
An Adaptive Resource Provisioning Method Using
Job History Learning Technique in Hybrid

Infrastructure

Jieun Choi∗, Yoonhee Kim†
∗Dept. of Computer Science, Sookmyung Women‘s University,

Seoul, Republic of Korea

Email: {jechoi1205, yulan}@sookmyung.ac.kr

Abstract—Cloud computing technology enables scientists to
dynamically expand their environments for scientific experiments.
However, to maximize performance and satisfy user requirements
it is difficult to quickly provide hybrid resources suitable to
application characteristics. In this paper, we design a resource
provisioning model based on application characteristic profiles
and job history analysis in hybrid computing infrastructure
consisting of cluster and cloud environments. In addition to the
multi-layer perceptron machine learning method, error back-
propagation technique is used to analyze job history to re-learn
the error of the output value. Also, we propose an adaptive
resource provisioning method for horizontal/vertical scaling of
VMs in accordance with the state of the system. We experiment
CPU-intensive applications according to the proposed model and
algorithms, in a hybrid infrastructure. The experimental results
show that using the proposed method, we satisfy user-specified
SLA (cost and execution time) and improve the efficiency of
resource usage.

Keywords—Adaptive resource provisioning, multi-layer percep-
tron learning, job history, hybrid infrastructure, cloud.

I. INTRODUCTION

Cloud computing enables on-demand resource provisioning
and scalable resource management. It provides benefits such
as economy of scale, elasticity, flexibility and customization
to the specification of scientists and HPC communities. In
recent research, it is difficult to quickly provide hybrid re-
sources suitable to application characteristics in integrated
infrastructure such as cloud computing environments. The
resources selected by user are limited in supporting the various
scientific applications which requires high performance and
high throughput computing. A resource provisioning method,
which can provide suitable resources according to applica-
tion characteristics and experimental environment and satisfy
user requirement in advance, is needed. Currently, there are
research works [15∼17] about resource provisioning which
use a variety of statistical and reasoning techniques. However,
they only provide resource provision without consideration of
the application characteristics and hybrid infrastructure. It is
necessary to develop a resource provisioning method using
analysis of job history. Also, efficient resource management
method by scaling VM dynamically is needed.

In this paper, we suggest a resource provisioning model
based on application characteristic profiles and job history
analysis in hybrid computing infrastructure consisting of clus-
ter and cloud environments. In addition to the multi-layer

perceptron machine learning method, error back-propagation
technique is used to analysis of job history to re-learn the error
of the output value. Also, we propose an adaptive resource
provisioning method for horizontal/vertical scaling of VMs in
accordance with the state of the system. We experiment CPU-
intensive applications according to the proposed model and
algorithms in a hybrid infrastructure. The experimental results
show that using the proposed method, we satisfy user-specified
SLA (cost and execution time) and improve the efficiency of
resource usage. The main research content and methods of this
paper is organized as follows.

• Propose a supervised learning model using multi-
layer perceptron and error back-propagation method
for analysis of job history in hybrid computing.

• Generate input and output data for the proposed model
using job history in hybrid infrastructure consisting
of cluster (SGE: Sun Grid Engine [8]) and cloud
(OpenStack [9]) and show accuracy of the model.

• Suggest an adaptive resource provisioning method
consisting of three algorithms based on job history
learning.

• Verify the performance of the proposed algorithm
through comparative real experiments and simulation.

The rest of this paper is structured as follows: Sect. II
discusses related works while Sect. III introduces the cloud
resource provisioning model based on job history learning
technique. In Sect. IV, adaptive resource provisioning algo-
rithms are discussed in detail, while experiments and results
are presented in Sect. V. Sect. VI concludes the paper and
discuss future work.

