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Abstract
Recently, improving the overall resource utilization through efficient scheduling of applications on graphic processing unit

(GPU) clusters has been a concern. Traditional cluster-orchestration platforms providing GPUs exclusively for applications

constrain high resource utilization. Co-execution of GPU applications is suggested to utilize limited resources. However,

the co-execution of GPU applications without considering their diverse characteristics can lead to their unpre-

dictable performances owing to interference resulting from contention and unbalanced usage of resources among appli-

cations. This paper proposes an interference-aware execution framework with Co-scheML for various GPU applications

such as high performance computing (HPC), deep learning (DL) training, and DL inference. Various resource-usage

characteristics of GPU applications are analyzed and profiled to identify various degrees of their application interference.

As interference prediction is challenging owing to the complexity of GPU systems, an interference model is generated by

applying defined GPU metrics to machine learning (ML) models. A Co-scheML scheduler deploys applications to min-

imize the interference using the predicted interference from the constructed model. Experimental results of our framework

demonstrated that the resource utilization improved by 24%, the average job completion time (JCT) improved by 23%, and

the makespan shortened by 22% on average, compared to baseline schedulers.

Keywords GPU applications � Interference � Co-execution � Co-ScheML scheduler � Resource contention �
GPU utilization

1 Introduction

With the recent increase in popularity of graphic process-

ing units (GPUs), platforms and architectures using GPUs

face challenges related to their optimization, application

performance, and system throughput. The existing sched-

ulers of cluster-orchestration platforms, such as YARN

[34] and Kubernetes [16], might not fully utilize GPU

resources when a single application is executed on a GPU.

Co-execution of multiple applications that have dynamic

resource-usage patterns is proposed to solve this limited

use of GPU.

To achieve general purpose GPU (GPGPU) sharing,

NVI DIA proposed the multiple process service (MPS) for

concurrent execution of multiple kernels [22]. Performance

of simple leftover strategy in MPS may vary according to

co-executed kernel. Previous studies on GPU sharing

include concurrent deployment of several applications

using user requirements, monitor information [3, 9, 27],

and profile information [11]. However, these studies do not

consider interference during resources sharing, leading to

performance degradation. Moreover, interference mini-

mization using resource-usage profiles is challenging

because of the complexity of GPU systems.

Recent considerations of interference problems addres-

sed resource contention among applications caused by

resource sharing [8, 30, 33]. Mystic [30] defined certain
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resource performance metrics that can lead to contention

and proposed an interference avoidance scheduler with

accumulated profiling of the metrics. Nevertheless, an

execution failure owing to out of memory (OOM) may

occur as the profiling metrics are limited. Xu et al. [33]

selected features for modeling using ML techniques

leveraging observations of a co-located virtual machine

(VM). As Jiang et al. focuses on the intrinsic characteristics

of the NVIDIA vGPU, it cannot be applied to a cluster or

bare-metal environment. Geng et al. [8] defined different

factors that affect interference on clusters at node levels

and scheduled applications by applying different ML

models at each level. However, these studies included

experiments on only DL workloads with uniform resource-

usage patterns.

This paper introduces an interference-aware execution

framework using Co-scheML [14] to reduce the completion

time of workloads and maximize resource utilization for

applications running on GPUs. To overcome interference

problems caused by GPU sharing, we analyze the resource-

usage characteristics of applications in various domains.

Based on that observation, we define appropriate metrics

representing the characteristics of applications and propose

a framework integrating Co-scheML [14] with an inter-

ference-prediction model.

In summary, we make following contributions :

– The differences in resource-usage characteristics (GPU,

GPU memory, and PCIe) of GPU applications (HPC,

DL training, and DL inference) in a GPU cluster are

identified. These may cause diverse interference effects

depending on the pairing applications. The necessity of

profiling is explained.

– The interference among GPU applications is produced

by ML modeling using accumulated GPU application

profiling data. The interference-prediction modeling

uses random-forest regression to predict the degree of

interference.

