
1 23

International Journal of Parallel
Programming

ISSN 0885-7458

Int J Parallel Prog
DOI 10.1007/s10766-016-0463-0

Data-Locality Aware Scientific Workflow
Scheduling Methods in HPC Cloud
Environments

Jieun Choi, Theodora Adufu & Yoonhee
Kim

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Int J Parallel Prog
DOI 10.1007/s10766-016-0463-0

Data-Locality Aware Scientific Workflow Scheduling
Methods in HPC Cloud Environments

Jieun Choi1 · Theodora Adufu1 · Yoonhee Kim1

Received: 1 April 2016 / Accepted: 22 September 2016
© Springer Science+Business Media New York 2016

Abstract Efficient data-aware methods in job scheduling, distributed storage man-
agement and data management platforms are necessary for successful execution of
data-intensive applications. However, research aboutmethods for data-intensive scien-
tific applications are insufficient in large-scale distributed cloud and cluster computing
environments and data-aware methods are becoming more complex. In this paper,
we propose a Data-Locality Aware Workflow Scheduling (D-LAWS) technique and a
locality-aware resourcemanagementmethod for data-intensive scientificworkflows in
HPC cloud environments. D-LAWS applies data-locality and data transfer time based
on network bandwidth to scientific workflow task scheduling and balances resource
utilization and parallelism of tasks at the node-level. Our method consolidates VMs
and consider task parallelism by data flow during the planning of task executions of
a data-intensive scientific workflow. We additionally consider more complex work-
flow models and data locality pertaining to the placement and transfer of data prior to
task executions. We implement and validate the methods based on fairness in cloud
environments. Experimental results show that, the proposed methods can improve
performance and data-locality of data-intensive workflows in cloud environments.

Keywords Data-aware scheduling · Data-intensive application · Data-locality ·
Cloud · Scientific workflow

B Yoonhee Kim
yulan@sookmyung.ac.kr

Jieun Choi
jechoi1205@sookmyung.ac.kr

Theodora Adufu
theodora@sookmyung.ac.kr

1 Department of Computer Science, Sookmyung Women’s University, Seoul 140-742, Korea

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-016-0463-0&domain=pdf

Int J Parallel Prog

1 Introduction

Available computing infrastructures for an application are becoming increasingly
diverse such as grid, cluster, container clusters and cloud. Amongst these infrastruc-
tures, cloud computing has rapidly become a widely adopted paradigm for scientific
experiments, big-data analytics, and data visualization applications. In such highly
distributed computing environments, traditional scientific applications, which are
predominantly compute-intensive, require high-performance computing resources to
facilitate optimum execution of tasks. Consequently, existing scheduling techniques
have given priority to optimizing resource provisioning in order tomaximize efficiency
for such executions. Some scheduling techniques [1,2] use Path Clustering Heuris-
tic (PCH) algorithms to find the critical paths for task executions on resources and
schedule tasks accordingly. The other methods [3] reconfigure VM resources with an
attempt to satisfy user-specified Service Level Agreements (SLAs) as well as enhance
overall system performance and utilization at minimum overhead. However, increas-
ing data volumes generated during task executions of recent scientific applications
reveal that these scheduling techniques do not adequately apply data-aware methods
for optimal performance.

Executing data-intensive workflows predominantly involve I/O-intensive tasks
since data is continuously read from andwritten to assigned storage locations. Increas-
ing volumes of input and output data, as well as large data-sets per task generated at the
intermediary stages of executions heightens the need to incorporate more data-aware
methods in scheduling techniques. As a result, scheduling data-intensive scientific
workflows has become a key research concern as more HPC scientific applications
are deployed on HPC clouds and on exascale computing platforms. Existing meth-
ods [1,2,4] do not consider data locality for optimal execution of data-intensive
scientific workflows. However, data locality can drastically decrease network usage
and application execution time and improve performance of data-intensive scientific
workflows. Hence, efficient data-aware methods in job scheduling, distributed storage
management and data management platforms are imperative for successful execution
of data-intensive scientific workflows.

