IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 28 June 2023, accepted 11 August 2023, date of publication 21 August 2023, date of current version 8 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3307315

== RESEARCH ARTICLE

Analyzing Data Locality on GPU Caches Using
Static Profiling of Workloads

JIEUN KIM“', HYEONSANG EOM', AND YOONHEE KIM"*?2

! Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
2Department of Computer Science, Sookmyung Women’s University, Seoul 04310, Republic of Korea

Corresponding author: Yoonhee Kim (yulan @sookmyung.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government, Ministry of
Science and ICT(MSIT) (No. NRF-2021R1A2C1003379).

ABSTRACT The diversity of workloads drives studies to use GPU more effectively to overcome the limited
memory of GPUs. Precisely, it is essential to understand and utilize data locality of workloads to utilize
the memory and cache efficiently, which is relatively smaller than CPU's. It is important to understand
GPU memory hierarchy to efficiently use with multi-thread environment. Although there have been previous
approaches to analyzing data locality on GPUs, these approaches focused on global memory and L2 cache
levels with profiling at thread block levels. Data locality study in warp level in GPU has not been studied
much. Especially, the concept of coalescing has been defined but the method of measuring the degree
of coalescing has not been discussed. Our study focused on analyzing data locality in L1 cache levels,
which is the smallest but fastest in cache level to analyze the impact of data locality. To achieve this analysis,
our study profiles data locality in warp level, which is smallest segment in GPU thread groups. This paper
introduces a novel perspective by introducing a quantitative measure for coalescing alongside static profiling
of data locality. Furthermore, it offers a means of refining locality estimates by scrutinizing access patterns
of L1 cache. To substantiate our approach, our study validates the estimated data locality against a range
of real-world GPU benchmarks, including Rodina and Polybench. Through empirical experimentation, our
results reveal a substantial correlation between the metrics of data locality and cache utilization, affirming
the efficacy of our proposed method.

INDEX TERMS Data locality, GPU cache, GPU profiling, GPGPU workload analysis, PTX code.

I. INTRODUCTION

Graphics processing units (GPUs) are widely used as GPG-
PUs (general-purpose computing on graphics processing
units) in a variety of fields, such as high-performance com-
puting, machine learning, and big data analysis. With the
recent increase in types in workloads executed by GPUs and
the quantity of data utilized in workloads, memory access
efficiency of workloads executed using GPUs has become a
crucial topic that merits extensive research. Efficient utiliza-
tion of GPUs during workload execution requires a thorough
understanding of their parallel computing characteristics and
memory hierarchy.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nikhil Padhi

In a GPU, multiple threads are grouped into a single exe-
cution unit, and they execute each instruction simultaneously.
As a result, data locality occurs for each memory hierarchy
whenever a group of threads executes memory access instruc-
tions simultaneously. This data locality can be analyzed to
understand the data access characteristics of the workload and
predict access efficiency in the actual memory hierarchy. Data
locality occurring in GPUs can be classified in terms of the
execution method. While executing a workload, an NVIDIA
GPU specifies a group of threads to be used. A hierarchy
exists within the group of threads-the largest unit is a grid
consisting of thread blocks, and each thread block, in turn,
consists of threads.

Although the sizes of the grid and the thread can be speci-
fied by the user while executing a workload, each thread block

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

95939

https://orcid.org/0009-0004-1433-5036
https://orcid.org/0000-0003-4799-3209
https://orcid.org/0000-0002-9864-9857

IEEE Access

J. Kim et al.: Analyzing Data Locality on GPU Caches Using Static Profiling of Workloads

Grid 0
L
Thread Block(TB) Scheduler |
T T T
SMO (| SM1 SM 55
TBO TB 55
TB 56 TB 57 ot TB 111

FIGURE 1. Example of scheduling in SM of thread block.

comprises 32 threads partitioned into warps during actual
execution. All threads in a warp execute each instruction
simultaneously. This creates various types of data locality
during simultaneous execution of each instruction by multi-
ple threads in thread groups. Firstly, data locality can occur
between thread blocks within the grid. Figure 1 depicts var-
ious thread blocks scheduled on streaming multiprocessors
(SMs). As depicted in Figure 2, SMs share the L2 cache
of the GPU. Therefore, significant overlap of data access
between SMs increases data locality between them, increas-
ing L2 cache access efficiency. Secondly, as L1 cache exists
in each SMs, data locality can occur in SM level. Each SM
is composed of thread blocks as depicted in Figure 1, which
means at minimum, data locality within thread block effects
data locality in L1 cache.

As illustrated in Figure 3, several thread blocks exist
within the SM, and each thread block is further subdivided
into warps. Data locality within the SM is influenced by
that between thread blocks and within warps. In order to
utilize a GPU architecture effectively for execution by group-
ing threads into certain units, global memory accesses is
coalesced. When a warp executes a global memory access
instruction, the efficiency of global memory access is deter-
mined by the arrangement of the memory addresses accessed
by the threads within it. One of the criteria for classifying this
arrangement of memory addresses accessed involves verify-
ing whether the memory addresses accessed by the threads
within the warp are contiguous. When the data type size is
4 bytes, the optimal access byte size accessed by each warp is
128 bytes. One sector consists of 32 bytes, with fewer access
sectors corresponding to more common accesses occurring
within the cache line. On the other hand, memory accesses
with higher numbers of access sectors and bytes are more
distributed and inefficient [9].