– The interference-prediction model and Co-scheML

constitute our scheduling framework. Co-scheML is

an interference aware scheduler that decides application

deployment depending on the degree of interference.

We implemented our framework in Kubernetes and

conducted experiments with various workloads.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces the background and motivation of the

study. In Sect. 3, resource-usage characteristics of multiple

GPU applications are analyzed, and an interference prob-

lem that can possibly occur during GPU sharing is identi-

fied. Interference modeling is described in Sect. 4. The

execution framework using Co-scheML is explained in

Sect. 5, and its experiments are described in Sect. 6. The

related studies are provided in Sect. 7, and concluding

remarks are presented in Sect. 8.

2 Background and motivation

2.1 GPU sharing on cluster orchestration
platform

GPU sharing is implemented using the virtualization

technology. The NVIDIA vGPU technology enables the

use of a GPU in a VM [23]. The NVIDIA vGPU software,

installed with a hypervisor layer, produces vGPUs in each

VM to allow multiple VMs to share a physical GPU.

OpenStack [24] is an open cluster-orchestration platform

for a VM environment. It offers vGPU scheduling, and its

default filter-based scheduler allocates vGPU instances

according to user requirements.

Meanwhile, the use of software containers that reduce

the isolated kernel overhead by utilizing full VMs and host

system kernel calls has been increasing. As the number of

container applications using GPUs has increased, con-

tainer-orchestration frameworks, such as YARN and

Kubernetes, have begun offering GPUs [16, 34]. Both

YARN and Kubernetes consider a GPU as a simple

extended resource in a scheduling procedure. They enable

containers to exclusively use a GPU, thus resulting in low

GPU-resource utilization.

2.2 Resource over-commitment

Figure 1 shows GPU resource-utilization patterns of

applications over NVIDIA Titan Xp GPU and i7-5820K

CPU. Two HPC applications, namely LAMMPS [17] and

QMCPACK [26], and three CNN models, namely MNIST,

AlexNet, and VGG11, are executed with standard input

sets from the NVIDIA GPU Cloud (NGC) [21] and Ten-

sorFlow CNN benchmark [28]. The GPU memory is over-

Fig. 1 Resource over-commitment of GPU applications
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committed by approximately 54% on average. The GPU-

utilization gap is approximately 51% from average to

maximum. HPC applications have having relatively large

deviations from mean values compared to that for DL

applications. Consequently, overstated resource require-

ment for a job scheduler results in waste of resources. If a

scheduler sticks to allocating the average number of

resources to HPC applications, an OOM failure and a

performance degradation may occur owing to the over-

lapping peak-resource-usage times for a GPU application.

This experimental result indicates that it is necessary to

prevent resource over-commitment by utilizing profiling

and modeling to avoid an OOM failure or a severe per-

formance degradation.

2.3 Necessity of scheduling considering
interference

We assume that two of LAMMPS, GROMACS, MNIST,

and classification applications wait in a queue. Figure 2

shows the makespan and average JCT according to three

policies, namely the Binpacking, load-balancing, and

interference-aware policy. The Binpacking policy only

considers the maximum memory usage of applications. It

places a task on a node with the highest resource usage but

with sufficient available resources to minimize the number

of nodes. The load-balancing policy divides loads based on

their average GPU utilization. It places an application with

the largest average GPU utilization together with an

application with the lowest average GPU utilization. The

interference-aware policy selects a pair of applications with

the minimum interference value and executes them con-

currently. The interference value is given by equation (1).

Iðapp1; app2Þ ¼
Timecoloðapp1Þ
Timesoloðapp1Þ

þ Timecoloðapp2Þ
Timesoloðapp2Þ

ð1Þ

Timecolo denotes the co-execution time, and Timesolo
denotes the time required to execute them exclusively.

When applications are co-executed, sharing GPU resources

causes a slow-down. The interference-aware policy intends

to minimize this slow-down by comparing the co-execution

and solo-run times.

