Adaptive resource provisioning method
using application-aware machine learning
based on job history in heterogeneous
infrastructures

Jieun Choi & Yoonhee Kim

Cluster Computing
The Journal of Networks, Software Tools

and Applications CLUSTER
ISSN 1386-7857 COMPUTI NG
Volume 20

Number 4

Cluster Comput (2017) 20:3537-3549
DOI 10.1007/5s10586-017-1148-1

@ Springer



Your article is protected by copyright and

all rights are held exclusively by Springer
Science+Business Media, LLC. This e-offprint
is for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication
and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer



Cluster Comput (2017) 20:3537-3549
DOI 10.1007/s10586-017-1148-1

@ CrossMark

Adaptive resource provisioning method using application-aware
machine learning based on job history in heterogeneous

infrastructures

Jieun Choi! - Yoonhee Kim?

Received: 27 February 2017 / Revised: 23 June 2017 / Accepted: 23 August 2017 / Published online: 4 September 2017

© Springer Science+Business Media, LLC 2017

Abstract With the remarkable growth in cloud comput-
ing, computing resources can be manipulated on-demand in
most scientific fields. This enables scientists to strategically
select their experimental environment. Since it is hard to offer
cloud resources in accordance with application characteris-
tics, efficient resource provisioning methods are needed. This
paper proposes an adaptive resource provisioning method
using an application-aware machine learning technique that
is based on the job history in heterogeneous infrastructures.
The proposed resource provisioning method is built on two
main concepts. First, it provides application-aware resource
provisioning through the profiling of scientific application
in a heterogeneous computing infrastructure. A resource
provisioning model uses the resource usage profiles of sci-
entific applications and job history data in heterogeneous
computing infrastructures. In addition to the multilayer per-
ceptron machine learning method, an error back-propagation
approach is applied to analyze job history to re-learn the error
of the output value. Second, it offers an adaptive resource
scaling that is invoked by the availability of resource changes.
An adaptive resource management method results in an
enhancement of the overall balance between the performance
and utilization of a system. For the experiments with the
two CPU-intensive applications according to the method, a
heterogeneous infrastructure comprising clusters and cloud
environments is used. Experimental results indicate that the
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use of the proposed method can gratify user requests (cost
and execution time) regarding its application and enhance
resource usage effectiveness.

Keywords Adaptive provisioning - Multilayer percep-
tron - Application-aware - Auto-scaling - Heterogeneous
infrastructure

1 Introduction

Cloud computing appears as a new computing paradigm
that uses virtualization technology and allows pay-per-use
computing services. It provides scalable and virtualized
large-scale IT resources (server, storage, software, and net-
work) as services [1,2]. With the development of cloud
computing, it has become possible to utilize computing
resources as needed in various scientific fields. Increasingly,
heterogeneous computing infrastructures are being deployed
that integrate cloud environments into existing computing
infrastructures such as clusters and grids in multiple data
centers [3—6]. Alternatively, it is difficult for cloud providers
to meet their needs and provide the resources they need,
so they entrust users with the task of making of wholly-
needed resource choices. Limits exist, however, regarding
the support of diverse scientific applications that require
high performance computing (HPC) and high throughput
computing (HTC) in which only the user-selected resources
are used; therefore, there is a need to develop a resource
provisioning technique that pre-selects resources that are
suitable for the nature of scientific applications and com-
puting environments and makes these available to users.
At present, studies on resource provisioning techniques
in which various statistical analysis and inference meth-
ods are used have been carried out; however, existing
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methods did not consider the characteristics of scientific
applications and did not target heterogeneous computing
infrastructures in data centers that use heterogeneous com-
puting resources. Therefore, in the heterogeneous computing
infrastructure environment, including cloud, resource pro-
visioning and resource management techniques that can
maximize the benefit between the user and the provider are
needed.

This paper proposes an adaptive resource provisioning
method in which an application-aware machine learning
technique that is based on the job history in heterogeneous
infrastructures is employed. The proposed resource pro-
visioning method is built on two main concepts. First, it
provides application-aware resource provisioning through
profiling of the scientific application in the heterogeneous
computing infrastructure. A resource provisioning model
uses resource usage profiles of the scientific application and
job history analysis in heterogeneous computing infrastruc-
tures comprising cluster and cloud environments. In addition
to multilayer perceptron (MLP) machine learning methods,
an error back-propagation technique is used to analyze the
job history to re-learn the error of the output value. Secondly,
it offers an adaptive resource scaling that is invoked by the
availability change of the resources. An adaptive resource
management method results in the enhancement of the over-
all balance between the performances and the utilization
of the system. The proposed method maximizes the benefit
between the user and the provider by considering the charac-
teristics of the scientific application, the requirements of the
user, and the state of the system for the resource provision-
ing technique. In addition, adaptive resource management
techniques that dynamically adjust the number of resources
according to systemic changes enable an effective computing
infrastructure management.