We propose a novel Data-Locality Aware Workflow Scheduling (D-LAWS) tech-
nique, which applies data locality, data transfer time based on network bandwidth, VM
consolidation, fairness and user-specified SLA-sensitivity to data-intensive scientific
workflow task scheduling at the node-level. D-LAWS maximizes resource utilization
and parallelism of tasks and compares data transfer times of VMs based on network
bandwidth between VMs. Our methods consolidate VMs and consider task paral-
lelism by data flow during the planning of task executions of a data-intensive scientific
workflow. We additionally consider more complex workflow models and data locality
regarding the placement and transfer of data prior to task executions. We implement
and validate our methods based on fairness in a cloud environment using OpenStack
[5] which is a cloud operating system that controls compute, storage and networking
resources in a data-center. Experimental results show that, the proposed method can
improve performance and data-locality of data-intensive scientific workflows in cloud
environments.

123

Author's personal copy

Int J Parallel Prog

Novel contributions of this paper are as follows:

• Wepropose a data-locality awareworkflow scheduling technique, calledD-LAWS,
which includes a data-aware workflow scheduling algorithm and a resource con-
solidation method considering data locality.

• D-LAWS considers not only a critical path of a workflow but also data locality and
data transfer time based on network bandwidth which is crucial in a distributed
environment with heterogeneous resources.

• The proposed method also considers task parallelism by data flow during the
planning of tasks executions in order to maximize resource utilization using a VM
resource consolidation algorithm.

• We evaluated our method in a private cloud computing environment and compare
results to two other workflow scheduling techniques.

The rest of this paper is organized as follows: Sect. 2 presents the related work and
Sect. 3 describes our Data-Locality Aware Workflow Scheduling (D-LAWS) tech-
niques. In Sect. 4, we explain our experiment environments. We finally conclude this
paper in Sect. 5.

2 Related Work

There has been a wide variety of research in the area of data-aware techniques for data-
intensive applications. In this section, we present and analyze works related to data-
aware methods for data-intensive applications, including data-aware task scheduling
and locality-aware resource placement methods.

In [6], the researchers present a task scheduling strategy to mitigate interfer-
ence whilst preserving task-data locality for MapReduce applications. However, the
research ignores network factors with the assumption that data exchange between
co-hosted VMs is as efficient as local data accesses. Also, Phan et al. [7], explore
an Earliest Deadline First (EDF) scheduling technique for real time cloud-based
data processing. They schedule tasks considering earlier deadlines first, as well as
a weighting factor of the scheduler which indicates how important data locality is.
The weighting factor indicating data locality is however chosen manually; without
consideration to factors such as network or application characteristics. Zaharia et
al. [8] develop the Longest Approximate Time to End (LATE) scheduling algorithm
which uses estimated finish times to speculatively execute tasks in order to improve
their response times. This algorithm however assumes that tasks make progress at
a roughly constant rate which is untrue for most scientific workflows which have a
variation of both long and short tasks. In another paper [9], they proposed a delay
scheduling algorithm to postpone a scheduled job for a few seconds if it cannot launch
a local task. However, scheduling is based on the assumption that, tasks are short lived
thereby rendering the algorithm ineffective for long running jobs. Wang et al. [10]
propose a data-aware work stealing technique to optimize both load balancing and
data-locality. They consider fully-distributed architecture, so all schedulers are fully-
connected and receive workloads to schedule tasks to local executors. They determine
the ultimate location of data stored using a hashing method in order to ensure the best
write-locality. However, this structure results in a significant communication overhead

123

Author's personal copy

Int J Parallel Prog

for a plurality of schedulers. When a scheduler schedules a task, it considers only data
size and task length but does not consider network bandwidth and heterogeneous
resources capacity. However, data transfer time is dependent on network bandwidth
at the node-level or system-level in computing environments.