The interference-aware policy achieves improvements

of 138% and 23% in makespan over the Binpacking and

load-balancing policies, respectively; LAMMPS, GRO-

MACS, M- NIST, and classification are improved by

nearly 1.38, 2.38, 2.23, and 5.19 times, respectively. The

average JCT of the interference-aware policy is 74% and

22% lower than those of the Binpacking and load-balanc-

ing policies, respectively. The makespan and average JCT

are the longest for the Binpacking policy because this

policy only recognizes the maximum memory and does not

consider all the available resources. The other two policies

aim to avoid the interference caused by resource sharing.

Avoiding this interference can reduce both makespan and

average JCT as the degrees of performance degradation

caused by the interference are diverse depending on the co-

executed applications. The load-balancing policy avoids

the interference by balancing the loads of each node, but its

performance improvement is limited. Our policy achieves

the best performance by minimizing the interference while

maximizing the use of available resources.

3 Characteristics of GPU applications

The characteristics of applications on GPU are analyzed to

develop an interference-aware co-scheduling method.

Applications are executed in the environment as mentioned

in Sect. 2. Four HPC applications (LAMMPS, GROMACS,

QMCPACK, and HOOMD) from NVIDIA GPU Cloud

(NGC) [21] were used with standard input sets. For DL

training tasks, five CNN models, namely, mnist, googlenet,

alexnet, vgg16, and vgg11 [28] were chosen. For DL

inference tasks, classification, regression, and multiout of

DJINN workload suite [7] were selected.

3.1 GPU utilization

Figure 3 shows GPU utilization over time based on a

application category. As shown in Fig. 3a, all HPC appli-

cations show a dynamic GPU utilization except for

HOOMD. HOOMD has particular utilization due to its

massive parallelism. Unlike static utilization of HOOMD,

there is a rapid increase in the GPU utilization in the last

part of the application execution for LAMMPS and

QMCPACK. They transfer data between host-devices fre-

quently, resulting in a low utilization prior to the dramatic

increase in utilization. The overall utilization is high and

relatively constant for GROMACS, although a decline of

utilization occurs at times owing to CPU tasks, and aFig. 2 Performance using three different policies
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memory transfer. A DL training task shows a static and

high GPU utilization, as shown in Fig. 3b. Hyper-param-

eters which are set before a learning process begins

including the learning rate, number of steps, and batch

sizes and types of deep learning models affect the model

convergence and accuracy. They are thus considered

important in deep learning related studies. However, in this

study, fixed hyper-parameters were used in an effort to

focus on the interference among applications. When con-

ducting experiments by modifying hyper-parameters, the

GPU utilization values change but the static and high uti-

lization characteristics are maintained. Meanwhile, Fig. 3c

shows a graph of the GPU utilization for a DL interference

task. A static characteristic can be observed with a maxi-

mum change of approximately 10%, compared to an HPC

application with a maximum change of approximately

90%. In particular, the maximum GPU utilization is below

20%, displaying a low utilization. This result indicates that

a DL inference application is not computationally intensive

and there are idle GPU cores owing to an under-utilization

of computational resources. As with DL training applica-

tions, this experiment demonstrated that DL inference

applications also have static and low utilization charac-

teristics, even when hyper-parameters are modified. Con-

sidering these experimental results, there is a limit in

characterizing GPU applications with the average or

maximum GPU utilization.

3.2 GPU memory used

The memory usage patterns of each GPU application are

displayed as a graph in Fig. 4. Each application category

shows a similar trend as GPU utilization. HPC applications

have a high rate of change in memory usage, resulting in a

difficulty predicting such usage. QMCPACK shows a

cascading pattern of memory usage and LAMMPS first

shows an increasing pattern with a high peak during the last

part of the application execution. A static memory usage

pattern was observed without a further release or request in

deep learning tasks. The amount of memory used for each

DL model differs, but the static pattern was maintained,

even though hyper-parameters are modified. For a deep

learning inference task as well, a static memory usage

pattern was observed, although the number of memory

resources used was extremely small compared to that of

other applications. In general, the amount of GPU memory

usage and GPU utilization are proportional. GROMACS

showed a low GPU memory use of approximately 0.5 GB

even with a high GPU utilization exceptionally. Prior

studies have predicted memory usage either adjusting

hyper-parameters or profiling in short term for DL tasks.