Nvidia guide explains the concept of coalesced data access
in GPU [8]. As depicted in Figure 4, 4(a) reveals that threads
within a warp enable consecutive accesses. In this case,
in order for a warp to complete the global memory access, all
threads within it complete the execution by accessing 4 sec-
tors simultaneously. On the other hand, in the case of 4(b),
consecutive accesses are performed, but the range does not fit
within the 32-byte sector unit. As a result, 5 sectors must be

95940

SM-0 SM-1 SM-55
L1/SMEM L1/SMEM L1/SMEM
(192 KB in A30) (192 KB in A30) (192 KB in A30)
| L2 Cache (24MB in A30) |
Global Memory (DRAM, 24 GB in A30)

FIGURE 2. The memory hierarchy of NVIDIA A30.

B8O 1 Warp 0
| Thread 0 | | Thread 0 | Thread 31

Thread31|

|Thread32|

Thread63|

|Thread64|

Thread 95 [11/

|

FIGURE 3. Warp scheduling in thread block.

accessed, which is a drawback. Further, in the case of 4(c), the
threads of the warp access memory by skipping memory loca-
tions over regular intervals. This incurs additional overhead
for accessing multiple sectors. Besides these cases, cases
involving overhead owing to threads not accessing memory
in units of 128 bytes are referred to as non-coalescing access.
There has been previous research on this to analyze the effect
of this characteristic on GPU workloads.

In Localityguru [13], PTX code-based static profiling was
performed. Data locality between thread blocks was analyzed
by the memory address which threads accessed, using this
as the parameter to schedule the thread blocks with high
locality. In addition, several studies have been conducted to
analyze data locality [1], [2], [3], [4], [14] and the results
have been applied to GPU scheduling [12], [13]. In partic-
ular, LocalityGuru introduced a method for determining data
locality between mutual thread blocks using static profiling
based on PTX code. This method can identify data access
addresses that overlap between the thread blocks. Further,
the authors proposed a thread block locality graph to identify
thread block combinations with high data locality.

Although the previous papers mentioned above analyzed
data locality,the relationship between memory and cache,
there were limitations in the analysis at the warp level and
the L1 cache analysis on the GPU. Data locality analysis at
the thread block level is limited in terms of associating data
locality with multiple level of cache usability. For instance,
only threads within the same SM can access the L1 cache.
However, examining data locality at the thread block level
does not fully reflect the characteristics of GPU threads

VOLUME 11, 2023

J. Kim et al.: Analyzing Data Locality on GPU Caches Using Static Profiling of Workloads

IEEE Access

fetching data from global memory. To achieve this L1 cache
level analysis, this paper narrow the analysis scope to warp
level. In GPU, the same instruction is executed in warp units.
In the case of global memory access, the distribution of data
locations accessed by each thread within the warp affects
the performance significantly. This can be expressed using
data coalescing, as well as the contiguity of data accessed by
the threads within the warp and the density of their location
affect performance significantly. Therefore, this paper aims
to predict the actual cache usage pattern by analyzing data
locality at the warp level.

To this end, our study analyzes the memory access patterns
of workloads using static profiling based on PTX code. This
paper also quantify the degree of data locality and coalescing
and ascertain the correlation between the quantified values
and the dynamic profile result. NVIDIA A30 GPU is used
in the experiment to evaluate the relationship between the
degree of coalescing, GPU L1 cache, and the num-
ber of sectors/requests required for data access instructions
for the rodinia [10] and polybench [11] workloads using PTX
code-based static profiling, as presented in [13]. Our study
observes that 6 out of 6 workloads with coalescing scale
values exceeding 70% exhibit L1 cache hit rates exceeding
60%. In addition, the scale of coalescing and the cache hit rate
are observed to be correlated. hlln addition, it was confirmed
that the predicted sector access result using the value obtained
through profiling has a high correlation with the actual sector
per request. Based on these result, static profiling reveals that
data locality of the threads in a warp affects the L1 cache hit
rate and sectors/requests.

The contributions of our work are as follows:

« By analyzing data locality at the warp level, the analysis
of data access patterns at a L1 cache level is objective.

« The estimation of data locality with degree of coalescing
is compared to related metrics including L1 cache usage
from Nvidia Nsight Compute profiling results.

o The graph method of visualizing data locality includ-
ing the degree of coalescing in a warp level has been
proposed. It helps to understand the coalescing charac-
teristics of workloads.

The rest of this paper is organized as follows: Section II
describes the related work. Section III presents the imple-
mentation of our data locality profiling. Section IV shows the
experimental results. Section V concludes this paper.