We also present related research on scientific workflow scheduling methods [1–
4]. Bittencourt et al. [1] use Path Clustering Heuristic(PCH) algorithms to find the
critical paths for task executions on resources and schedule tasks accordingly. They
consider public, private and hybrid clouds. In [3], they employ a Load Vector per task
to estimate the relative running time of the VM instance on which the task is run. An
instance acquisition lag is defined bywhichVMs are either acquired or released during
workflow execution. This improves instance hour consolidation and improves costs
however, data transfer costs between VM’s on different nodes is not considered. Also,
inaccurate estimations of VM acquisition lag times result in significant performance
overheads. In [2,4], there are proposed workflow scheduling algorithms and auto-
scaling methods for hybrid computing environments. However, these papers do not
consider data-locality at all. There is also research on resource placement and storage-
aware scheduling techniques considering the location of the storage. Thaha et al. [11]
propose a location aware cluster provisioning strategy for cloud based virtual Hadoop
clusters to improve the movement of data by placing the clusters’ VMs in compute
hosts with shortest distance to the storage node. Their technique not takes into account
the data generated dynamically because they only consider and assume the input data
prepared by the user in advance. Bryk et al. [12] propose a novel dynamic scheduling
algorithm that is aware of the underlying storage system. They develop a global storage
model which features the ability to dynamically calculate bandwidth and supports a
configurable number of replicas. Therefore, it is possible to calculate a relatively exact
file transfer time through dynamic bandwidth calculation. They place and doworkwith
the data in the cache before all VM executions. When scheduling a task, a scheduler
confirmswhether or not the data is in theVM’s local cache for a locality purposes. They
perform simulations to verify their algorithm considering various storage systems such
as no storage system, in-memory storage, distributed storage, NFS storage. However,
it’s not easy to apply their techniques when the data-size gets larger.

We propose a novel technique, D-LAWS (Data-Locality AwareWorkflow Schedul-
ing), which considers data locality and applies consolidation of VMs for scientific
workflow task scheduling. D-LAWS balances data-locality, system utilization, and
parallelism by tasks and compares data transfer time based on network bandwidth
between VMs. In hybrid environments, our technique can facilitate an efficient selec-
tion of resources based on application characteristics as well as comparisons of data
transfer costs to each available resource.

3 Data-Locality Aware Workflow Scheduling (D-LAWS) Technique

In this section, we present our algorithms. The Data-Locality Aware Workflow
Scheduling (D-LAWS) techniques include a data-aware workflow scheduling algo-
rithm and a resource consolidationmethod. Two algorithms are shown inAlgorithms 1
and 2. The key notations used in the algorithms are listed in Table 1.

123

Author's personal copy

Int J Parallel Prog

Table 1 Notations

Notation Description

W A workflow application

ti An i th task in a workflow W

tparenti A set of precedence tasks of task ti

|tparenti | The number of precedence tasks of ti

Ti A set of tasks which have same parents and children tasks

vmSet A set of VMs which have input data of ti
idleVMSet A set of VMs which during certain period

CP A critical path ofW

VMjh j th VM in host h

∀VM All available VMs on which ti can run at that time

Dik kth input data of ti
DTT Data transfer time

MinC Required minimum core capacity of VM

MinR Required minimum ram capacity of VM

MinD Required minimum disk capacity of VM

EFT_ti Estimated finish time of ti
EST_ti Estimated start time of ti
ET_ti Execution time of ti
EST_V M jh Estimated start time of VMjh

LFT_tparenti Estimated finish time of a precedence task which has latest finish time

3.1 Data-Aware Workflow Scheduling Algorithm

Algorithm 1 shows a scheduling procedure for data-intensive scientific workflow in
a cloud computing environment. Algorithm 1 describes a data locality aware task
scheduling considering data size, network bandwidth, and resource utilization. It starts
when a workflow comes to system with SLA (Service Level Agreements) which
includes a desired deadline for the workflow and minimum capacity of a VM such as
core, memory, and disk capacity by a user.

First, estimated finish time (EST_ti), execution time (ET_ti) and estimated start
time(EFT_ti) of all tasks in a workflow are initialized to zero (line 1) and then the
scheduler schedules each task ti into VMs. Next, all tasks on the critical path are
scheduled on the same resource, which can execute all tasks in a critical path (lines
3–8). If the task ti is the first task in the critical path, ti is scheduled to VMjh which is
part of the set of all available VMs (∀VM) on which all tasks in a critical path can be
executed within a given deadline(D). If there is no available VM, the scheduler creates
a VM on which all tasks in the critical path can run within a deadline and satisfy a
required minimum capacity of resources (line 5). After that, other tasks in the critical
path are scheduled to the currently selected resource (line 7). By placing all tasks in a
critical path on the same resource, there would be no transfer of data from one VM to

123

Author's personal copy

Int J Parallel Prog

another for tasks in the critical path thus minimizing the cost of data transfer to zero
for those tasks in the critical path. Since there is no data transfer, DTT for tasks in
the critical path is zero (0) and thus omitted in our proposed algorithm. The scheduler
then schedules tasks that are not in the critical path (lines 9–17) with consideration
to EFT of previously related tasks. In lines 9–10 of the algorithm, if the set size of a
precedence task (|tparenti |) of a task ti , equals zero then the task is an entry node and
the scheduler finds a VM in the same way as line 5. However, in case that task ti is
not in the critical path and has parent tasks, the task’s EST is set to the sum of the
longest finish time of parent tasks and the data transfer time (DTT). After that, the
scheduler finds VMs which already have input data of ti (lines 13–15). Finally, the
task is scheduled to the most suitable VMjh and EFT is calculated (line 18). In this
algorithm, data transfer time (DTT) for a task can be defined as shown in equation 1.