In this study, two CPU-intensive applications were inves-
tigated according to the proposed model and algorithms
in a heterogeneous infrastructure comprising cluster and
cloud environments. Experimental results show that the use
of the proposed method could satisfy user requests (cost
and execution time) regarding their application and improve
resource usage efficiency. Based on the proposed job his-
tory learning model, the superiority of the proposed method
was demonstrated using inferred resources and a perfor-
mance comparison was performed in which the inferred
resources used other policies. Through the proposed algo-
rithm, it was possible to efficiently provide resources in terms
of cost and performance by inferring suitable resources for
the performance of applications and in consideration of user
requirements and usable systemic resources; furthermore, it
was possible to effectively manage resources in response to
changes in the available resources of the system.

The major contents and methods of this study are as fol-
lows:

@ Springer

e Presents a job history learning model using an MLP and
error back-propagation technique for learning the work-
ing history of computational science applications in a
heterogeneous computing infrastructure.

e Creates input data and output data of the suggested
learning model using profiling data of computational sci-
ence application and the result of the work performed in
the heterogeneous computing infrastructure comprising
a cluster (SGE: Sun Grid Engine [7]) and a cloud (Open-
Stack [8]), and learning to verify the job history learning
model is developed.

e Suggests an adaptive cloud provisioning service sys-
tem and algorithm that can dynamically scale resources
according to systemic changes.

e Verifies the performance of the proposed algorithm
through comparative real experiments and simulation.

The rest of this paper is structured as follows. Section 2
discusses related studies, while Sect. 3 introduces the adap-
tive resource provisioning model based on the job history
learning technique. In Sect. 4, adaptive resource provision-
ing algorithms are discussed in detail, while the experiments
and results are presented in Sect. 5. Section 6 concludes the
paper and discusses proposed future research.

2 Related studies

With the development of cloud computing, it has become
possible to utilize computing resources as needed in vari-
ous scientific fields. Increasingly, heterogeneous computing
infrastructures that integrate cloud environments into exist-
ing computing infrastructures such as clusters and grids
are being deployed in multiple data centers [3—6]. For the
HPC communities (DIRAC [9], Condor-G [10], gUSE/WS-
PGRADE[11],and HTCaaS [12,13]), the cloud was recently
integrated with conventional distributed computing environ-
ments such as the grid, cluster, and desktop grid. A few
studies addressed the need for the simultaneous control of
heterogeneous computing infrastructures.

Mateescu et al. [3] presented the concept of the ElastiClus-
ter, in which conventional HPC, grid, and cloud computing
are combined to achieve effective and predictable executions
of HPC workloads. In [3], the authors noted that no single
infrastructure is the best solution from all points of view.
Moca et al. [4] described a fault-tolerant and trust-aware
scheduler, which allows for the execution of Bag-of-Tasks
(BoTs) applications on elastic and hybrid distributed com-
puting infrastructures. Delamare et al. [5] completed the best
effort as part of the EUs European Desktop Grid (EDGI)
FP7 project by creating a fast and reliable technique to
meet the expected completion time of BoTs applications in
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distributed computing infrastructures. Delamare’s team pro-
posed the SpeQuloS service that provides cloud resource
dynamically. The distributed infrastructure with remote agent
control (DIRAC) [9] is a software framework for distributed
computing that provides access to heterogeneous comput-
ing infrastructure required by users. It integrates various
grid, cloud, and cluster resources, provides concurrent inter-
actions, and enables stable use of resources. Condor-G
[10] combines technologies from the Condor project and
the Globus project to provide a robust job-broker func-
tion and is widely used in grid environments; it matches
the job requirements according to the characteristics of the
resource, and supports grid, cloud, and cluster resources.
gUSE/WS-PGRADE [11] provides a workflow-driven scien-
tific application execution interface, as well as an integrated
grid, a cloud, a cluster, and a desktop grid. In a previous
study [6], the authors investigated the job distribution ratio in
a heterogeneous infrastructure using high-throughput com-
puting as a service (HTCaaS) service type. With accelerated
increase in the use of cloud infrastructure, a correspond-
ing increase in dynamic resource provisioning techniques
provides the required resources. In this paper, a resource
provisioning model is proposed based on application charac-
teristic profiles and job history analysis in a heterogeneous
computing infrastructure comprising of cluster and cloud
environments.

In this section, different related studies and systems are
described with a concentrate on resource provisioning. In
addition, related research on adaptive resource provisioning
and management techniques in which various machine learn-
ing and reasoning methods were used are compared with our
study.

2.1 Application-aware resource provisioning method
based reasoning technique

Cloud providers entrust users with wholly-needed resource
choices, since it is difficult for cloud providers to meet
their needs and provide the resources they need. However,
there are limits to supporting diverse scientific applications
that require high-performance and high-throughput comput-
ing with only user-selected resources; therefore, a resource
provisioning technique that pre-selects resources that are
suitable for the nature of scientific applications and com-
puting environments, and provides them to users is needed.
There are a few studies on resource provisioning techniques
in which various statistical analysis and inference methods
were used.