II. RELATED WORKS

HPC communities (DIRAC [8], HTCaaS [1], Condor-
G [9], gUSE/WS-PGRADE [10]) recently integrate cloud with
traditional distributed computing environments such as grid,
cluster, desktop grid. There are a few studies that address the
need of simultaneously controlling heterogeneous computing
infrastructures. Mateescu et al. [11] described the concept
of Elastic Cluster combining of traditional HPC, Grid and
Cloud computing to achieve effective and predictable execu-
tion of HPC workloads. In [11], they noted that no single
infrastructure is the best solution from all points of view.

2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems

978-1-5090-3651-6/16 $31.00 © 2016 IEEE

DOI 10.1109/FAS-W.2016.27

72

2016 IEEE 1st International Workshops on Foundations and Applications of Self-* Systems

978-1-5090-3651-6/16 $31.00 © 2016 IEEE

DOI 10.1109/FAS-W.2016.27

72

2016 IEEE 1st International Workshops on Foundations and Applications of Self-* Systems

978-1-5090-3651-6/16 $31.00 © 2016 IEEE

DOI 10.1109/FAS-W.2016.27

72

2016 IEEE 1st International Workshops on Foundations and Applications of Self-* Systems

978-1-5090-3651-6/16 $31.00 © 2016 IEEE

DOI 10.1109/FAS-W.2016.27

72

2016 IEEE 1st International Workshops on Foundations and Applications of Self-* Systems

978-1-5090-3651-6/16 $31.00 © 2016 IEEE

DOI 10.1109/FAS-W.2016.27

72

2016 IEEE 1st International Workshops on Foundations and Applications of Self-* Systems

978-1-5090-3651-6/16 $31.00 © 2016 IEEE

DOI 10.1109/FAS-W.2016.27

72

2016 IEEE 1st International Workshops on Foundations and Applications of Self-* Systems

978-1-5090-3651-6/16 $31.00 © 2016 IEEE

DOI 10.1109/FAS-W.2016.27

72

2016 IEEE 1st International Workshops on Foundations and Applications of Self-* Systems

978-1-5090-3651-6/16 $31.00 © 2016 IEEE

DOI 10.1109/FAS-W.2016.27

72

2016 IEEE 1st International Workshops on Foundations and Applications of Self-* Systems

978-1-5090-3651-6/16 $31.00 © 2016 IEEE

DOI 10.1109/FAS-W.2016.27

72

Moca et al. [12] presented a fault-tolerant and trust-aware
scheduler, which allows to execute Bag-of-Tasks applications
on elastic and hybrid distributed computing infrastructures.
In previous study [22], we conducted a study on the job
distribution ratio in a hybrid infrastructure using the HTCaaS.
With the accelerated increase in the use of cloud infrastructure,
there is a corresponding increase in dynamic resource pro-
visioning techniques that provide required resources. In this
paper, we suggest a resource provisioning model based on
application characteristic profiles and job history analysis in
hybrid computing infrastructure consisting of cluster and cloud
environments.

In this section, we introduce several related works with a
focus on cloud resource provisioning based diverse reasoning
technique, and adaptive resource management.

A. Cloud Resource Provisioning Methods based Reasoning
Technique

In cloud environment, there are many research[12∼14] that
have considered resource provisioning methods and which use
different statistical and reasoning techniques. Kim et al. [13]
suggested a fuzzy logic driven VM provisioning scheduling
with a precise evaluation of resource availability using resource
evaluation. In [13], their method considered the availability
of only used VMs, since it cannot select suitable VM for
application. Rao et al. [14] proposed a distributed learning
mechanism that facilitates self-adaptive virtual machines re-
source provisioning. The mechanism which uses a proposed
reinforcement learning algorithm evaluates the requests and
replies with feedbacks. This method however, can have an
overhead of user feedback, thus it is not an appropriate method
for HPC and HTC applications. Sukhija et al. [15] presented
a portfolio-based selection of robust dynamic loop scheduling
algorithms using multi-layer perceptron learning. However,
it is not a suitable method because it considered only grid
computing without cloud computing.