Il. RELATED WORK

Figure 1 illustrates the grouping of threads, i.e., the GPU
execution units, into thread blocks and their scheduling on the
SM. Thread blocks are bundled into grid units. The threads in
each thread block comprise a warp consisting of 32 threads,
and they execute each instruction simultaneously. Due to
this GPU characteristic, data locality occurs among threads,
warps, and thread blocks. Data locality can be subclassified as
intra-locality and inter-locality. Intra-locality refers to local-
ity within a thread block or SM. If multiple threads within

VOLUME 11, 2023

\AAAl - \AAA4
0 32 64 96 128 160 192 224 256 (bytes)

(a) A coalesced memory access by warp

RN c e NN
0 32 64 9% 128 160 192 224 256 (bytes)

(b) A sequential but misaligned access pattern

\AAAA2A0022240/ \AA222020202240/

0 32 64 [128 160 192 224 256 (bytes)
(c) A stride access pattern

FIGURE 4. Warp memory access type.

a thread block access the same memory address, the thread
block exhibits high intra-locality. On the other hand, inter-
locality occurs when threads from different thread blocks or
SMs access the same memory addresses. High inter-locality
affects the L2 cache level that can be accessed by all threads.

A. STATIC PROFILING ON DATA LOCALITY IN GPU

Studies have been conducted to identify the characteristics of
workloads by analyzing the locality in them. References [1],
[2], [3], [4], [12], and [13]. LocalityGuru [13] analyzed PTX
code to define the degree of memory access overlap between
thread blocks as locality and analyzed degrees of locality
between thread blocks. It is evident from Figure 1 that several
thread blocks are assigned to one SM in the GPU. In this case,
the thread blocks share the L1 cache within the SM. As a
result, the locality between the threads affects the L1 cache.
Considering these characteristics, the aforementioned paper
analyzed the inter-locality between thread blocks, which
identifies the degree of data reuse between the thread blocks.
PAVER [12] extended the aforementioned results using the
locality information during scheduling. Applying the tech-
niques on scheduling the threads, [12] reduced L2 accesses
while increasing the benchmarks’ performance.

B. DATA ACCESS PATTERN ANALYSIS

There were previous studies focusing on profiling data local-
ity and cache in GPU [19], [20]. Tang et al. [19] propose a
cache miss analysis model for GPU for the first time. The
method is focused on analyzing thread level stack distance
and cache contention. The experimental results illustrate that
their method can give the guidance in optimizing cache local-
ity for the GPU programs. Nugteren et al. [20] extends stack
distance or reuse distance theory on sequential processors
to parallel processor, GPU. Nugteren [20] considers multi-
thread aspects of GPU such as the hierarchy of threads, warp
divergence, cache associativity, and so on. This paper showed
L2 cache usage improvement when using their methods. Both
of the studies focused on GPU cache, but experimented on
gpgpu-simulation, which is virtual GPU. Additionally, Hong

95941

IEEE Access

J. Kim et al.: Analyzing Data Locality on GPU Caches Using Static Profiling of Workloads

CUDA code

adjust_weights(param2){
tmp = param2[(ctaid.y<<4+tid.y)*4];
}

1d.param.u64 %rd5, [_param_2];

mov.u32 %rl, %ctaid.y;
shl.b32 %r5, %rl, 4;
mov.u32 %r2, %tid.y;
add.s32 , %r2, %rs5;
cvta.to.global , %rd5;
mul , , 4;

add s s 3
1d.global %f2, [1;

}

_PTX code
_Z24bpnn_adjust_weights_cudaPfiS_iS_S_(){

(a) Backprop cuda code and ptx code

%ctaid.y

add

%rd5

add

1d.global %rd12

(b) Backprop syntax

FIGURE 5. Backprop workload’s code and syntax tree.

et al. [18] apply machine learning technique to analyze model
data access patterns. It is the first work that employs deep
learning techniques to flow visualization challenges. Also,
this approach employs CPUs and GPUs together for particle
tracing tasks. In addition to profiling only for GPUs, there are
more approaches to processing data access pattern analysis
with machine learning-based technology [15], [16], [17].

lIl. THE DESIGN OF DATA LOCALITY ANALYSIS AND IT'S
IMPLEMENTATION

A. DATA LOCALITY ANALYSIS THROUGH PTX CODE

This paper performs static profiling based on PTX
code-based locality analysis proposed in LocalityGuru [13].
In [13], the inter-locality between thread blocks during thread
block scheduling was analyzed with a focus on locality. How-
ever, this paper analyzes the degree of coalescing
between the threads within a warp based on the PTX code
by reducing the scope of locality analysis to warp-level
coalescing.

B. LOAD GLOBAL-BASED SYNTAX TREE GENERATION
METHOD
A locality graph is generated based on a syntax tree, which
is created while interpreting the PTX code. The PTX code
consists of a list of instructions, an example is depicted in
Figure 5. The PTX code may be expressed as a tree resem-
bling the tree diagram depicted in Figure 5(b).