However, as with the results of this experiment, the pre-

diction of memory usage when using methods from prior

studies is difficult to achieve for the cascading or high peak

patterns of dynamic HPC jobs. Therefore, it is necessary to

predict with profiling and monitoring.

3.3 PCIe throughput

Global memory throughput and PCIe throughput are gen-

erated by a kernel on a GPU. Global memory throughput is

related to a kernel load or store requests, cache hit, and

miss rates. If a data hit occurs on the on-chip cache, i.e., L1

cache, the throughput increases. PCIe throughput is a

metric related to the amount of data movement in a PCI

Fig. 3 GPU utilization pattern of applications on GPU
Fig. 4 GPU memory usage pattern of applications on GPU
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express bus to approach a host memory, DRAM. There-

fore, the higher the global memory throughput and the

lower the PCIe throughput, the better performance and the

lower latency.

The throughput of each application is shown in Fig. 5. It

was shown that a deep learning inference task not only has

a low global memory throughput, but also a very low PCIe

throughput. HPC applications display various global/dram

memory throughputs according to the type of application.

Meanwhile, all deep learning training applications

demonstrate a similar throughput, whereas PCIe through-

put shows different aspects for each model. Mnist and

Googlenet models show high in host-device PCIe

throughput owing to frequent data movement, whereas

Alexnet, VGG11, and VGG16 have low. Even if an

application runs memory operations at a time, it may be

overlapped to another one using different resources, such

as cache and PCIe. That leads to co-execution of applica-

tions beneficially with low resource contention. A high

PCIe throughput means that latency occurs since the host

memory is accessed through the bus. However, overlapping

between GPU kernel and host-device memory operation

can be advantageous for a co-execution.

4 Interference modeling

We define interference value as co-executed time of an

application normalized by solo-run time. If interference

values are obtained directly after executing all application

pairs, the most accurate and optimal results can be

achieved. However, it is not realistic to calculate interfer-

ence values with all pairs with large number of applications

with long execution time. For N applications, interference

values of ðN � ðN � 1ÞÞ=2 pairs are needed. Interference is

predicted through offline profiling information without

executing all application pairs for this reason. Profiling

information includes hardware characteristics, which affect

the co-execution of applications on a GPU, and metrics

deriving from the prior observation.

4.1 Metrics used for profiling resource usage

We define resource metrics that influence performance at

the time of actual co-execution of applications. Each metric

was collected using the NVIDIA profiler tool, nvprof, for

predicting interference prevention during the co-execution.

Table 1 shows detailed information regarding the metrics

obtained during the profiling of each related resource.

GPU utilization average is the average execution time of

one or more kernels on the GPU. SM efficiency average is

the average time at which one or more warps are active in a

particular multiprocessor on the GPU in percentage. Warp

efficiency average is the average number of active threads

for each warp in the SM. IPC is the number of commands

executed per cycle. Occupancy average is the average

number of active wraps per active cycle supported to the

SM. GPU memory used max is the maximum amount of

GPU memory used during the application program exe-

cution. GPU memory used average is the average GPU

memory used during the application program execution.

GPU memory utilization average is the average time for

reading or writing GPU memory over a specific period of

time during the application execution in percentage.

Device to host throughput is the data throughput moving

from global memory to CPU memory. Host to device

throughput is the data throughput from CPU memory to

GPU memory. The Cache: GLD (Global memory Load)

throughput metric includes transactions served by the L1

and L2 caches. This metric is the amount of cache hit when

loading into global memory. The GST (global memory

store) throughput is also related to the L1 and L2 cache, but

indicates a cache hit when storing in global memory. The

execution time of each application and input during an

application execution are recorded because the profiling

information can vary depending on the input and parame-

ters used even with the same applications. If an application

with the same configuration is submitted, previously col-

lected profiling information can be used.

Fig. 5 PCIe and global memory throughput of applications on GPU

Table 1 Resource metrics for interference modeling

Metric

GPU utilization avg. GPU memory utilization avg.

