (Algo-
rithm 3, line 3) is true. X has one element that is0 (which is id
of cluster) and X

c would be 1 (which is cloud). If we suppose
that system set �, which is adjustment value for weights, as
.1, all weights included in the 0th column(w∗0) decrease by
� and every values of the 1th column(w∗1) would be aug-

mented by
� · X.si ze

Xc.si ze
that is .1, since both size of X and

X
c is 1. Hence, the updated W would result as below.

Wupdated =
⎡
⎣

w00 w01

w10 w11

w20 w21

⎤
⎦ =

⎡
⎣

0.45 0.55
0.60 0.40
0.45 0.55

⎤
⎦ (4)

In the same manner, W would be updated until that sys-
tem is in stable status. That is, it adapts to current status of
dynamic environments and contribute to leading to overall
system steady.

4 Evaluation

We evaluate our optimization method through the next
experiments. We first start by introducing the details of exper-
imental setup, and go on to show our assessments using four
practical applications and realistic workload models in order
to verify how better performance we can present.

4.1 Experimental environments

HTCaaS: HTCaaS [16] aims to facilitate exploring large-
scale HTC or MTC problems for various computing resources
such as Supercomputers, Grids, Clusters and Clouds. It can
hide diversity of integrating different resources from users,
and allow users to efficiently submit a large number of tasks at
once. It employs a pilot-based multi-level scheduling mech-
anism which supports the decoupling of resource allocation
from resource binding. The general agent itself is a regu-
lar batch job which is submitted by HTCaaS system and is
assigned into the resources by the local batch scheduler. Then
it performs ‘pulling and executing’ sub-jobs as well as coor-
dinating the launch and monitoring processes.

OpenStack module was recently supplemented to HTCaaS
with the purpose of ameliorating the system, as shown on
Fig. 3. In this module, each virtual machine corresponds to
an agent (pilot-job). Once a virtual machine is launched, the
agent which is built in the VM starts to pull & launch the job
it is given. The algorithms in this paper are mostly working
with Agent Manager module.

Computing environment: The computing environment for
experiments is organized with local cluster and private cloud
resources, where those are integrated with HTCaaS. The local
cluster uses a Sun Grid Engine (SGE) [10], and it consists of
1 master and 2 slave nodes. They are three Intel(R) Xeon(R)
CPU E5630@2.53GHz with 8 cores & 24GB RAM as master
and slaves. The cloud infrastructure adopts Openstack that
consists of 1 master and 3 slaves. They are Intel(R) Core(TM)
i7-4930K @3.40 GHz with 12 cores & 4 GB RAM for master,
and three of Intel(R) Core(TM) i7 950@3.07 GHz for Slaves,
respectively. Each virtual machine is generated as the distinc-
tive form on the condition of the over-provisioning rate, rv/p,
but is basically formulated using Ubuntu 12.04 Server image
(the default capacity is 1 GB ram and 1 vCPU).

4.2 Target application

In this paper, we are aiming for high-throughput computing
(HTC) and many task computing (MTC) application, which
generally have millions or billions of tasks to be processed,
each with relatively short execution time. A wide range of
scientific domains, such as High-energy Physics, Pharma-
ceutics, Chemistry, etc., belong in those application fields.
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Fig. 3 Experimental
architecture using HTCaaS

In the experiments, we adopted four different kinds of
practical HTC and MTC applications, which are AutoDock
[1], Montage [14], Pythia [17] and Condensed Matter Physics
(denoted as C.M.S in this paper) simulation [2]. These appli-
cations can be characterized as either CPU-intensive or
I/O-intensive.

AutoDock [1] is a molecular modeling simulation soft-
ware to predict how small molecules, such as substrates or
drug candidates, bind to receptor of known 3D structure. For
our experiments, we select autodock3 which is used for per-
forming the docking of ligands to a set of target proteins
in order to discover potential new drugs for several serious
diseases such as SARS and Malaria, from a wide range of
scientific computing applications to represent CPU-intensive
jobs having small input data(6.1MB)/output data(3.0KB)
files with considerable size of memory usage, as shown on
the Table 2. Autodock has 0.7 % memory utilization while
keep 100.0 % CPU utilization.