As depicted in Figure 5(a), PTX instructions are con-
structed as follows:

operation dst, srcl, src2(, scr3)

A PTX instruction consists of an operation to be executed,
the destination where the execution result is stored, and a
source that executes the instruction. There can be maximum
3 sources, depending on the type of operation. Based on this
PTX code, a syntax tree is created by choosing 1 instruction
from the PTX code and recursively following it to detect

95942

the source used to create the destination of the instruction.
In [13], a syntax tree was created based on instructions with
the operation 1d. global to determine the locality of mem-
ory access. Since 1d.global commands are instructions
that access memory and read data from it, the load global
(1d.global) operation is the starting point of tracing and
syntax tree was constructed by tracing the PTX code and
analyzing the creation of the memory access address of this
instruction. This is repeated until the kernel’s input parameter,
input matrix, or fixed parameters, such as thread ID and
thread block ID, are encountered. Then, the information about
the memory address accessed by the thread was derived using
the traced syntax tree.

Figure 5(a) depicts some of the PTX commands of the
backprop workload taken from the rodinia benchmark [10].
Among these, rd12, which is a register that accesses global
memory, is adopted as the reference before initiating trac-
ing. If rd12 is found, the “add rdl12, rdl10, rdll”
command, whose destination is this register, is searched for.
Subsequently, the same operation is performed on the source
registers of this instruction, i.e., rd10 and rd11. This pro-
cess is performed for all load global commands to trace all
load global commands in the PTX code to generate the syntax
tree.

C. WARP LEVEL DATA LOCALITY ANALYSIS METHOD
As Figure 3 shows that warp is consisted of a series maximum
32 threads, analyzing the locality at the warp level involves
analyzing the locality of all 32 threads in the warp. This
requires clear definition of their areas. The area that deter-
mines the degree of coalescing within the warp is
defined as the coalescing range, which lies within 128 bytes
from the starting position of the sector accessed by the first
thread of the warp. Here, a sector refers to a group of 32 bytes.
As the access range depends on the data type size, coalesc-
ing is analyzed in this study by assuming a constant data type
size of 4 bytes. As explained in Figure 6, the starting point

VOLUME 11, 2023

J. Kim et al.: Analyzing Data Locality on GPU Caches Using Static Profiling of Workloads

IEEE Access

TBO 1
(Thread Block size: 128 threads, data type size: 4bytes)
Coalescing count start point = thread 0 data addr sector's start point
ex) th0 addr : 40, addr 0 : 32
\P
| Warp 0 | | addr 0 | addr 31
| Warp 1 | | addr 0 | addr 31
| Warp 2 | | addr 0 | addr 31
| Warp 3 | | | addr 0 | addr 31 |
T T
avg coalescing graph
|addr0||addr1||addr2| -addr31

i

coalescing count
Start Point

FIGURE 6. Process of coalescing graph generation.

of the coalescing graph does not correspond to the address
accessed by the first thread of the warp. It corresponds to
the starting point of the sector that includes that address. The
starting point of the coalescing graph is defined in this way
because the cache of the GPU is sectored; hence, when data
access is required, data is read from the global memory in
sector units. In other words, the entire sector including the
data is read, instead of reading just the data.

Therefore, the starting point of the sector of the accessed
data becomes the starting point for generating the coa-
lescing graph. The terminology to define the degree of
coalescingis as follows:

o first_address: global address of warp’s first thread
e coalescing count_start_point

first address
=|—— [x32
32

e cache_line_count: total thread count/ 32

e total_coalescing: total coalescing thread count
within all warps

e global_inst_count: count of global instructions
in PTX code

The starting point of the sector indicates the value obtained
by multiplying the quotient obtained when dividing the access
address by 32, by 32. With this starting point as the reference,
a coalescing graph is created by enumerating the number
of threads in the warp that access memory addresses within
128 bytes of the starting point.

degree_of _coalescing
total _coalescing

ey

- (cache_line_count x global_inst_count)

VOLUME 11, 2023

TABLE 1. The specification of NVIDIA A30.

NVIDIA A30 spec
L1 cache size 192KB
L2 cache size 24MB
Memory size 24GB

Compute capability 8.0

Subsequently, the degree of coalescing is calcu-
lated by dividing the total number of threads by the
number of instructions accessing the global memory and
line count. Then the above information is expressed as a
graph. The coalescing graph represents how the threads
access data in 32 memory addresses with reference to the
starting point of the sector accessed by the first thread
of a warp.

The degree of coalescing and the number of sec-
tors accessed can be predicted based on our graph. A sector
is a unit of memory that is 32 bytes in size and is arranged in
a specific way within a cache line or device memory. In the
case of an L1 or L2 cache line, 4 of these sectors are grouped
together, resulting in a total size of 128 bytes [9]. Based on
this fact, the number of sectors accessed by the warp can be
predicted, considering coalescing graph as representation of
all threads’ data accessing pattern.

IV. EVALUATION

A. EXPERIMENTAL SETUP

NVIDIA’s A30 GPU is used for the experiments. Its memory
hierarchy is configured as illustrated in Table 1. The size
of the L1 cache in the A30 GPU is 192 KB, and each SM
contains 1 L1 cache. Hence, the L1 cache is only accessed by
threads scheduled on the same SM. The size of the L2 cache
in the A30 GPU is 24 MB, and all threads in the workload
can access the L2 cache. The size of data accessed at any
time depends on the cuda computation capability. Version
8.0 is used, and data are grouped into 32-byte segments and
accessed in the global memory. If the data type size is 4 bytes,
the ideal number of sector accesses for a global memory
load request is 4 [8]. If the same data tends to be accessed
repeatedly, the number of accesses may be reduced. In the
worst case, all threads in a warp may access data in other
sectors, leading to 32 sectors being accessed for a single
global memory request [8].