B. Adaptive Resource Management

With Cloud computing, it is easy to build various scientific
application that can be managed and controlled for scalability
and flexibility. There are many research works [15∼18] that
have discussed adaptive resource management methods in
cloud environments. Auto-scaling technique is currently being
studied as an effective resource management approach. It
is categorized into horizontal scaling and vertical scaling.
Horizontal scaling adds or removes the number of VM, while
vertical scaling expands and reduces the amount of resources
(CPU, Mem, Disk)in a given VM. These research works
proposed auto-scaling methods using prediction models for
future resource usage of applications. Samuel et al. [16]
proposed a forecast model to satisfy web applications’ SLA
such as web service response time and throughput. They used
three reasoning techniques such as Linear Regression, Neural
Network, and Support Vector Machine. Similarly, Bashar et
al. [17] utilized Bayesian Networks to predict resource usage.
Nikravesh et al. [18] applied Hidden Markov model and
compared their method with Amazon CloudWatch [19]. They
determined VM scaling according to prediction models. In this
paper, we propose an adaptive resource provisioning method

based on application characteristics and analysis of job history
using both horizontal and vertical scaling.

III. CLOUD RESOURCE PROVISIONING BASED ON JOB

HISTORY LEARNING TECHNIQUE

In this section, we introduce that cloud resource pro-
visioning model based on scientific application job history
and application characteristics. It uses multi-layer perceptron
learning technique from Weka [20].

Multi-layer perceptron (MLP) maps sets of input data onto
a set of appropriate outputs. It consists of multiple layers of
nodes (neuron) in a directed graph with activation function.
MLP is a model that can solve the non-linear separation
problem (XOR) of single-layer perceptrons. In this paper,
we propose a cloud resource provisioning model based on
application-aware job history learning. To design a MLP model
for cloud resource provisioning based on job history data, we
need to define the categories of the job history data. The job
history data consists of four categories as follows

• Application Profiles: includes application name, appli-
cation type, average CPU utilization, memory utiliza-
tion, the number of tasks, and input file size.

• System Status: consists of machines’ specification and
current resource usage.

• VM Information: has vCPU, Mem, Disk, and VM cost
per hour, the number of used VM according to the
used VM types.

• Historical Data: is total execution time, total cloud
resource cost, job distribution ratio.

Fig. 1: Resource provisioning model based on job history using
MLP

In the model, job history data consisting of various at-
tributes such as application name, application type, resource
utilization, input size, task size, deadline, cost limit, cluster
queue status, cloud queue status, and job distribution ratio are
non-linearly separable. Also, it utilizes error back-propagation
technique which is applied to analysis of job history to re-learn
the error of the output value.

Figure 1 shows the proposed resource provisioning model
based on job history using MLP. The input data for the model

737373737373737373

includes application profiles, system status, and historical data,
while output is the VM information of job history items. Input
data for the learning step of learning model uses 156 data and
input data for the validation step of learning model uses 9 data.

Learning factor was carried out several times and selected
as a parameter in the case shown the highest accuracy as
follows. Learning rate: 0.2, momentum: 0.8, the number of
learning: 500, the number of allowed consecutive errors: 20,
the number of hidden layer: 17, the number of input layer:
11, the number of output layer: 6. In the verification step
by attempting to predict, the accuracy of learning model was
calculated. The proposed resource provisioning model shows
the accuracy of 77.7778%.

Fig. 2: Service Architecture Model

Figure 2 presents an overview of a service architecture
model for an adaptive resource provisioning method using
job history learning technique in a hybrid infrastructure. It
basically consists of three layers which are Service Layer,
Middleware Layer, and Infrastructure Layer. In this paper,
hybrid computing infrastructure was targeted thus clusters and
cloud environments were deployed on the HTCaaS middle-
ware. Service layer largely consists of two services, Cloud
Resource Provisioning Service (CRPS) based on job history
learning model and Adaptive Resource Management Service
(ARMS). In the CRPS, when the user submits the SLA (cost
and deadline) and scientific applications to the system through
the middleware, virtual machines are assigned according to
the appropriate SLA and system status based on deductions
from work history learning model. While performing scientific
applications using the inferred resources, the ARMS monitors
available resources to provide services and control the number
of virtual machines in accordance with the system status.