Montage [14] is an astronomical image mosaic engine for
creating composite Flexible image transport system (FITS)
mosaics using multiple astronomical images. In our exper-
iments, we use a set of five data cubes, released as part
of the Galactic AreciboL-band Feed Array HI(GALFA-HI)
survey [19], into a mosaic. It is deemed an data-intensive
application having not only relatively lots of input (5.5 GB)
and output (3.2 GB) data files but also intermediate files.
Montage has average memory utilization and CPU utiliza-
tion, 90.8 and 9.1 %, respectively.

Pythia [17] is a suite of standard tool for Monte Carlo(MC)
simulations, for events generation in high-energy physics
domain. It is mainly a CPU-intensive application with small
size of input (8.0 MB)/output (122 KB) files. Average CPU
utilization of pythia is 10× higher than memory utilization.

The last application we introduce is an in-house code
based on Monte Carlo simulation in Condensed matter
physics for the formation of a monopoles and anti-monopoles
lattice in short-period chiral magnets [2]. This simulation is
an I/O-intensive application having large size of input (2.68
GB) and output (19.6 GB) files, as described in the Table 2.
C.M.S gets about 80 % average memory utilization but it
keeps 40 % average CPU utilization.

4.3 Workload model

Figure 4 depicts four types of realistic workload patterns,
which are Stable, Growing, Bursting, and On-and-Off,
respectively. Stable pattern (Fig. 4a) is a baseline for com-
parison with other patterns. It has stable trend without any
bursting and is almost impossible to be occurred in real com-
puting environment. Bursting pattern (Fig. 4b) represents
the case having sporadic spikes. As the workload spikes
intermittently, it tends to create intense overloads on cer-
tain resource(s). Growing form (Fig. 4c) can be the scenario
that high throughput applications starting with a few parame-
ters but then adding many arguments. On-and-Off workloads
(Fig. 4d) have spikes at regular intervals, and are typically
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Table 2 Properties of
applications

Application Input Output Avg. Mem. (%) Avg.CPU util (%)

AutoDock 6.1 MB 3.0 KB 0.7 100.0

Montage 5.5 GB 3.2 GB 90.8 9.1

Pythia 8.0 MB 122 KB 10 100.0

C.M.S 2.68 GB 19.6 GB 80 40

Fig. 4 Workload patterns. a
Stable, b bursting, c growing
and d on-and-off

seen with applications that are needed for a short period of
time and later shut off. As an example, it can be one-time
large-scale job submissions which will be taken by thousands
of users in one day.

The latter three patterns may represent the general envi-
ronment for large-scale computing service having unex-
pected or irregular peaks for several times.

4.4 Experiments and results

We run a series of experiments using the addressed mentioned
applications and workload patterns. We carry out a total of
one-hundred thousand (105) number of tasks (subjobs) three
times for each scenario, and an average measurement of the
results is adopted for performance evaluation.

There exist four scenarios in terms of workload patterns,
where each scenario is conducted under the condition of
various application combination which are CPU-intensive,
I/O-intensive, CPU+I/O-intensive.

For performance metrics that are used for comparisons,
we take into account throughput, queueing time, and resource
utilization. In these experiments, we compare the proposed

scheduling optimization algorithm to aCore-basedpolicy
as a baseline that system distributes tasks in proportions of
the number of cores each resource has. Our main findings are
summarized as below.

Throughput should be considered as a primary perfor-
mance metric, since we are aiming for HTC and MTC
applications. Figure 5 illustrates the results of the proposed
method and core-base one for all workload patterns. Firstly,
comparing the suggested method with the baseline relative
to Stable workload pattern, the improvements are 30.4, 6.3,
and 30.2 % respectively as shown in Fig. 5a. In the second
scenario that is Bursting pattern, it has better enhancements
which are 52.3, 34 and 63.5 % respectively (see Fig. 5b),
where the results indicate our method can cause better
performance on multiple applications environment by offer-
ing application-aware weights with its optimization. In the
Growing pattern, it results in maximum improvements that
are 72, 50.4, and 77.7 % correspondingly (Fig. 5c). Besides,
in On-and-Off pattern (Fig. 5d), there exist 38.9, 27.4
and 38.4 % of improvements, correspondingly, compared to
Core-based policy. To conclude, these throughput out-
comes eventually point out that our method improves overall
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Fig. 5 Throughput results. a Stable, b bursting, c growing and d on-and-off

throughput of the system, and particularly more effective on
the environment having multiple-applications and dynami-
cally changing or irregular workload patterns.