SM efficiency avg. Device to host throughput

Warp efficiency avg. Host to device throughput

IPC GLD throughput

Occupancy avg. GST throughput

GPU memory used max Execution time

GPU memory used avg.

avg average
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4.2 Model construction

For interference modeling, we established three machine

learning models- linear regression, random forest regres-

sion, and decision tree regression. We used total of 12

applications, described in Sect. 3. To establish the models,

a total of 144 datasets were used as their pairs were

modeled. We used a combination of metrics for each

application as an input of the model. Metric values were

normalized because the units and scales used for each

metric differ. The model output is interference value,

which is represented as a ratio between the time of co-

execution and the time when the application is executed

alone. We executed all application pairs and obtained the

execution time to calculate the interference for constructing

the model. The interference value applied the average

value from three experimental results for accurate mea-

surements. In addition, 5-fold validation was used to

improve the model accuracy and reliability of the perfor-

mance evaluation. The entire dataset is divided into five

subsets, four of which are designated as the training data,

with the remainder designated as the validation data. This

process is repeated five times.

Table 2 shows the mean squared error (MSE) values and

R2 scores for three types of machine learning models. The

MSE represents the difference between the predicted and

actual values, and the closer it is to zero the higher the

accuracy. R-Square is a validation measure of a regression

model, the explanatory power of which is higher as it

reaches closer to 1. The random forest regression model

showed the best performance in a container environment.

The random forest model was used in this experiment for

this reason.

5 Design and implementation

This section describes the overall architecture design of the

interference-aware policy and Co-scheML scheduler that

dynamically schedules the arrived applications for each

node in a GPU cluster in a greedy manner.

5.1 Architecture

Figure 6 presents the overall system design. We imple-

mented device plugins for GPU sharing on Kubernetes.

The profile repository stores profiled metrics, which are

collected offline for scheduling or interference prediction.

The metrics are stored in a time series-based database,

InfluxDB [12], and labeled with the application’s name and

input data. The Co-scheML scheduler requests interference

values from the constructed model described in Sect. 4.

The scheduler sends its scheduling decision to the kubelet

of each worker node. The kubelet dispatches applications

to designated GPUs. The monitor constantly monitors the

progress of applications and updates the profiling infor-

mation to improve the accuracy of the constructed model.

5.2 Scheduler

The Co-scheML scheduler is called when users submit an

application or when an application run is completed. The

scheduling operation of the Co-scheML is the same as that

in Algorithm 1 [14]

Table 2 Mean squared error and

R-square of regression models
Linear regression Decision tree regression Random forest regression

MSE 0.0546 0.0269 0.0222

R-Square 0.6946 0.8500 0.8758

Fig. 6 Architecture of interference-aware execution framework
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The applications submitted by users arrive in a queue.

The Co-scheML scheduler does not waste resources of an

idle GPU. It executes an application exclusively only when

no task is present in the waiting queue. It distributes tasks

to as many nodes as possible for performance maximiza-

tion. Thus, if there are four nodes and four tasks in the

queue, the scheduler allocates one task to each node. When

there is no idle node, it co-executes pairs of applications to

maximize the GPU-resource utilization. To avoid inter-

ference, the scheduler chooses an application pair with the

minimum interference value based on the greedy algo-

rithm. The scheduler compares the interference values

between a waiting task and the running tasks in nodes of all

the application pairs. Subsequently, it requests the inter-

ference values from the profile repository and the con-

structed interference model. Further, it exploits the

monitored and profiled information to confirm whether co-

scheduling is possible. This allows the OOM-failure pre-

diction. The detailed information of the scheduler is pre-

sented in Co-scheML [14].

6 Evaluation

6.1 Evaluation methodology

6.1.1 Experiment environment

GPU cluster based on Kubernetes is used for experiment.

The cluster is comprised of one master node and three GPU

nodes, the work node as shown is Tables 3 and 4. NVML-

based Monitor records metrics in influxDB every 5 s. There

is Kubernetes default scheduler, Co-scheML, and Model in

the master node.