Algorithm 1 Data-aware Workflow Scheduling Algorithm
Input: a Workflow W, SLA(deadline D, MinC , MinR , MinD)
1: Set EFT_ti , ET_ti , EST_ti = 0;
2: for each ti inW do
3: if ti ∈ CP then
4: if |tparenti | == 0 then
5: VMjh ← FindVM(EST_ti , SLA, ∀VM) on which all tasks ∈ CP within D;
6: else
7: VMjh ← the VM on which first task ∈ CP is scheduled;
8: end if
9: else
10: if |tparenti | == 0 then
11: VMjh ← FindVM(EST_ti , SLA, ∀VM);
12: else
13: EST_ti ← LFT_tparenti + DTT;
14: vmSet ← find VMs with input data of ti ;
15: VMjh ← FindVM(EST_ti , SLA, vmSet);
16: end if
17: end if
18: EFT_ti ← EST_ti + ET_ti ;
19: end for
20: Perform resource consolidation;
Output: Scheduling decision SD = {(ti , VMjh) | i, j, h = 0,1,. . ., N }

DTT_ti =
|vmSet|∑

t=0

DataSize(t)

NetworkBandwidth
(1)

3.2 VM Consolidation Algorithm

Data-aware scheduling methods for data-intensive scientific workflows aim at mini-
mizing the time taken by tasks to read inputs during workflow executions. The VM
consolidation algorithm in [3] applies a parallelism reduction method of deadline
assignment algorithm to a simple workflow.We consider task parallelism by data flow

123

Author's personal copy

Int J Parallel Prog

during the planning of task executions of a data-intensive scientific workflow. We
additionally consider more complex workflow models and data locality regarding the
placement and transfer of data prior to task executions.

In the resource consolidation algorithm, Ti is a set of tasks which have same parents
and children. In lines 2–6, if all tasks of Ti can be executed on a singleVMjh , when they
are combined then re-assign all tasks to that VM, VMjh. This provides a parallelism
reduction method and efficient VM utilization. Algorithm 2 describes rescheduling a
task into idle VM (lines 7–14) to improve resource utilization. When the scheduler
determineswhich tasks to be rescheduled, it calculates estimated execution time,ET_ti
from the earliest start time,EST_ti and compares the resulting time and the data transfer
time (DTT), to the EST_VMjh of idle VMs. If the cost of starting a new VM is greater
than the cost of transferring tasks to another VM, then find a suitable VM and reassign
tasks.

Algorithm 2 Resource consolidation algorithm
Input: Initial scheduling decision SD = {(ti , VMjh) | i, j, h = 0,1,. . ., N }
1: Set Ti = { ti have same parents and children }
2: for each Ti do
3: if ∀ti ∈ Ti can be executed on a single VMjh then
4: VMjh ← Re-assign ∀ ti ;
5: end if
6: end for
7: for each ti do
8: if there are idle VMs during EST_ti + ET_ti then
9: idleVMSet ← idle VMs
10: if (EST_ti + ET_ti + DTT ← EST_VMjh) then
11: VMjh ← FindVM(EST_ti , idleVMSet)
12: end if
13: end if
14: end for
Output: Updated scheduling decision SD = {(ti , VMjh) | i, j, h = 0,1,. . ., N }

4 Experiments

Experiments that validated our D-LAWS technique are presented in this section. First,
we describe the system architecture and target applications, and subsequently present
the experimental setting along with experimental results.