Kim et al. [14] proposed a fuzzy logic based resource
evaluation method for provisioning scheduling in a cloud
environment. In [14], performance states that are hard to
define, such as CPU utilization, RAM utilization, and Net
I/O of a virtual machine (VM), were analyzed, and were used

in resource availability evaluation. The algorithm deduces
the state of the VM using static attributes, such as CPU uti-
lization, main storage utilization, and network latency, and
extrapolates the availability using the current VM state, the
work processing performance, and the number of jobs in the
queue; when a job is submitted, it selects a VM with the
highest availability. This, however, does not indicate that the
appropriate VM for the application was used in such a way
that only the availability of the last used VM is inferred. Rao
et al. [15] proposed a distributed self-learning scheme for
resilient provisioning of cloud resources that can satisfy the
SLA while increasing the resource utilization rate; however,
this is not suitable for high-performance computing envi-
ronments for the implementation of high-performance and
high-processing science applications in which the system
uses the users feedback rather than self-learning, depend-
ing on the characteristics of the application. Tesauro et al.
[16] proposed a hybrid reinforcement learning scheme in
which offline reinforcement learning and queuing models
were used for automatic resource allocation. Their scheme
represents a way to solve the problem of performance decline
of online reinforcement learning of their previous research,
and regarding the offline reinforcement learning method,
the optimum policy in the dynamic environment is found
through the system state and various actions. Meanwhile,
HTTP requests are distributed according to a queuing the-
ory, and the performance is maintained through the expected
response time. Sukhija et al. [17] proposed a portfolio-based
dynamic loop scheduling algorithm in which supervised
learning was used in heterogeneous computing environ-
ments. This is a method for finding an optimal scheduling
technique for scientific applications in distributed and paral-
lel environments according to the MLP learning method in
which the characteristics of the application, system state, and
performance were considered. However, this method is only
used for grid computing resource and a cloud environment
in which on-demand allocation of resources is not consid-
ered.

The above studies consist of resource provisioning tech-
niques that did not consider the characteristics of scientific
applications and did not target heterogeneous infrastructure
of a data center that uses various heterogeneous computing
resources. Therefore, it is necessary to select a resource that
is suitable for the required application performance while
maximizing the benefit between the user and the provider,
and in which the characteristics of the scientific application
are considered through the analysis of the job history. In this
study, a neural network learning method based on a mul-
tilayer perceptron is used for the analysis of job histories,
while application characteristics are considered, and it is pos-
sible to provide the resources that are suitable for the system
while satisfying user requirements and application perfor-
mance.
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2.2 Adaptive resource management

The cloud environment has advantages of scalability and
accessibility. Therefore, a resource management that adapts
to user requirements and resource changes in the cloud envi-
ronment has been actively studied [17-21]. Typical adaptive
methods include the auto-scaling method comprising hori-
zontal and vertical scaling. Horizontal scaling is a scaling
in/out method that reduces or increases the number of vir-
tual machines allocated based on the amount of work or used
resources. Vertical scaling is a method of scaling up/down the
amount of resources (CPU, Mem, and Disk) allocated to one
virtual machine [22]. Amazon provides CloudWatch [ 18] ser-
vices that monitor cloud resources and running applications,
collects resource usage indicators, and provides horizontal
scaling based on configured thresholds. In the openstack,
groups and policies can be created for virtual machine scal-
ing using Heat components, and an auto-scaling service for
horizontal scaling according to attribute settings such as the
maximum and minimum sizes of the scaling group is pro-
vided.

Studies [18-21] on the auto-scaling techniques have been
conducted through a prediction of future resource utiliza-
tion of the application. Samuel et al. [19] introduced a
pre-prediction model for future resource requirements of
Web applications to satisfy the SLA in a cloud environ-
ment and proposed a resource provisioning method based on
this. The response time and throughput of the Web service
were used as the SLA, and three types of machine learn-
ing techniques, namely, linear regression, neural network,
and support vector machine (SVM), were used as predic-
tion models; here, resource usage and scales of the virtual
machine were predicted accordingly. Similarly, Bashar et
al. [20] used a Bayesian network based prediction model,
and Nikravesh et al. [21] compared auto-scaling with Cloud-
Watch [18] based on a predictive model in which the hidden
Markov model (HMM) was used. In a previous study [23],
the optimal resource allocation ratio according to the char-
acteristics of the application in the cluster and the cloud
environments was found, and the result of the application
of the auto-scaling technique according to delay occurrence
was analyzed; here, the technique prevents the SLA from
violating horizontal scaling when a deadline violation of the
application due to the delay is detected. In [23], two types
of scientific applications (BoTs, workflows) were simulated
in a heterogeneous environment. The auto-scaling technique
was applied to control the number of virtual machines such
that they do not violate the SLA deadline and systemic per-
formance can be guaranteed; however, this did not consider
system conditions for changes in the available resources. The
above adaptive resource provisioning techniques determine
the scaling of resources based on a predictive model or pol-
icy. In this paper, an adaptive resource provisioning scheme is
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proposed based on the application characteristics and analy-
sis of the job history, and in which both horizontal and vertical
scaling are used.