The first 4 workloads in Table 2 (stride_32, stride_4,
same_location, and coalescing) are baseline workloads cre-
ated to be compared to benchmark workloads selected from
Rodinia [10] and Polybench [11]. These baseline workloads
aim to illustrate the tendency of locality and coalescing.
The other 9 workloads selected from Rodinia [10] and Poly-
bench [11] are chosen to provide diversity in experiments
conducted under various conditions. They include workloads
with multiple kernels such as BFS, backprop, and b+tree,
each having different grids and thread features (refer to
Table 2).

95943

IEEE Access

J. Kim et al.: Analyzing Data Locality on GPU Caches Using Static Profiling of Workloads

TABLE 2. The grid and thread block size according to workloads.

Workload Grid_x Grid_y Thread_x Thread_y
stride_32 32 1 64 1
stride_4 32 1 64 1
same_location 32 1 64 1
coalescing 32 1 64 1
b+tree_findK [10] 60 1 256 1
b+tree_findRangeK [10] 60 1 256 1
3DConvolution [11] 4 16 16 4
bfs_kernell [10] 128 1 512 1
backprop_forward [10] 1 64 16 16
2DConvolution [11] 2 8 32 8
backprop_adjust_weights [10] 1 64 16 16
bfs_kernel2 [10] 128 1 512 1
GEMM [11] 2 8 32 8

TABLE 3. Degree of coalescing, sector expectation and sector per request.

Workload Degree_ of aelf}:?; access Estimated L‘elr sectors
coalescing . sector access
coalescing range request

stride_32 3.13% 1 32 32
stride_4 25.00% 4 16 16
same_location 100.00% 1 1 1
coalescing 100.00% 4 4 4
b+tree_findK [10] 31.95% 4 12.52 2.15
b+tree_findRangeK [10] 39.51% 4 10.12 2.21
3DConvolution [11] 50.00% 3 6 4.62
bfs_kernell [10] 53.37% 4 7.47 491
backprop_forward [10] 75.00% 2 2.67 2.89
2DConvolution [11] 90.01% 4 4.44 4.33
backprop_adjust_weights [10] 100.00% 3 3 3.21
bfs_kernel2 [10] 100.00% 1 1 1
GEMM [11] 100.00% 4 4 2.51

B. RELATIONSHIP BETWEEN L1 CACHE AND COALESCING
This study analyzes our profiling result with L1 cache
in respect of hit rate and sector per request, which is
dynamically profiled from NVIDIA Nsight compute [9].
For the experiment, this paper uses 2 criteria, degree
of coalescing and estimated sector access,
to compare the result of our profiling result. (refer to Table 3
and Figure 7). Asdegree of coalescingisthecriteria
that shows data locality of workload, our study compares the
result with L1 cache hit rate. 7 To see how many sectors
that warp accessed, est imated sector access shows
how many sectors will be accessed based on the degree of
coalescing result. This result is compared with L1 sector
per request which is extracted from Nvidia Nsight Compute
and the result is in Figure 8.

In the case of the stride workload, threads in a warp access
data by skipping over n memory locations, showing that data
reuse and coalescing are less frequent in this workload. In
stride-32, 32 threads in the same warp do not share any of
the data between coalescing range. On the other hand, in the
case of stride-4 workload, threads access data by skipping
over 4 memory locations. This result shows that 8 data loca-
tions are re-accessed within coalescing range. This means
that the stride-4 workload exhibits a higher degree of
coalescing than the stride-32 workload. Analysis using
the Nsight Compute profiler [9] provided by NVIDIA reveals
that the L1 cache hit is higher in the stride-4 workload. Thus,
coalescing, as well as access of the same data, affect the L1
cache.

95944

100%
90%
80%
70%
60%
50%
40%
30%

20%
10%
0% — —

Rate

™

X X/ = o

&7 & 2 o
& N & NG
< o N R
B é\e 7 <
P
Workloads

O Degree of coalescing M L1_cache_hit_rate

(a) Base workload

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

& o

< N
o‘o

Rate

X & N & & & Xv
& & ¢ & ¢ §F &
7 L@ S 2 & S & W@
i S N & S
N N & 07 ¢ & &7 67
X < @ 0 N & &
0 o’ 8 Q N
& OQ 7 K3
X « R7
o (\},Q Q@
P O
0 O
‘O,b
Workloads

O Degree of coalescing W L1_cache_hit_rate

(b) Real workload

FIGURE 7. Relation between degree of coalescing and L1 hit rate.