4.1 Experiment Environments

We use OpenStack [5], a cloud management platform (CMP) that provisions and
manages large pools of compute, storage and networking resources used for large-
scale HPC scientific experiments. OpenStack, has multiple services which improve
the effective management of cloud resources. This include the Nova Compute and
Cinder which is used for the creation of new instances or storage volumes. The

123

Author's personal copy

Int J Parallel Prog

Fig. 1 System architecture

resources of each VM such as RAM, disk and vCPUs, created using Nova Compute is
defined by using default or user-defined install templates or flavors [13]. Memory and
CPU can be over-committed on compute nodes enabling access to more computing
resources though this affects the performance of the instances [14]. This notwithstand-
ing, OpenStack is widely deployed for the provisioning and management of virtual
cloud resources for HPC applications. As shown in Fig. 1, our experiment environment
consists of one controller node and three compute nodes on the same local network.
The nodes in our system have a total RAM of 8GB and 8CPU cores for the controller
node and total RAM of 32GB and 12CPU cores for each of the three compute nodes
respectively. Each of these server machines are operated by Ubuntu 14.04 Trusty Tahr.

4.2 Data-Intensive Scientific Workflow

Scientific workflows can be represented as Direct Acyclic Graphs(DAG), in which the
vertex are small discrete tasks and the edges represent the data flows from on task to
another. In this paper, we implement our algorithms using a data-intensive workflow,
Montage [15]. Montage is an Astronomical Image Mosaic Engine for creating com-
posite FITS (Flexible Image Transport System) mosaics using multiple astronomical
images.

In our experiments, we aggregated a set of five data cubes, released as part of
the Galactic Arecibo L-band Feed Array HI (GALFA-HI [16]) survey, into a mosaic
in three major stages as shown in Fig. 2. First, the input data cubes were shrunk by
averaging every 5, 10 and 15 planes respectively in thewavelength axis. In thismanner,
shrinking by averaging every 10 planes for instance, produces larger intermediary and
output data files all throughout the execution of the workflow than shrinking by every

123

Author's personal copy

Int J Parallel Prog

Fig. 2 Data-intensive scientific workflow with data flow

15 planes. Next, the shrunk images were re-projected to map the input pixel space
to sky coordinates and to the output pixel space. Finally, the re-projected images are
aggregated to produce the final mosaic.

In all, the GALFA Montage workflow in our experiments reads 27.5GB of input
data and a minimum of 3.0GB of intermediary data and writes a minimum of 3.5GB
of output data. The data size is dependent on the number of planes which are averaged
during the shrink process. Consequently, shrinking by averaging greater number of
planes produces smaller intermediary and output data files. The output of one process

123

Author's personal copy

Int J Parallel Prog

Fig. 3 Result of VM consolidation for Ti . a Before VM consolidation, b after VM consolidation

becomes the input to the next implying that significant amount of execution time is
spent on input/output (I/O) operations.

Figure 3 describes a scheduling result of our data-aware workflow scheduling algo-
rithm, as shown in Sect. 3.1. There are five VMs in three different nodes. We used two
instance types of VM, medium and large, with 4GB RAM each and having 2core and
4core correspondingly. Among the VMs, three VMs (VM1, VM3, VM5) are medium
type and two VMs (VM2, VM4) are large instance type. VM1 is in node 1, VM2 and
VM3 are in node 2 and, VM4 and VM5 are in node 3. The arrows represent data flows.

For the case of Fig. 3a, there is one critical path with tasks (1, 6, 7, 8, 13, 14, 15, 16)
scheduled to VM1. As discussed in the notations (Table 1), Ti represents a set of tasks
which have same parent and children tasks. In Fig. 3a, T1 has five tasks (1–5) and also
T2 has five tasks (8–12). According to Algorithm 2, the scheduler can perform VM
consolidation for Ti without affecting other tasks. As a result, we see the scheduling
of tasks from consolidating VMs as shown in Fig. 3b.

4.3 Experiment Results

We evaluate the performance of the D-LAWS technique on a private cloud environ-
ment as shown in Sect. 4.1. We used a data-intensive scientific workflow as shown
in Sect. 4.2. And we consider three shrink sizes: averaging every 5, 10, 15 planes