3 Resource provisioning model using
application-aware machine learning based on job
history

Machine learning is a process in which the system learns
to improve its performance from empirical data based on
interactions with the external environment, even if it is not
explicitly programmed [24,25]. Machine learning is divided
into supervised learning, unsupervised learning, and
reinforcement learning, depending on the type of data
required for learning. Among these learning types, map learn-
ing presents learning data comprising an input/output pair,
and a function map where learning data is learned. Such
guidance learning is suitable for pattern recognition, clas-
sification, prediction, and regression analysis of data [23].
Alternatively, various learning model structures, such as the
neural network, SVM, decision tree, and Bayesian network
exist depending on the function expression method for the
performance of machine learning [25]. Among these, the neu-
ral network is processed by the activation function in which
input and connection weights are used, and the output can be
changed depending on the selected activation function. Per-
ceptron learning is a learning algorithm of the representative
neural network structure, which is divided into single-layer
perceptron or MLP learning, depending on the layer. The
MLP maps a set of input data onto a set of appropriate out-
puts, and it consists of multiple layers of nodes (neuron) in a
directed graph with an activation function. MLP is a model
that can solve a non-linear separation problem (XOR), which
is impossible to solve using single-layer perceptron.

In this section, the application-aware resource provision-
ing model is introduced. To design this model based on job
history data, items of the job history data must be defined.
The job history data is composed of four items as presented
in Table 1.

First, profiling information of the application represents
the characteristics of the scientific application that the user
wants to submit to the system to perform the application. The
average CPU usage and the average memory usage require
pre-profiling data for the application. Second, the system
state should use information about the system, and it reflects
the systemic situation through the current usage according
to each computing resource. In this paper, the focus on is
two clustering and cloud heterogeneous computing infras-
tructures. Third, VM information is information about the
type of VM used to perform the operation. Lastly, the exe-
cution history information includes the execution time of the
task and the total cost of cloud resource usage. In the case
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Table 1 Job history items
Categories Items T

& tamall-20 |

Application profiles Name of application

Type of application
Average CPU utilization
Average memory utilization
Number of tasks

Size of input files

System status System specification
Current usage of resource
vCPU

Memory

Disk

Flavor name

VM information

Flavor cost

Number of used VM
History data Total job execution time
Total cloud resource cost

Job distribution ratio

of the total job share in the execution history, the ratio of the
tasks assigned to the cluster is expressed in Eq. 1 as follows:

0w =1,y w=1 (1)

For example, in an environment that targets clusters and cloud
computing infrastructures, wy is a cluster and w is a cloud.
When 10,000 tasks are being performed, if wq is 0.6, and
6000 tasks are performed on the cluster resource, then 4000
tasks are performed on the cloud resource. The sum of wy
and wg is always 1.

The job history data that is composed of various items
shows a linear non-separable data distribution. (The data dis-
tribution figure according to job history items is given in
[26]). Therefore, in this study, a learning model in which an
MLP model that can be applied to linear inseparability prob-
lems is used to investigate history learning of the scientific
application.

The MLP is composed of an input layer X;, a hidden
layer Z;, and an output layer Y;, and it is composed of a
weight and a threshold vector (0). The input values in the
learning model are set as the application profiling of the job
history item, the system state, and the execution history, and
the output value is VM information. To apply the error back-
propagation technique, itis necessary to subject the activation
function of the MLP to the following differential sigmoid
function. The input value (Input (Z;)) of the i-th neuron of
the hidden layer is calculated using the presented input vec-
tor, and the output value (Output (Z;)) of the hidden layer
is calculated using the sigmoid function. The output of the

= tlage1o |

+chtmrget1 |

* [ middages |

Output Layer(Y;)

|
Hidden Layer(Z}

Input Layer(X)

Fig. 1 Resource provisioning model based on job history using MLP

Table 2 Validation results for the proposed resource provisioning
model

Correctly classified instances 7 (77.7778%)

Incorrectly classified instances 2 (22.2222%)
Kappa statistic 0.7188
Mean absolute error (MAE) 0.1073
Root mean squared error (RMSE) 0.2398

hidden layer is used to calculate the input value (Input (¥;))
of neuron i of the output layer. Similarly, the output value
(Output (Y;)) is calculated using the sigmoid function. The
error back-propagation technique updates the weight by re-
learning the error of the expected output value. The weight
of the hidden layer takes the error calculated in the next layer
(output layer) and multiplies it by the weight to calculate the
error, since the target value is not known by the hidden layer.

Figure 1, in which the MLP learning technique was used,
describes the proposed resource provisioning model based
on the job history in terms of Weka [27]. Input data for the
model involves historical data, system status, and application
profiles, while the outputis VM information of the job history
items. Input data for the learning stage of the learning model
used 156 data, and input data for the verification stage of the
learning model used 9 data. The learning factor was worked
out several times and was adopted as a parameter in the case
showing the highest exactness as follows: learning rate =
0.2, momentum = 0.8, number of learning = 500, number of
allowed consecutive errors = 20, number of hidden layers =
17, number of input layers = 11, and number of output lay-
ers = 6. In the prediction attempt of the verification stage,
the exactness of the learning model was calculated. Table 2
presents validation results for the proposed resource provi-
sioning model. The proposed adaptive resource provisioning
model showed an exactness of 77.7778%. The kappa statistic
indicates a substantial value of 0.7188 [28]. The value of the
mean absolute error was approximately 10%. Assuming that
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Adaptive Resource Management Service
{Horizontal / Vertical Scaling)

Service Application-aware
Layer Resource Provisioning Service

Job History Learning Model
MW i

Middl tem

Layer Syace iys
Infra, Heterogensous Computing
Layer Infrastructure

Fig. 2 Service architecture model

the errors that were generated follows a normal distribution,
more than 68% did not have a larger error rate than the root
mean squared error (RMSE) and less than 95% had an error
rate less than 2*RMSE.