Queueing time refers to the latency time in each resource
queue, and is to show how well the suggested method can
control the weight values by detecting as well as leverag-
ing current workload status. Figure 6 describes the outputs
in terms of average queueing time, where compared to
Core-based policy according to the four different trace
patterns. The graph is normalized with the baseline policy.
Comparing the our method to core-based policy with respect
to CPU-intensive, I/O-intensive, and combination applica-
tion, our approach can speed-up about 26, 17, and 24 % in
the Stable pattern case and enhance by 32, 21, and 51 %
in the bursting pattern through reducing latency time in the
queue. In addition, the highest decline is made in Growing
pattern, especially in the condition of combination of two
types where 71.3 % of enhancement is observed. In a case
of On-and-Off scenario, similar outcomes to the results of
Stable scenario are made for all conditions, as resulting 21,
18, and 27.4 %, respectively. In the experiments, we could
observe relatively lower performances were achieved at first
when workload are flat and sinusoidal curve forms that cor-

respond to Stable and On-and-Off pattern model. The reason
of that seems to be that their flat or periodic pattern had hardly
effects on optimizing weight values. Moreover, the results of
the last scenario shows that more sophisticated methodology
of setting � and Interval(used in Resource controller) are
required, since these variables are capable of affecting the
performance directly.

All in all, our method can reduce the average waiting time
of jobs relative to baseline for the entire workload patterns.

System Utilization is measurement of the average physical
cores’ usage for all existing resources. This metric is to ver-
ify how proper our ‘adaptive resource scaling’ strategy can
effectively utilize entire resources through detecting errors
or failures that happened in run-time. Figure 7 depicts the
average incidence that virtual machines made when over-
provisioning in run-time. It is more happened on VM where
CPU-intensive application ran than I/O-intensive. It causes
re-execute jobs and bad influence on overall throughput.
However, it is able to overcome performance degradation
by conducting ‘Adaptive Resource Scaling’ cycle. Figure 8
presents the plot of resource utilization. The observed aver-
age resource utilization results of three conditions with
adaptive scaling are 87, 74, and 91 %, respectively, which

123

Author's personal copy



1524 Cluster Comput (2016) 19:1515–1526

Fig. 6 Results of queuing time respect. a Stable, b bursting, c growing and d on-and-off

Fig. 7 The incidence of VM Error.eps

are noteworthily improved compared to baseline particular
in two conditions that are CPU-intensive and Combination.
This is because the error-aware resource scaling algorithm
in the our method is capable of utilizing resources better, as
contributing to decreasing error occurrences.

Fig. 8 Results of the resource utilization

5 Conclusion

We have presented application-aware job scheduling opti-
mization method, which uses a weighed set meaning that
proportion of tasks to be dispatched for resources in large-
scale scientific applications in heterogeneous infrastructures.
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The proposed method consists of three main algorithms
that are Job scheduling optimization, Adaptive weights
adjustment, and Adaptive resource scaling algorithms.

We also design a service architecture model that delineates
how this approach can apply and operate in general. We have
implemented and demonstrated the algorithms along with our
testbed. Empirical experiment is also conducted to lead to an
optimal distribution weights for jobs from different appli-
cations in heterogeneous infrastructures. The experimental
assessment exploiting the diverse realistic workload pattern
have proved that, when compared to the Core-basedman-
ner which allocates tasks in proportions of each resource’s
number of cores, our optimization approach can yield 62 ,
43, and 38 % better performance in terms of average through-
put, queueing time, and utilization, respectively. of the total
resources in diverse infrastructure environments by harness-
ing our adaptive module. Future work will include further
experiments with other widely scheduling models as well
as widely known studies. Furthermore, study on identifying
application types in automatic and ingenious way will be
planned in the future. Finally, we would like to extend this
research by adding an profiling service for diverse applica-
tions aiming for HPC as well as HTC.
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