6.1.2 Workloads

Twelve real-world applications were selected. Four HPC

applications (LAMMPS, GROMACS, QMCPACK,

HOOMD), five DL training jobs (mnist, googlenet, alexnet,

vgg16, vgg11), and three DL inference jobs were used for

experiments as described in section 3. All DL tasks used

Tensorflow, executed in the GPU and containerized as a

Docker container. Ten workloads were used for experi-

ments and the sensitivity of the scheduler is evaluated by

varying the arrival interval [4, 30]. At this time, the arrival

interval was arbitrarily designated as 15, 30, and 60 s each

for light, medium, and heavy loads, respectively. The

default task density was a medium load.

Evaluation metrics

– The average job completion time (JCT) is the average

completion time from when each job is submitted.

– Makespan is the time when all jobs in the workload are

completed.

– Speedup is the value of the execution time when the

application is co-scheduled normalized to the time

when the application is executed alone. The value is

between 0 and 1, and the closer it is to 1, the smaller is

Table 3 Experimental settings

CPU (master) GPU (worker)

Architecture Intelr CoreTM NVIDIA GeForce

i7-5820 K Titan Xp D5x

Core Clock 3.30 GHz 1.58 GHz

No. of cores 6 3840

Mem. size 32 GB 12 GB

Threading API – NVIDIA CUDA

10.0

OS Ubuntu 16.04.6 LTS Ubuntu 16.04.6

LTS
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the performance difference compared to when it is

executed alone.

– GPU utilization is the percentage of time over the past

sample period during which one or more kernels were

executing on the GPU.

6.1.3 Baseline schedulers

A max-memory-based Binpack scheduler and interference

aware schedulers, such as the Loadbalance and Mystic [30]

schedulers, are used. The Loadbalance scheduler is based

on the average GPU utilization and selects the pairs to co-

execute such that it has the minimum GPU utilization. The

Mystic scheduler calculates the similarity among the

application metrics and schedules in order of low similar-

ity. Every baseline scheduler is implemented and inte-

grated to Kubernetes for comparing.

6.2 Scheduling performance

Figure 7 compares the performances of four approaches

over 10 workloads. Our framework outperformed the

Binpacking policy by 26%, 29%, and 28% in terms of

makespan, average JCT, and speed up, respectively. The

Binpacking policy was the most affected by interference.

As the scheduler attempted to minimize the number of used

nodes, it was not possible to use the available resources

fully. The number of submitted jobs varied depending on

the time in the cloud environment. Users tended to rarely

request their tasks at certain times such as night. Hence,

considering only the memory usage and not resource

contention can waste resources and lead to severe perfor-

mance degradation.

The makespan and average JCT of our framework were

18% and 11% lower than those of LoadBalance; the speed

was also improved by 0.2%. LoadBalance exhibited high

speed because it shared computing resources fairly well,

considering the average GPU utilization. However, it did

not deliver a satisfactory performance improvement in

terms of makespan and average JCT because it did not

consider the overall resource usage. In particular, it

exhibited poor performance for workloads including only

HPC applications. An average GPU utilization is not suf-

ficient to characterize the HPC applications, which have

dynamic GPU utilization.

Our framework achieved performance improvements of

19%, 16%, and 4% in terms of makespan, average JCT,

and speedup, respectively, over Mystic. The effect of each

metric on interference was different. Mystic did not reflect

the weights of metrics and calculated interference based on

similarity. Although it offered the largest improvement

among those of other baseline schedulers, its performance

improvement was limited. Furthermore, it could not detect

OOM failure.