IV. ADAPTIVE RESOURCE PROVISIONING METHOD

In this section, three algorithms that can provision re-
sources in hybrid infrastructure and monitor systems’ avail-
ability ratio, and scale the VM in accordance with the state
of the system are proposed. The assumptions and notations of
the proposed algorithms can be seen in table I.

TABLE I: Notations

Notation Description

R
A user request
{ Appname, Inputsize, |Input|, SLAd, SLAc }

P
A user policy for SLA
P ∈ { COST, PERFORMANCE }

PD Profiling data for R = { R, Apptype, CPUutil, Memutil }
Ri

A Resource
Ri ∈ { Cluster, Cloud }

SRi Current status of Ri = { Spec Ri, Util Ri }
UR Selected Resource type from user

TRi Type of Resource Ri

|cR| The number of changed resources

|rR| The number of reduced / released resources

Algorithm 1 Resource Provisioning Algorithm

Input: a Request R , a user policy P, userResource UR
1: Set PD , SystemStatus
2: Set InputDatai = { PD,SystemStatus }
3: VMtype and |VM | ←MLP (InputDatai) ;
4: if Ri == Cloud then
5: TRi ← VMtype ;
6: |Ri| ← |VM | ;
7: else
8: TRi ← Ri ;
9: |Ri| ← AvailableRi ;

10: end if
Output: Resource Provisioning RP

= {(TRi , |Ri|) | i = 0,1,· · · , N−1, Ri ∈ UR}

Algorithm 2 Monitoring Algorithm

Input: a result of resource provisioning RP , a user policy P
1: Default SF , HJS, DV , SD = false ;
2: SF ← DetectSF ();
3: HJS ← DetectHJS();
4: if SF == true then
5: |cR| ← (|Ri| − |rR|);
6: RESCHEDULE(|cR|, waitingJob);
7: DV ← CompareEFT (EFT, SLAd) ;
8: end if
9: if HJS == true then

10: Increase JobPriority ;
11: Release |reducedResource| ;
12: |cR| ← (|Ri| − |rR|);
13: RESCHEDULE(|cR|, waitingJob);
14: DV ← CompareEFT (EFT, SLAd) ;
15: end if
16: if DV == true then
17: if P == PERFORMANCE then
18: SD ← true ;
19: else
20: Update(SLAd);
21: end if
22: end if
Output: Scaling Decision SD ,

Amount of reduced resource |rR|

Algorithm 1 describes a resource provisioning based on
application characteristic profiles and job history analysis in
hybrid computing infrastructure including cloud environments.

747474747474747474

In algorithm 1, a user submits a request R and then sets the
profiling (PD), system status (SystemStatus) information and
input data (InputDatai) of the learning model (lines 1-2). It
finds a suitable VM type and the number of VM according
to input data by using multi-layer perceptron model (line
3). If the resource is cloud, the VM provisioning result by
learning model is selected (lines 4-6). While, other resources
are provisioned by the availability of the resource (lines 7-9).

Algorithm 2 shows available resources monitoring algo-
rithm. Algorithm 2 monitors system failure (SF), higher prior-
ity job submission (HJS), and user-defined deadline violation
(DV). If system failure happened, waiting jobs of failed
resources are rescheduled (lines 4-8). If new jobs’ priority are
higher than current job, current jobs’ priority is increased and
the released resource size is calculated (lines 9-15). In spite
of rescheduling, if deadline violation is detected then scaling
decision (SD) is decided according to user policy.