123

Author's personal copy

Int J Parallel Prog

Table 2 Data sizes for 5,10,15
planes

Data description 15 Planes 10 Planes 5 Planes

Final mosaic FITS 3.5G 5.1G 11G

Final mosaic area 26M 26M 26M

Reprojected data cube 2.5G 3.7G 7.4G

Reprojected data area 18.8M 18.8M 18.8M

Image tables 5.8K 5.8K 5.8K

Header files 393B 393B 393B

Shrunk data cube 341M 511M 1023M

Input data cube 27.5G 27.5G 27.5G

Fig. 4 Execution time by CP, FCFS, D-LAWS for 5, 10, 15 planes

respectively. Table 2 shows the description of total input, intermediary and output data
produced during the execution of Montage GALFA workflow and their correspond-
ing data sizes for 5, 10, 15 planes respectively. We compare the proposed technique
which is represented as D-LAWS in the graph with CP, which schedules a workflow
considering only critical path [1], and FCFS which schedules a workflow regarding
task priority and queue order. The experiment results are shown in Figs. 4, 5, 6 and 7.

Figure 4 shows the execution times of CP, FCFS and D-LAWS for data cubes
shrunk over 5, 10 and 15 planes. Corresponding to the data sizes of shrunk images used
during the executions as shown in Table 2, 5 planes take the longest execution time.
The D-LAWS technique speed-up values of overall execution times of a workflow.
For instance, comparing D-LAWS relative to CP, the speed-up values are 18.06, 15.81
and 14.52% respectively for 5, 10 and 15 planes with an average speed-up of 18%.
Meanwhile, D-LAWS has an average speed-up value of 57.63% relative to FCFS
with specific values of 58.83, 75.06 and 39.01% respectively for each of the 3 planes.
The improvement in speed-up times of D-LAWS is a result of considerations for data
locality and data transfer times.

In Fig. 5, we see resource utilization per given time of D-LAWS relative to CP and
FCFS. Initially, the resource utilization decreases because there are many tasks as well
as parallelism. Between 3 and 4 points in time, the overall trend of resource utilization

123

Author's personal copy

Int J Parallel Prog

Fig. 5 Resource utilization

Fig. 6 Efficiency

Fig. 7 Data locality

increases steadily and then decreases after time point 4. This is due to the increase
amount of computations performed during the execution of mProjectCube module in
our data-intensive workflow. And when D-LAWS is compared with FCFS, it shows
up to 30%more efficient resource utilization. When compared to CP, D-LAWS shows
20% higher efficiency in resource utilization. The overall resource utilization of D-
LAWS is the best among the three methods with the reason being that, D-LAWS could
consolidate VMs according to Algorithm 2 as shown in Section 3.2.

123

Author's personal copy

Int J Parallel Prog

Figure 6 describes efficiency of D-LAWS relative to CP and FCFS. Efficiency
refers to the ratio of time that the system is executing tasks [10] with 1 as an ideal
value from the system view. From Fig. 5, we see efficiency values as 0.68, 0.76, 0.81
corresponding to CP, FCFS, and D-LAWS respectively. When using the D-LAWS
technique the scheduler could reduce the data transfer time considering data-locality
based on network bandwidth and data size while the system executes tasks. Therefore,
the experiments perform most efficiently with the D-LAWS technique.

Figure 7 shows data locality of three methods. We see that for shrink cube size
averaged over 5 planes, D-LAWS improved by approximately 37% with respect to
other techniques. The reason is that D-LAWS considered data locality regarding the
placement and transfer of data prior to task executions. Even though other methods
considered important factors such as resource capacity and fastest estimated start time
of VMs, which can increase throughput and speed, without considering data-locality
their performance is sub-optimal. In contrast, our technique D-LAWS improves the
overall execution time and resource utilization while minimizing scheduling overhead
for data-intensive scientific workflow.

5 Conclusions

Efficient data-aware methods in job scheduling, distributed storage management and
data management platforms are necessary for successful execution of data-intensive
applications. In this paper, we propose a Data-Locality Aware Workflow Schedul-
ing (D-LAWS) technique and a locality-aware resource management method for
data-intensive scientific workflows on HPC cloud environments. D-LAWS applies
data-locality and data transfer time based on network bandwidth to scientific workflow
task scheduling and balances resource utilization and parallelism of tasks. Our meth-
ods consolidate VMs and consider task parallelism by data flow during the planning
of task executions of a data-intensive scientific workflow. We additionally consider
more complex workflow models and data locality regarding the placement and trans-
fer of data prior to task executions. We implement and validate the methods based on
fairness in cloud environments. Experimental results show that, the proposed method
can improve performance and data-locality of data-intensive workflows in cloud envi-
ronments. In the future, we will consider hybrid cloud environments and also we will
experiment for scientific applications with variant characteristics.