The same_location and coalescing workloads, exhibit a
high degree of data reuse and coalescing. The same_location
workload allows all threads within a warp to access each
data address. Therefore, the degree of coalescing
for this workload is 100%. In the coalescing workload, the
32 threads in each warp access data determined by their
thread IDs. Therefore, all threads in a warp access different
data addresses in this workload. However, since the range
of the data access falls within 128 bytes, the degree of
coalescing and the L1 cache hit rate are identical to
those of the same location workload. This demonstrates
that the degree of coalescing reflects the patterns
of memory addresses accessed by the threads. However,
an 100% degree of coalescing does not necessarily
imply an 100% cache hit rate. The latter depends on data
locality between thread blocks and the number of data access
requests, as well as coalescing information within the warp
level.

Figure 7(b) and Table 3 depicts the degree of
coalescing and L1 cache hit rate of the rodinia [10]
and polybench [11] workload. There are some workloads
that shows this result including same_location, coalescing,
2DConvolution and so on. The result of those workloads
shows that the L1 cache hit rate is observed to exceed 60%
when the degree of coalescing exceeds 70%. This
result shows that workloads with high degrees of coalescing

VOLUME 11, 2023

J. Kim et al.: Analyzing Data Locality on GPU Caches Using Static Profiling of Workloads

IEEE Access

Sector per request

Sectors

& \3 > QL & N
& & Q@Q ° o\é\& (\@\ ®$\
& N » & & &
& S (\40 N N
X X o/
& &S & % &

&S 2
& Y

Kernel name

M Estimated sector access

O L1 sectors per request

FIGURE 8. Sectors needed for each global load request of workloads.

coalescing

stride 4

coalescing coalescing

coalescing

[1 2 3 4 5 6 7 8 9 10 11 12 13 14

FIGURE 9. Coalescing graph in base workload.

also exhibit high L1 cache hit rates. In the case of B+tree,
the findK function and findRageK function exhibit degrees
of coalescing of 32.66% and 40.63%, respectively, which are
considered low. Their cache hit rates are 55.56% and 69.73%,
respectively, which are higher than corresponding degrees of
coalescing. This may be attributed to the dense distribution
of the data. When comparing the workloads with multiple
kernels, for the same workloads, if 1 kernel’s degree of
coalescing is higher than the other’s, the L1 hit ratio is
also higher. This tendency is shown all of the multi kernel
workloads, which is b+tree, bfs and backprop.

As depicted in Figure 8, the L1 sector/request is 2.14 for
the findK function and 2.08 for the findRangeK function,
indicating that the number of sectors accessed is less than
the optimal sector access number, which is 4. Analysis of
Figure 10(a) and Figure 10(b) reveals that accesses are con-
centrated in the first sector. The actual number of sectors
accessed can be less than or equal to 4 if data access is well
concentrated or coalesced. This result shows that a relatively
high cache hit rate is achieved even though the degree
of coalescing islow due to the b+tree characteristic of

VOLUME 11, 2023

stride_32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i 2 3 3 5 6 7 : : ! : : k Y 15 16

data location

same_location

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i 2 3 . 5 6 7 : : ! : : k Y 15 16

data location

1.00
coalescin ,0_75
28 29 30 31 0-25

15 16
data location

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

17 18 19 20 21 22 23 24 25 26 27

accessing specific data repeatedly. This tendency can also be
found in other workloads.

C. ANALYSIS THROUGH DEGREE OF COALESCING GRAPH
Based on Figure 9, 10 the formation of the degree of
coalescing and the data access density within a warp
can be visualized. Also, the number of sector accesses’
estimation per warp can be deduced from the degree
of coalescing and coalescing graph. The sector
access expectation is calculated by multiplying the
number of sector accesses within the 128-byte range with the
reciprocal of the degree of coalescing.

¢ num_sectors: number of sector accesses within 128
bytes

sector_access_expectation
num_sectors

©))

- degree_of _coalescing

As mentioned in the NVIDIA profiling guide [9], the
number of sectors/requests can be reduced to less than or

95945

IEEE Access

J. Kim et al.: Analyzing Data Locality on GPU Caches Using Static Profiling of Workloads

b+tree_findK

0.62 0.67 0.62 062 015 0075 012 0075 015 0.075 012 0075 015 0075 012 0075 015 0075 012 0075 015
0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
data location

0.075 012 0075 0.15 0075 012 0.075

coalescing

b+tree_findRagek

0‘73 0.75“0‘73 022 013 018 013 022 013 018 013 022 013 018 013 022 013 018 013 022 013 018 013 022 013 018 013
0 1 2 3 4 5 6 7 : : ! : ’ : Y X { L { ’ 2 : Z ! { ' 1 i { }

15 16
data location

coalescing

3Dconvolution

2
g 0.27 018 018 018 018 018 0.18 0 0 0 0 0 0 0 0 0
8 . ’

0 i 2 3 4 5 6 7 8 9 10 11 12 13 14 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

data location

bfs_kernell

1 088 083 088 088 08 11 [NIEL] 0.38 0.38 0.38 0.38

coalescing
°-

data location

05 05

coalescing
o
N
~
~
~
i
N
N
S
o
o
o
o
o
t
o
o
o
o
o
o

15 16
data location

2DConvolution

coalescing

0 i 2 3 4 5 6 7 8 9 10 11 12 13 14
data location

coalescing

15 16
data location

) bfs_kernel2

§ 4 4 4 4 4 4 4 4 o o o o o 0 o 0 0

5

8550 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16
data location

ES GEMM

g 6.6 34 3.4 3.4 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55

3

8550 1 2 3 4 5 6 7 8 9 10 1 12 13 14

15 16
data location

FIGURE 10. Degree of coalescing graph in real workload.

equal to the optimal number, 4, when threads within a single
warp has dense or coalesced access. As depicted in Figure 9.
10 and Table 3, the number of sectors/requests is less than
or equal to 4 for workloads with high data access density
within the warp, e.g., same-location, backprop_forward, and
bfs_kernel2 among the executed workloads.