Algorithm 3 Adaptive Resource Scaling Algorithm

Input: Scaling Decision SD, Scaling Type ST ,
Amount of reduced resources |rR|,

1: while SD do
2: Switch (ST)
3: case HORIZONTAL:
4: TRi ← VMtype ;
5: |Ri| ← |VM |+ |rR|;
6: case V ERTICAL:
7: TRj ← NewVMtype(VMtype) ;
8: |Rj | ← |rR| ;
9: TRi ← VMtype ;

10: |Ri| ← |VM | − |rR|;
11: end switch
12: end while
Output: Adaptive Resource Provisioning ARP

= {(TRi , |Ri|) | i = 0,1,· · · , N−1, Ri ∈ UR}

Algorithm 3 describes the adaptive resource scaling method
which applies horizontal or vertical scaling according to pre-
vious selected scaling type while scaling decision is true. In
horizontal scaling, added number of VMs is calculated (lines
3-6). Vertical scaling should calculate changed VM size of not
only the original VM but also new VM (lines 6-10). The output
of algorithm 3 is the results of the proposed adaptive resource
provisioning (ARP) method.

V. EXPERIMENTS

Experiments that validated our adaptive resource provision-
ing method are presented in this section. First, we describe the
system and target applications, and subsequently present the
result of experiments.

A. Hybrid Infrastructures

HTCaaS[1]aims to expedite exploring large-scale HTC or
MTC problems for diverse computing environments such as
Supercomputers, Grids, Clusters and Clouds. It can conceal
diversity of integrating heterogeneous resources from users,
and enable users to effectively submit a large number of tasks
immediately. It applies a pilot-based multi-level scheduling
technique which aids the decoupling of resource assignment

from resource binding. The general pilot (or agent) itself is a
normal batch job which is submitted by HTCaaS system and
is assigned into the resources by the local batch scheduler.
Then it execute ‘pulling and executing’ sub-jobs as well as
coordinating the launch and monitoring procedures.

Fig. 3: Hybrid Infrastructures for Scientific Applications using
HTCaaS

The computing resources consist of local cluster and private
cloud resources using HTCaaS. The local cluster uses a Sun
Grid Engine (SGE) [2] which is a batch-queuing system
supported by Sun Microsystems. OpenStack [5] is an open
source software that provides large pools of compute, stor-
age and networking resources used for cloud environments.
Our OpenStack cloud environment is made up of 1 Intel(R)
Core(TM) i7-4930K CPU @ 3.40GHz Controller with 12 cores
of CPU and 4GB of RAM and 1 Intel(R) Core(TM) i7-4930K
CPU @ 3.40GHz compute node with 8 CPU cores and 24GB
RAM and 2 Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz
compute nodes with each 24 and 32 CPU cores and 40 and
54GB RAM. In the experiments, 6 flavor such as t2.micro,
t2.small, t2.medium, t2.large, c4.xlarge, m4.xlarge is used for
VM and its’ cost is configured according to Amazon EC2 [4]
as shown in Table 2. Each VM was created identically using
Ubuntu 12.04 Server image.

TABLE II: VM information

Name vCPU Mem(GB) Disk(GB) Cost($) per hour

t2.micro 1 1 5 0.02

t2.small 1 2 5 0.04

t2.medium 2 4 5 0.08

t2.large 2 8 10 0.16

c4.xlarge 4 8 10 0.24

m4.xlarge 4 16 10 0.33

B. Target Application

We address High Throughput Computing (HTC) and Many
Task Computing (MTC) applications consisting of millions or
billions tasks [22] to be dealt with comparatively short per task

757575757575757575

execution time. For our experiment, we use two applications,
PYTHIA and Autodock.

PYTHIA[6] is a common tool for Monte Carlo (MC)
simulations for events generation in high-energy physics. It
makes up a consistent set of physics models as a library and
also has a set of utilities and interfaces to external programs
[24]. PYTHIA is mainly a pure CPU-intensive application with
small size of in/output files. PYTHIA uses average 94.59%
CPU utilization and 0% memory utilization.