Figure 8 depicts a graph representing the GPU utiliza-

tion based on the scheduler for each node. Each of the 12

Table 4 Static environment features

GPU memory 11.91 GB Warps per SM 64

GPU speed 1582 MHz Thread blocks 32

per SM

GPU TITAN Xp Shared Memory 96 KB

architecture per SM

PCIe 32 GB/s Threads 2048

bandwidth per SM

Fig. 7 Performance comparison of Binpack, Loadbalance, Mystic,

and Our framework
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applications used in this experiment was executed twice,

and the workload had a total of 24 jobs whose launch

sequence was randomly generated. During the execution of

all the workloads, the average GPU utilization was 78% for

Co-scheML, 59% for LoadBalance, and 67% for Mystic,

indicating Co-scheML’s higher GPU utilization of 32%

and 16%, respectively, compared to those of LoadBalance

and Mystic. Co-scheML allowed each application to use

complementary resources by considering interference,

resulting in improved GPU utilization.

6.3 Sensitivity analysis

The behaviors of each scheduling method when different

loads are applied to the server are evaluated for the same

workload. Figure 9 shows the average JCT according to

each task density. The overall applications of the workload

were sorted by the JCT. Figure 9a–c show heavy, medium,

and light loads, respectively. The average JCT of Co-

scheML was lower than that of Loadbalance and Mystic by

12% and 32%, respectively for a heavy load. It was 43%

and 3% lower, respectively for a medium load, and it was

96% and 18% lower for a light load.

Figure 10 shows the makespan depending on each ser-

ver load. For the overall task density, Co-scheML showed a

1.53-, 1.32-, and 1.12-fold better makespan than that of

Binpack, Loadbalance, and Mystic, respectively. As the

system load increased, the performances of all schedulers

showed a decreasing trend. Meanwhile, the Binpack

scheduler was the least influenced by the task density, but

the worst performance. It was confirmed that Co-scheML

achieved the best average JCT and makespan at all task

densities.

6.4 Overhead

The Binpack scheduler has a scheduler overload of

approximately 1.001 s regardless of the number of pods.

The Binpack scheduler compares the amount of available

memory of all nodes and the required memory by the pod

to be executed, and thus the overload increases propor-

tionally to the number of nodes. In this experiment, three

nodes were used with approximately 1 s of overhead.

The scheduler established in this study has a linearly

increasing overhead owing to the increasing number of

subjects to which the inference values are to be compared

based on the number of pods, as shown in the blue line of

Fig. 11. However, even with 50 pods, a scheduling time of

0.003 s or less is required. The orange line in Fig. 11 shows

the overload compared to the overall execution time, which

is within the range of 0.0003%-0.0035%. This demon-

strates that the runtime overhead is trivial and that the

overhead is lower than that of the Binpack scheduler.

In addition, a communication overhead from an http

request occurs, which takes approximately 6 s on average.

This is an overhead commonly included in the Kubernetes

scheduler and exists in all schedulers, i.e., the Kubernetes

default scheduler and Binpack scheduler, proposed in this

study.

7 Related studies

7.1 GPU resource sharing scheduling

Many GPU sharing technologies have been introduced in

an effort to improve the resource utilization of GPU clus-

ters and cloud servers. Diab et al. [6] proposed a system in

which many users can share GPU resources while co-

Fig. 8 Comparison of GPU utilization of schedulers
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executing tasks by intercepting a CUDA API to enable the

execution of two kernels. However, this scheduling method

can only be used for applications that have repetitive or

distinct forms of resource usage. In Bao et al. and Song

et al. [2, 27], the GPU resources are classified into a certain

size and allocated to a container that executes a cost tree to

allocate and provide the resources to the GPU. However,

this only considers the minimum resource requirement of

the running task, which can result in a degraded perfor-

mance during a co-execution. There are cluster schedulers

for DL workload [10, 18, 25, 29, 32]. Kube-knots [29]

predicts the GPU utilization, PCIe bandwidth, and memory

to guarantee the QoS, and minimize the energy efficiency.

Although the DL workload is static and predictable,

dynamic applications such as HPC applications are difficult

to predict. Therefore, we conducted resource provisioning

through profiling and monitoring in this study. In addition,

the purpose of this study is to improve performance rather

than achieve energy efficiency. Using GPU utilization, the

PCIe bandwidth and memory usage alone are insufficient

to improve the performance.