This predicts the number of sector accesses by accounting
for the number of sector accesses in the coalescing range of
the warp and the proportion of such 128-byte ranges required
by calculating the degree of coalescing inversely.
The predicted value differs from the actual number of L1
sector per request owing to the presence of multiple global
memory access commands in the workload with varying
degrees of coalescing and densities.

However, in the case of the base workloads, the predicted
number of sector accesses and the actual number of L1
sectors per request obtained via profiling using NVIDIA
Nsight Compute [9] are identical because the same type
of global memory access is performed for all base work-
loads. As depicted in Figure 10 among the actual workloads,
backprop-forward, 2DConvolution and bfs-kernel2 exhibit
errors less than 1 sector between the expected number of

95946

backprop_forward

backprop_adjust_weights

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

|2
05 025 025 025 025 0 0 0 0 0 0 0 0 0 0

1.00
|0.75
0.50

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0.25
0.00
2
012 012 012 012 0 0 0 0 0 0 0 0 0 0 |1

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
-0
4
|3
0 0 0 0 0 0 o [0 0 0 0 0 0 0 2
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1
0

sector accesses and the actual number of L1
request.

In the case of the 3DConvolution and bfs-kernell work-
loads, where more than 4 sectors are accessed, the profiling
result is consistent with the fact that more than 4 sectors
are accessed. These results indicate that the degree of
coalescing is correlated with the L1 cache hit result.
The number of sectors accessed within a warp, as calculated
using the degree of coalescing and the coalescing
graph, reveals that the degree of coalescing and the
actual number of L1 sectors per request share a meaningful
relationship.

sectors per

V. CONCLUSION

This paper investigates data locality in GPU workloads
via PTX code analysis. This study conducted data local-
ity analysis in warp level and focused on profiling
the degree of coalescing and the data access
density. Wedetermined the degree of coalescing
for threads within a warp by identifying the data address
accessed by a thread based on the PTX code. Our pro-
posed profiling method also shows that sector access

VOLUME 11, 2023

J. Kim et al.: Analyzing Data Locality on GPU Caches Using Static Profiling of Workloads

IEEE Access

expectation, based onthe degree of coalescing
and sector accesses per warp, were highly corre-
lated with the actual number of sectors per request. More-
over, our static profiling method visualize the degree
of coalescing to represent the characteristics of the
workloads. Of the 6 rodinia [10] and 3 polybench [11]
workloads executed, 6 workloads exhibited the degree of
coalescing exceeding 70% and an L1 cache hit rate
exceeding 60%. This result confirms that the L1 cache hit
rate tends to be high when the degree of coalescing
is high.

In future research, extending this study to develop a sched-
uler that co-schedules workloads with different patterns of
data access is probable. Also, as this research is limited
to static profiling, extending profiling method to machine
learning based profiling can improve profiling. Using this,
we expect to devise multi-workload scheduling that improves
L1 cache efficiency.

REFERENCES

[1] A.Li, S.L. Song, W. Liu, X. Liu, A. Kumar, and H. Corporaal, ‘“Locality-
aware CTA clustering for modern GPUs,” ACM SIGPLAN Notices, vol. 52,
no. 4, pp. 297-311, May 2017.

[2] C. Li, S. L. Song, H. Dai, A. Sidelnik, S. K. S. Hari, and H. Zhou,
“Locality-driven dynamic GPU cache bypassing,” in Proc. 29th ACM Int.
Conf. Supercomputing, Jun. 2015, pp. 67-77.

[3] S.Lal, B. S. Varma, and B. Juurlink, “A quantitative study of locality in
GPU caches for memory-divergent workloads,” Int. J. Parallel Program.,
vol. 50, no. 2, pp. 189-216, Apr. 2022.

[4] M. Rhu, M. Sullivan, J. Leng, and M. Erez, “A locality-aware memory

hierarchy for energy-efficient GPU architectures,” in Proc. 46th Annu.

IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2013, pp. 86-98.

N. Vijaykumar, E. Ebrahimi, K. Hsieh, P. B. Gibbons, and O. Mutlu,

“The locality descriptor: A holistic cross-layer abstraction to express data

locality in GPUs,” in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput.

Archit. (ISCA), Jun. 2018, pp. 829-842.