AutoDock[7] on the other hand, is a suite of automated
docking tools to anticipate how small molecules, such as
substrates or drug candidates, bind to a receptor of known 3D
structure. The AutoDock job we use is considered a CPU-
intensive application having in/output data files with small
sizes. The AutoDock uses average 99.12% CPU utilization and
0.7% memory utilization.

C. Experimental Results

The proposed resource provisioning method satisfies user
requirements such as cost and execution time because it
uses resources inferred from job history data. In this ex-
periment, we compare our method (LB) to the method of
using resources according to the cost-minimum (CM) and
performance-maximum (PM) policies. Figures 4 and 5 show
the experimental results for Autodock and PYTHIA respec-
tively.

In figure 4, the VM types used are t2.medium(15),
t2.micro(20), and c4.xlarge(11) for LB, CM, and PM respec-
tively with user-defined deadline of 12000 seconds and cost
limitation of $4.4. And in figure 5, LB uses t2.large(10) relative
to CP with t2.micro(20) and PM with c4.xlarge(11) with
user-defined deadline(470 seconds) and cost limit($1.7). The
results show that the proposed resource provisioning method
based on job history learning technique is better than cost-
minimum or performance-maximum policy in terms of user-
defined deadline and cost limit.

Fig. 4: Comparing SLA satisfaction for Autodock using
the proposed learning-based (LB), cost-minimum (CM) and
performance-maximum (PM) methods

The concept of the proposed adaptive resource scaling
algorithm is demonstrated in a simulation using CloudSim [21]
as shown in figure 6 and 7. We consider two scenarios which
represent a case of system failure and higher priority job

Fig. 5: Comparing SLA satisfaction for Pythia using the
proposed learning-based (LB), cost-minimum (CM) and
performance-maximum (PM) methods

Fig. 6: Scenario 1 : system failure

submission using autodock. We compare the proposed adaptive
resource provisioning method (AP) which uses both horizontal
scaling and a vertical scaling, to a non-adaptive resource
provisioning (NAP) method. The results show that there is
deadline violation using the NAP method, because it could
not add resources in accordance with the availability ratio of
system resources. Meanwhile, the proposed method through
VM scaling can satisfy user-defined deadlines by adding VMs
according to the amount of required resources. The difference
between horizontal scaling and vertical scaling is seen in the
total number of resources per VM type and in the overhead of
vertical scaling.

VI. CONCLUSION

In this paper, we design a resource provisioning model
based on application characteristic profiles and job history
analysis in hybrid computing infrastructure consisting of clus-
ter and cloud environments. In addition to the multi-layer
perceptron machine learning method, error back-propagation
technique is used to analyze job history and re-learn the error
of the output value. Also, we propose an adaptive resource
provisioning method for horizontal/vertical scaling of VMs in

767676767676767676

Fig. 7: Scenario 2 : higher priority job submission

accordance with the state of the system. We experiment CPU-
intensive applications according to the proposed model and
algorithms in a hybrid infrastructure. The experimental results
show that using the proposed method, we satisfy user-specified
SLA (cost and execution time) and improve the efficiency of
resource usage.

In the future, our research work will include further
experiments with different types of scientific applications.
Furthermore, studies on identifying instances for horizontal
and vertical scaling in automatic and ingenious ways according
to application types will be investigated.

ACKNOWLEDGMENT

This research was supported by Next-Generation Informa-
tion Computing Development Program through the National
Research Foundation of Korea(NRF) funded by the Ministry
of Science, ICT & Future Planning (2015M 3C 4A7065646)

REFERENCES

[1] Seungwoo Rho, Seoyoung Kim, Sangwan Kim, Seokkyoo Kim, Jik-
Soo Kim, Soonwook Hwang, HTCaaS: a large-scale high-throughput
computing by leveraging grids, supercomputers and cloud, High Per-
formance Computing, Networking, Storage and Analysis (SCC), 2012
SC Companion, pp. 1341-1342, 2012

[2] SGE, http://www.oracle.com/technetwork/oem/grid-engine-166852.html

[3] Partnership and Leadership for the nationwide Supercomputing Infras-
tructure, http://www.plsi.or.kr/