Figure 2 shows a sketch of a service architecture model
for an adaptive resource provisioning method in which the
job history learning technique is used in a heterogeneous
infrastructure. Essentially, it consists of the following three
layers: Infrastructure layer, Middleware layer, and Service
layer. In this study, the heterogeneous computing infrastruc-
ture was targeted; therefore, clusters and cloud environments
were deployed on the HTCaaS middleware. The Service
layer mostly consists of the following two services: the
Application-aware Resource Provisioning Service (ARPS)
based on the job history learning model and the Adaptive
Resource Management Service (ARMS). In the ARPS, when
a user presents an SLA (cost and deadline) and scientific
applications to the system through the middleware, virtual
machines are assigned according to suitable SLA and sys-
tem status based on deductions from the job history learning
model. While executing scientific applications using deduced
resources, the ARMS monitors usable resources to supply
services and adjust the number of virtual machines accord-
ing to system status.

4 Adaptive resource provisioning method

In this section, four algorithms that can provision resources in
heterogeneous infrastructure, monitor the systemic availabil-
ity ratio, and adjust the VM according to the system state are
introduced. In this study, the existence of job profiling infor-
mation to be performed by a user is assumed. Furthermore, an
installed in advance image can be used for resources, such as
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Table 3 Notations

Notation Description
R A user request
P A user policy for SLA
SP Scaling policy of the system
PD Profiling data for R
R; A resource
R; € {Cluster, Cloud}
SR; Current status of R;
TR; Type of resource R;
UR Resource types are selected from user
CSS Current system status
[cR)| Number of changed resources
[rR| Number of reduced / released resources
MID Input data of job history learning model

a library and a compiler, which are necessary for the perfor-
mance of scientific application in terms of task performance
that can occur in a VM. The presumptions and notations of
the proposed algorithms are presented in Table 3.

Algorithm 1 Adaptive Resource Provisioning Algorithm

Input: a Request R , a user policy P, user resources UR

1: Submit R={ Appuame, Input Fileg; ., |Input File|, SLAg, SLA.
}

2: Default SF, HJS, DV , SD = false ;

3: while R do

Set PD = { R, Apprypes CPUysir, Memysip }

5: SetCSS={SR;|i=0,1,--,N—1,R; e UR}

6:  ResourceProvisioning(P D, CSS) ;

7

8:

oo

AvailabilityMonitoring(interval) ;
end while

Algorithm 1 describes an adaptive resource provisioning
algorithm in which a user presents a job request, R, a user pol-
icy, and preferred resource types. The default values of the
system failure (SF), higher priority job submission (HJS),
user-defined deadline violation (DV), and scaling decision
(SD) are false (line 2). A system failure means that the state
of the resource changes from available to unavailable. At
every monitoring interval, algorithm 1 calls the Availability-
Monitoring function which monitors the state of the resource
(line 7). In lines 3 and 4, the profiling data (PD) and the cur-
rent system status (CSS) are set. Algorithm 2 is called by
using the set PD and CSS(line 6).

Algorithm 2 shows a resource provisioning that is based
on application characteristic profiles and job history analy-
sis in the heterogeneous computing infrastructure, including
cloud environments. In algorithm 2, a value for the learning
model input data is set by using the PD and the CSS (line 1);
here, it detects a appropriate VM type and number in accor-
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dance with the MID by using the MLP model (line 2). If the
resource is a cloud, the learning model based VM provision-
ing result is selected (lines 4-6). Meanwhile, other resources
are provisioned by the number of available resources (lines
7-9).

Algorithm 2 Resource Provisioning Algorithm

Input: Profiling data P D, Current system status CSS
1: Set MID ={ PD,CSS }

2: VMyype and [VM| <~ MLP(MID);

3. if R; ==Cloud then

4 TR; < VM ;

5: |Ri| < |VM]|;

6: else

7 TR,' < Ri 5

8: |Ri| < AvailableR; ;

9: end if

Output: Resource Provisioning RP
={(TR;,|IRi|)|i=01,--,N—1,R; € UR}

Algorithm 3 Monitoring Algorithm

Input: a result of resource provisioning RP , a user policy P,
monitoring interval interval

1: while true do

2:  SF,R; < DetectSF();

3 HJS < DetectHJS();

4: if SF == true then

5 lcRi| < (IRi| — IrRil);

6:

7

8

RESCHEDULE(waitingJob, cR; );
DV <« CompareEFT(EFT,SLAy) ;

: endif
9: if HJS == true then
10: Increase JobPriority ;
11: Release |rR| ;
12: lcRi| < (IRi| — |r Ri]);