[6] CUDA Refresher: The CUDA Programming Model. Accessed: Jun. 26,
2020. [Online]. Available: https://developer.nvidia.com/blog/cuda-
refresher-cuda-programming-model

[71 CUDA Toolkit Document. Accessed: May 20, 2021. [Online]. Available:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[8] BEST Practices Guide: CUDA Toolkit Documentation. Accessed: May 20,
2021. [Online]. Available: https://docs.nvidia.com/cuda/cuda-c-best-
practices-guide/#device-memory-spaces

[9]1 Nsight Compute Profiling Tool. Accessed: May 20, 2021. [Online]. Avail-
able: https://docs.nvidia.com/nsight-compute/ProfilingGuide/

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Proc. IEEE Int. Symp. Workload Characterization (IISWC), Oct. 2009,
pp. 44-54.

[11] (2012). Polybench: The Polyhedral Benchmark Suite. [Online]. Available:
http://www.cs.ucla.edu/pouchet/software/polybench

[12] D. Tripathy, A. Abdolrashidi, L. N. Bhuyan, L. Zhou, and D. Wong,
“PAVER: Locality graph-based thread block scheduling for GPUs,” ACM
Trans. Archit. Code Optim. (TACO), vol. 18, no. 3, pp. 1-26, 2021.

[13] D. Tripathy, A. Abdolrashidi, Q. Fan, D. Wong, and M. Satpathy, ““Locali-
tyGuru: A PTX analyzer for extracting thread block-level locality in GPG-
PUs,” in Proc. IEEE Int. Conf. Netw., Archit. Storage (NAS), Oct. 2021,
pp. 1-8.

[14] X. Tang, A. Pattnaik, O. Kayiran, A. Jog, M. T. Kandemir, and C. Das,
“Quantifying data locality in dynamic parallelism in GPUs,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 2, no. 3, pp. 1-24, 2018.

[15] S. Sethumurugan, J. Yin, and J. Sartori, “‘Designing a cost-effective cache
replacement policy using machine learning,” in Proc. IEEE Int. Symp.
High-Performance Comput. Archit. (HPCA), Feb. 2021, pp. 291-303.

[5

VOLUME 11, 2023

[16] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying deep learning to the
cache replacement problem,” in Proc. 52nd Annu. IEEE/ACM Int. Symp.
Microarchitecture, Oct. 2019, pp. 413-425.

[17] L. V. Rodriguez, F. Yusuf, S. Lyons, E. Paz, R. Rangaswami, J. Liu,
M. Zhao, and G. Narasimhan, “Learning cache replacement with
CACHEUS,” in Proc. 19th USENIX Conf. File Storage Technol., 2021,
pp. 341-354.

[18] F. Hong, J. Zhang, and X. Yuan, “Access pattern learning with long
short-term memory for parallel particle tracing,” in Proc. IEEE Pacific
Visualizat. Symp. (PacificVis), Apr. 2018, pp. 76-85.

[19] T. Tang, X. Yang, and Y. Lin, “Cache miss analysis for GPU programs
based on stack distance profile,” in Proc. 31st Int. Conf. Distrib. Comput.
Syst., Jun. 2011, pp. 623-634.

[20] C. Nugteren, G.-J. van den Braak, H. Corporaal, and H. Bal, “A detailed
GPU cache model based on reuse distance theory,” in Proc. IEEE 20th Int.
Symp. High Perform. Comput. Archit. (HPCA), Feb. 2014, pp. 37-48.

JIEUN KIM received the B.S. degree in law
and computer science from Sookmyung Women’s
University, in 2020, and the M.S. degree from
the Department of Computer Science and Engi-
neering, Seoul National University, in 2023. Her
research interests include GPU workload profiling
and GPU in deep learning.

HYEONSANG EOM received the B.S. degree
in computer science and statistics from Seoul
National University (SNU), Seoul, South Korea,
in 1992, and the M.S. and Ph.D. degrees in com-
puter science from the University of Maryland
at College Park, MD, USA, in 1996 and 2003,
respectively. He was an Intern with the Data
Engineering Group, Sun Microsystems, CA, USA,
A‘:\‘/) in 1997, and a Senior Engineer with the Telecom-

- munication Research and Development Center,
Samsung Electronics, South Korea, from 2003 to 2004. He is currently a
Professor with the Department of Computer Science and Engineering, SNU,
where he has been a Faculty Member, since 2005. His research interests
include high performance storage systems, operating systems, distributed
systems, cloud computing, energy efficient systems, fault-tolerant systems,
security, and information dynamics.

YOONHEE KIM received the bachelor’s degree
from Sookmyung Women’s University, in 1991,
and the master’s and Ph.D. degrees from Syra-
cuse University, in 1996 and 2001, respectively.
She is currently a Professor with the Computer
Science Department, Sookmyung Women’s Uni-
versity. She was a Research Staff Member with
the Electronics and Telecommunication Research
Institute, in 1991 and 1994. Before joining as a

: Faculty Member of Sookmyung Women’s Univer-
sity, in 2001, she was a Faculty Member of the Computer Engineering
Department, Rochester Institute of Technology, NY, USA. Her research inter-
est includes many aspects of runtime support and management in distributed
computing systems. She is a member of OGF. She has served on variety for
program committees, advisory boards, and editorial boards.

95947