Acknowledgments This research was supported by Next-Generation Information Computing Develop-
ment Program through theNational Research Foundation of Korea(NRF) funded by theMinistry of Science,
ICT and Future Planning (2015M3C4A7065646)

References

1. Bittencourt, L.F., Madeira, E.R.M.: HCOC: a cost optimization algorithm for workflow scheduling in
hybrid clouds. J. Internet Serv. Appl. 2, 207–227 (2011)

2. Ahn, Y., Kim, Y.: Auto-scaling of virtual resources for scientific workflows on hybrid clouds. In:
ScienceCloud ’14 Proceedings of the 5th ACMWorkshop on Scientific Cloud Computing (pp. 47–52).
(2014)

123

Author's personal copy

Int J Parallel Prog

3. Mao, M., Humphrey, M.: Auto-scaling to minimize cost and meet application deadlines in cloud
workflows. In: Proceedings of 2011 International Conference for High Performance Computing, Net-
working, Storage and Analysis (p. 49). ACM (2011)

4. Choi, J., Ahn, Y., Kim, S., Kim, Y., Choi, J.: VM auto-scaling methods for high throughput computing
on hybrid infrastructure. J. Clust. Comput. 18, 1063–1073 (2015)

5. OpenStack, http://www.OpenStack.org
6. Bu, X., Rao, J., Xu, C.-Z.: Interference and locality-aware task scheduling for MapReduce appli-

cations in virtual clusters. In: HPDC ’13 Proceedings of the 22nd International Symposium on
High-Performance Parallel and Distributed Computing (pp. 227–238). (2013)

7. Phan, L.T., Zhang, Z., Zheng, Q., Loo, B.T., Lee, I.: An empirical analysis of scheduling techniques
for real-time cloud-based data processing. In: SOCA ’11 Proceedings of the 2011 IEEE International
Conference on Service-Oriented Computing and Applications (2011)

8. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving MapReduce performance in
heterogeneous environments. In: OSDI’08 Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation (pp. 29–42). (2008)

9. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.: Delay scheduling: a
simple technique for achieving locality and fairness in cluster scheduling. In: EuroSys ’10 Proceedings
of the 5th European Conference on Computer Systems (pp. 265–278). (2010)

10. Wang, K., Qiao, K., Sadooghi, I., Zhou, X., Li, T., Lang, M., Raicu, I.: Load-balanced and locality-
aware scheduling for data-intensive workloads at extreme scales. J. Concurr. Comput. Pract. Exp.
(CCPE) 28, 70–94 (2015)

11. Thaha, A.F., Singh, M., Amin, A.H.M., Ahmad, N.M., Kannan, S.: Hadoop in OpenStack: Data-
location-aware cluster provisioning. In: Information and Communication Technologies (WICT), 2014
Fourth World Congress on (pp. 296–301). (2014)

12. Bryk, P., Malawski, M., Juve, G., Deelman, E.: Storage-aware algorithms for scheduling of workflow
ensembles in clouds. J. Grid Comput. 14, 359–378 (2015)

13. Flavors, http://docs.openstack.org/openstack-ops/content/flavors.html
14. Overcommiting on compute nodes, http://docs.openstack.org/openstack-ops/content/compute_nodes.

html
15. Montage, http://montage.ipac.caltech.edu/
16. Peek, J.E.G., et al.: The GALFA-HI survey: data release 1. Astrophys. J. Suppl. 194(2), 20 (2011)

123

Author's personal copy

http://www.OpenStack.org
http://docs.openstack.org/openstack-ops/content/flavors.html
http://docs.openstack.org/openstack-ops/content/compute_nodes.html
http://docs.openstack.org/openstack-ops/content/compute_nodes.html
http://montage.ipac.caltech.edu/

	Data-Locality Aware Scientific Workflow Scheduling Methods in HPC Cloud Environments
	Abstract
	1 Introduction
	2 Related Work
	3 Data-Locality Aware Workflow Scheduling (D-LAWS) Technique
	3.1 Data-Aware Workflow Scheduling Algorithm
	3.2 VM Consolidation Algorithm

	4 Experiments
	4.1 Experiment Environments
	4.2 Data-Intensive Scientific Workflow
	4.3 Experiment Results

	5 Conclusions
	Acknowledgments
	References