13: RESCHEDULE(waitingJob, cR;),;
14: DV <« CompareEFT(EFT,SLAy;) ;

15:  endif

16: if DV == true then

17: if P== PERFORMANCE then
18: SD <« true;

19: else

20: Update(SLAy);

21: end if

22:  end if

23:  Return Scaling Decision SD, |rR;|
24:  Sleep interval
25: end while

Algorithm 3 presents available resources monitoring algo-
rithm. Algorithm 3 monitors the systemic failure, higher
priority job submissions, and user-defined deadline viola-
tions at every monitoring interval (lines 2 and 3). If a systemic
failure occurs, the amount of available resources is reduced
depending on the number of failed resources and the wait-
ing jobs of the malfunction resources are rescheduled to the
changed resources cR; (lines 4-8). If the new job priorities

are higher than that of the current job, the priority of the latter
is increased and the size of resources to release is calculated
(lines 9—11). The amount of available resources is reduced
in accordance with r R and the holding jobs are rescheduled
to cR; (lines 12 and 13). Despite the rescheduling, if a dead-
line contravention is discovered, then a scaling decision is
settled in accordance with user policy. If the user policy is
the performance, the scaling decision is true and algorithm 4
is executed. If the user policy is the cost, the user deadline is
updated with the calculated application execution time (lines
17-21). Owing to the execution of algorithm 3 at every moni-
toring interval, algorithm 4 is executed only when the scaling
decision (SD) is true.

Algorithm 4 Adaptive Resource Scaling Algorithm
Input: Scaling Decision SD, Scaling Policy S P,
Amount of reduced resources |r R; |,
1: while SD do
2:  Switch (SP)
3 case HORIZONTAL:
4: T Reioud < VMrype 5
S: IR;| <= |Reioual + |7 R;l;
6
7
8

case VERTICAL:
T Ruewcloud < NewVMtype(VM,y,,e) 5
IRjl < IrRil ;
9:  end switch
10: end while
Output: Adaptive Resource Provisioning ARP
={(TR;,|R;i])|i=0,1,---,N—1,R; e UR}

Algorithm 4 indicates the adaptive resource scaling
method. It shows the flow of horizontal and vertical execu-
tion according to systemic scaling policy in a situation where
scaling progress has already been determined by Algorithm
3. In horizontal scaling, the increasing amount of the current
VM s computed (lines 3-5). Vertical scaling should calculate
the modified VM size of the new VM (lines 6-9). The yield
of algorithm 4 forms the results of the suggested adaptive
resource provisioning (ARP) method.

5 Experiments

The experiments that were conducted to validate the pro-
posed ARP method are presented in this section. First,
the heterogeneous computing infrastructure is presented in
Sect. 5.1, and the target application is described in Sect. 5.2.
Subsequently, experimental results are presented in Sect. 5.3.

5.1 Heterogeneous computing infrastructures
HTCaaS [12] targets to accelerate the exploration of large

scale HTC or MTC tasks for different computing environ-
ments such as grids, supercomputers, clusters, and clouds.
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It can hide the diversity of the integration of heterogeneous
resources from end users, and enables users to effectually
present many tasks immediately. For HTCaaS, a pilot-based
multi-level scheduling technique that assists the decoupling
of resource assignment from resource binding is applied. The
ordinary pilot (or agent) itself is a common batch job that is
presented by the HTCaaS system and is allocated to resources
by the local batch scheduler. Then, it executes the pulling and
executing sub-jobs, as well as adjusting the launch and mon-
itoring procedures (Fig. 3).

The computing resources consist of local cluster and pri-
vate cloud resources in which HTCaaS is used. The local
cluster uses a Sun Grid Engine (SGE) [7], which is a batch
queuing system supported by Sun Microsystems. OpenStack
[8] is an open source software that provides large pools of
computing, storage, and networking resources that are used
for cloud environments. The OpenStack cloud environment
is composed of one Intel(R) Core(TM) i7-4930K CPU @
3.40 GHz controller with 12 cores of CPU and 4 GB of
RAM, one Intel(R) Core(TM) i7-4930K CPU @ 3.40 GHz
compute node with 8 CPU cores and 24 GB RAM, and
two Intel(R) Xeon(R) CPU E5-26500 @ 2.00 GHz com-
pute nodes, with 24 CPU and 32 CPU cores and 40 and 54
GB RAM. In the experiments, six flavors, namely, t2.micro,
t2.small, t2.medium, t2.large, c4.xlarge, and m4.xlarge, were
used for the VM, and its cost was configured according to
the Amazon EC2 [29] as presented in Table 4. Each VM was
created identically using the Ubuntu 12.04 Server image.
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Table 4 VM information

Name vCPU Mem (GB) Disk (GB) Cost ($) per hour
t2.micro 1 1 5 0.02

t2.small 1 2 5 0.04

t2.medium 2 4 5 0.08

t2.large 2 8 10 0.16

cd.xlarge 4 8 10 0.24

md.xlarge 4 16 10 0.33

5.2 Target application

Computational Science (Scientific Computing) is a field
wherein science and engineering problems are solved using
numerical methods and computer calculations, and various
phenomena are solved using computers [30]. In this study,
a molecular docking application (Autodock3 [31]) from the
field of drug development and physical particle generation
application (Pythia [32]) from high-energy physics was used
in the experiments.