Fig. 9 Comparison of average JCT for various task densities

Fig. 10 Comparison of makespan for various task densities

Fig. 11 Scheduling overhead of Co-scheML
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7.2 GPU interference-aware scheduling

With the introduction of technologies that can co-execute

numerous applications on the GPU, scheduling methods to

avoid resource contention that may occur during the co-

execution in this environment have been proposed. Mystic

[30] suggests a collaborate filtering (CF) based interference

recognition scheduler for the co-execution of applications.

It profiles interference metrics, and if a new application is

applied, CF is used for prediction after lightweight profil-

ing. The method used to obtain the interference values of

each application pairs is based on the similarities in the

vector of metrics, in which the lower the similarity, the

lower the interference. Although the degree of influence of

the interference for each metric is different and leads to

different weights, this is not reflected. Rather, similarities

are simply obtained, and the OOM failure issue that can

occur during the co-execution of the GPU applications is

not considered. Chen et al. [4] analyzes the characteristics

of the DL and carries out a performance prediction mod-

eling based on the results as a suggestion to the QoS-aware

scheduler. This requires domain-specific knowledge of the

DL, and thus cannot be applied to all applications, such as

HPC applications. Xu et al. [33] defined features of the

application characteristics executed on a GPU to imple-

ment an ML-based interference recognition scheduler.

Although the performance of a simple application is sig-

nificantly affected by the kernel length, a difference in

interference for ML applications is shown. However,

because the actual evaluation was conducted on ML

applications that have repetitive resource usage patterns,

additional feature definitions of the affected resources and

other metric definitions for the container environment tar-

geted to the VM are required. Moreover, a method for

applying interference values to the cluster scheduling

method is necessary because a simple round-robin sched-

uler was implemented. In Bao et al. [2], a learning place-

ment framework using a DRL model in the cluster

environment with GPU servers is proposed. The authors

explained that learning is carried out by inputting the

worker id, CPU, and GPU, and tasks are placed by a low

level of interference when multiple applications coexist.

However, detailed information on the resources is neces-

sary to decrease the interference effect with the CPU and

GPU usage values. Wen et al. [31] considers interference

values and uses max-pair algorithms to decrease the overall

workload execution time. However, the lengthy time

required to execute all pairs each time a new application

enters can be a disadvantage. In this study, we demon-

strated that if the profiling information is available, a pre-

diction of the interference is possible without executing all

pairs, which cannot be applied to dynamic scheduling.

7.3 Interference aware co-scheduling on CPU

There are many approaches to co-scheduling for CPU-

based servers. The key idea of these approaches is to co-run

various applications rather than execute serially for

increasing throughput of servers. Some applications need

small portions of resources, or some others experience

performance degradation. Muralidhara et al. [20] suggests

application-aware memory channel partitioning (MCP) to

map the data of applications that seem to interfere with

each other to different memory channels. Lo et al. [19]

dynamically manages hardware and software isolation

mechanisms to guarantee latency-sensitive services. It

increases the utilization of servers without latency viola-

tions in colocation scenarios. Aupy et al. [1] uses cache

partitioning to optimize the performance of applications

when they are co scheduled on the same node. Jiang et al.

[13] constructs graph to represent co-run performance

degradation. It optimizes scheduling with a min-weight

perfect matching problem. Dauwe et al. [5] presents

models that utilize various information on applications and

predict the application’s execution time performance

degradation due to co-location. It characterizes applica-

tions on multicore processor architectures.

8 Conclusion

This paper proposes Co-scheML, an interference-aware co-

execution framework, which provides an ML model that

predicts interference values using application profiling data

and minimizes interference among GPU applications in a

GPU cluster. The experiment revealed that the average JCT

and makespan improved by nearly 18% and 22%, respec-

tively, for various workloads, compared to those of con-

ventional schedulers. The resource utilization of the cluster

was enhanced by 24%, the average JCT under various task

densities improved by 23%, and the makespan shortened

by 22% on average, compared to those of baseline sched-

ulers. Future studies would include identification of char-

acteristics in various GPU execution environments and an

extension of the scheduling method for multiple GPUs.
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