[4] Amazon EC2(Elastic Compute Cloud), http://aws.amazon.com/ec2

[5] OpenStack, http://www.OpenStack.org

[6] T. Sjstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual,
2006

[7] Autodock, http://autodock.scripps.edu/

[8] DIRAC, http://diracgrid.org/files/docs/Overview/index.html?highlight=
pilot

[9] James F., Todd T., Miron L., Ian F., Steven T., Condor-G: A Computation
Management Agent for Multi-Institutional Grids, Cluster Computing Vol.
5, No. 3, pp. 237-246, 2002.

[10] gUSE/WS-PGRADE, http://guse.hu/about/home

[11] G. Mateescu, W. Gentzsch, Calvin J. Ribbens, Hybrid Computing
Where HPC meets grid and Cloud Computing, Future Generation Com-
puter Systems. Vol. 27, No. 5, pp. 440-453, 2011.

[12] M. Moca, C. Litana, G. C. Silaghi, G. Fedak, Multi-criteria and satisfac-
tion oriented scheduling for hybrid distributed computing infrastructures,
Future Generation Computer Systems. Ver. 55, pp.428-443, 2016.

[13] Jae-Kwon Kim and Jong-Sik Lee, Fuzzy Logic-driven Virtual Machine
Resource Evaluation Method for Cloud Provisioning Service, Journal of
the Korea Society for Simulation, Vol. 22, No. 1, pp. 77-86, 2013.

[14] J. Rao, X. Bu et al., A Distributed Self-learning Approach for Elastic
Provisioning of Virtualized Cloud Resources, 2011 IEEE 19th Annual
International Symposium on Modelling, Analysis, and Simulation of
Computer and Telecommunication Systems, pp. 45-54, 2011.

[15] N. Sukhija, B. Malone et al., A Learning-based Selection for Portfolio
Scheduling of Scientific Applications on Heterogeneous Computing
Systems, Journal of Parallel and Cloud Computing, Vol. 3, No. 4, pp.
66-81, 2014.

[16] AJILA A. Samuel and BANKOLE A. Akindele, Proactive Prediction
Models for Web Application Resource Provisioning in the Cloud, Inter-
national Conference on Transition from Observation to Knowledge to
Intelligence, pp. 17-35. 2014.

[17] Abul Bashar, Autonomic scaling of Cloud Computing resources using
BN-based prediction models, 2013 IEEE 2nd International Conference
on Cloud Networking, pp. 200-204, 2013.

[18] Ali Yadavar Nikravesh et al., Cloud Resource Auto-scaling System
Based on Hidden Markov Model(HMM), 2014 IEEE International Con-
ference on Semantic Computing(ICSC), pp. 124-127, 2014.

[19] Amazon CloudWatch, http://aws.amazon.com/cloudwatch/

[20] Weka, http://www.cs.waikato.ac.nz/ml/weka/

[21] Rodrigo N. et al. Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provisioning
algorithms, Software: Practice and Experience, 41(1), pp. 23-50, 2011.

[22] Jieun Choi, Seoyoung Kim, Theodora Adufu, Soonwook Hwang, Yoon-
hee Kim, A Job Dispatch Optimization Method on Cluster and Cloud
for Large-scale High-Throughput Computing Service, 2015 IEEE Inter-
national Conference on Cloud and Autonomic Computing, Cambridge,
MA, USA, Sept. 21-24, 2015

[23] I. Raicu, I. Foster and Y. Zhao, Many-Task Computing for Grids and
Supercomputers, In: Proceedings of the Workshop on Many-Task Com-
puting on Grids and Supercomputers (MTAGS08), (2008) November.

[24] Sjstrand, Torbjrn, Stephen Mrenna, and Peter Skands. ”A brief introduc-
tion to PYTHIA 8.1.” Computer Physics Communications 178.11 (2008):
852-867.

777777777777777777