In terms of a new drug development in computational biol-
ogy, computer operated molecular docking simulations have
been conducted to determine the as yet unknown protein lipid
binding mode, such that research on the function of protein
or the development of a new drug that inhibits the func-
tion of protein can be conducted. Molecular docking requires
tremendous amount of computation because all possible con-



Cluster Comput (2017) 20:3537-3549

3545

figurations must be investigated, and these molecular docking
applications are CPU-intensive applications [33]. Molecular
docking applications include DOCK and Autodock. In this
study, Autodock3 was used from among various molecular
docking algorithms. Autodock3 application generated pro-
filing information while showing an average of 99.12% CPU
usage and 0.7% memory usage, and each lipid molecular
data became one input file. One input data size was approx-
imately 0.2 MB, and the number of lipid molecules that are
to be molecularly docked were 200 (404 KB), 400 (887 KB),
600 (1.33 MB), 800 (1.80 MB), and 1000.

High-energy physics field performs large volume Monte
Carlo simulations for prediction and verification in which
particle accelerator data are used [12]. The high-energy
physics accelerator particle collision simulation analyzes the
generated fragment by colliding high-speed particle with the
target material, followed by its reconstruction, and this makes
it possible to find the target material structure. In this study,
resource usage profiling information was collected while
the Pythia application was implemented with a high-energy
particle collision simulation. The average Pythia CPU uti-
lization in a pure CPU-intensive application was 94.59%. In
the experiment, job histories of 1200, 1400, 1600, 1800, and
2000 tasks were used in the Pythia application.

5.3 Experimental results

5.3.1 Analyzing learning based resource provisioning
results

In this section, the result from the use of the inferred resources
through the proposed learning model is presented. Three sce-
narios were considered depending on the availability of the
resources. In the first scenario, the availabilities of the cluster
and cloud systems were 100%. In the second scenario, the
availability of the cloud system was 50%. In the third sce-
nario, the availability of the cluster system was 50%. The case
where the inferred resource with the proposed learning based
(LB) method was used was compared with the case where
the virtual resource was selected in accordance with cost-
minimum (CM) and performance-maximum (PM) policies.
CPU-intensive application: In the experiment environments,
an Autodock application that docks 200 ligand files was run.
The wq value was given as 0.3, the SL A; was given as 3000
s, and the SL A, was given as $1.4. According to availability
scenarios, the learning based resource provisioning method
deduced 15 VMs of the t2.medium type in case 1, 10 VMs
of the t2.large type in case 2, and 5 VMs of the m4.xlarge
type in case 3 as appropriate resources. The CM policy used
20 VMs of the t2.micro type and the PM policy used 11
VMs of the c4.xlarge. Figure 4a, b show the overall execu-
tion time and throughput of the three resource availability
systemic scenarios when Autodock application was run with

the selected resources according to LB, CM, and PM poli-
cies. Results of a comparison of the LB method with the CM
policy with respect to the three cases show that the former
approach can increase the speed by approximately 35, 7.3,
and 34%, respectively. Results of a comparison of the PM
policy with the CM policy show that the PM policy resulted in
enhancements of 42.19, 12.42, and 42.28%, respectively, in
the three cases. The throughput values of the LB method were
improved by 31.14, 7.03, and 30.16%, respectively, com-
pared with those of the CM policy, but they were decreased
by 11.03, 5.32, and 12.13%, respectively, compared with the
throughput values of the PM policy.

Pure CPU-intensive application: Figure 4c, d show the overall
execution time and throughput of the three resource avail-
ability systemic scenarios when the Pythia application was
run with the selected resources in accordance with the LB,
CM, and PM policies. When 1600 Pythia tasks were run in
the given heterogeneous computing infrastructure, wg was
given as 0.4, SL A4 was given as 650 s, and SL A, was given
as $1.3. According to the availability scenarios, the learning
based resource provisioning method deduced 10 VMs of the
t2.large in cases 1 and 2, and 5 VMs of the m4.xlarge in case
3. The CM policy used 20 VMs of the t2.micro type and
the PM policy used 11 VMs of the c4.xlarge as appropriate
resources. Results of a comparison of the LB method with
the CM policy with respect to the three cases show that the
former approach can increase the speed by approximately
1.32, 0.6, and 0.1%. Results of a comparison of the PM pol-
icy with the CM policy show that the former policy enhanced
the three cases by 3.61, 3.12, and 1.32%, respectively. The
throughput values of the LB method were improved by 1.28,
1.52, and 0.16% compared with the CM policy, but they were
decreased by 2.3, 2.48, and 1.16% compared with the PM
policy.

The results indicate that in all the scenarios, the execu-
tion time was short and the throughput was high compared
with the CM. However, a longer execution time and a lower
throughput were shown compared with the PM policy. In
Figure 4, all scenarios show that the proposed LB inferred
resources were appropriate for each state when resource
availability changes. It also inferred resources differently
depending on the characteristics of Autodock and Pythia
applications. This is because the items indicating the sys-
tem status and the attributes of the application in the job
history items were reflected in our machine learning model.
When the learning model includes values of system status
and application profiles for creating job history data, it can
be observed that VM deduction was possible by recogniz-
ing these values. Therefore, the proposed LB was more cost
effective than the PM policy and exhibited a more efficient
performance than the CM policy because the inference was
based on resource availability, and application resource con-
sumption characteristics can be made possible.
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5.3.2 Performance comparison based on user requirements

Figure 5a, b show the SLA satisfaction performance dur-
ing the operation of the Autodock and Pythia applications,
respectively. The inferred resources according to the pro-
posed learning based resource provisioning were compared
with the CM (20 VMs of the t2.micro) and PM (11 VMs of
the c4.xlarge) policies.

In the case of Autodock, the cost limit that based on the
user SLA was $4.0, the user-defined deadline was 12,000 s,
and the wo was 0.3. With respect to provisioned resources,
15 VMs of the t2.medium were deduced from the LB
method. In the case of Pythia, the user-defined cost limit
was $1.7, the user-defined deadline was 470 s, and the
wq value was 0.4. In terms of selected resources, 10 VMs
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of the t2.large were inferenced from the learning based
method.

These results show that the proposed method results in
more money being spent compared with the CM policy.
Alternatively, the execution time of the PM technique was
significantly shorter than that of the proposed learning based
resource provisioning, but the result of the PM was beyond
the required cost. The CM technique showed results beyond
the required deadline, and the PM technique exceeded the
required cost. In Figure 5, all scenarios show that the pro-
posed LB inferred resources appropriate for each state when
the user-defined deadline and cost-limit were varied. It also
inferred resources differently depending on the characteris-
tics of Autodock and Pythia applications. This is because the
items indicating history data in the job history items were
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reflected in our machine learning model. When the learning
model includes values of total job execution time and total
cloud resource cost for creating job history data, it can be
observed that VM deduction was possible by recognizing
these values. The proposed LB can be more efficient than the
CM and PM policies in terms of SLA satisfaction because it
can implement reasoning that reflects user requirements for
execution time and cost.

5.3.3 Adaptive resource provisioning performance analysis

To verify the performance of the adaptive resource provision-
ing scheme, simulation experiments were performed using
CloudSim [34]. In the simulation, the Autodock application
was considered. Based on real experimental data, 1000 tasks
with average operation lengths of less than 1000 s were cre-
ated. The monitoring interval was 10 s. The user-defined
deadline was 200 min and the cost limit was $4.0. To demon-
strate effective scaling, the user’s policy was assumed as the
performance. The performance of the adaptive resource pro-
visioning scheme was analyzed with using 15 VMs of the
t2.medium that were deduced by the job history learning
model according to the proposed algorithm 2. The proposed
ARP method in which both horizontal and vertical scaling
were used was compared with the non-adaptive resource pro-
visioning (NAP) method.

Change in resource availability: In the first scenario, some of
the cluster resources changed to unavailable resulting in sys-
tem failure. Figure 6 shows the number of total resources that
were used and the total execution time. At 4000 s, the clus-
ter system failed, and the number of resources was reduced
from 24 to 15. Without ARP, the total number of resources
was reduced to 30, the number of cloud resources was equal
to 15, and the result was beyond the deadline. When ARP was
used, the total number of resources was 39, and the number
of cloud resources was increased to 24; but, the deadline was
not overridden and the user requirements were satisfied.
Change in job priority: In the second scenario, another job
with a higher priority was submitted during a job run and
the job’s priority was lowered. Figure 7 shows the number of
total resources that was used and the total execution time in
scenario 1. At 5000 s, a high-priority job was submitted and
the system released 12 cluster resources. Without ARP, the
total number of resources was reduced to 27 and the number
of cloud resources was the same, but the result was beyond
the deadline. When ARP was used, the number of resources
was increased, but it did not exceed the deadline, indicating
that user requirements have been met.

These results indicate that the suggested adaptive resource
provisioning method is sensitive to changes in resource avail-
ability and job priorities and can satisfy user requirements. In
addition, both horizontal and vertical scaling are sufficient to
control resources of the cloud, but in the case of vertical scal-
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Fig. 7 Scenario 2: change in job priority

ing, it should be reflected to have some overhead including
the VM reboot time. In the future, it is necessary to improve
the algorithm such that the amount of resources to be con-
trolled can be predicted and adjusted accurately.

6 Conclusion

In this paper, an adaptive resource provisioning method that is
suitable for application characteristics was proposed through
the study of job histories in a heterogeneous computing envi-
ronment in which clusters and cloud resources were used. For
the job history learning model, the MLP and the error back-
propagation approach were applied for the learning of job
history of computational science applications in a hetero-
geneous computing infrastructure. In addition, an adaptive
scheme in which a horizontal scaling that adjusts the num-
ber of virtual machines according to the system state was
proposed. Two CPU-intensive applications were subjected
to experiments according to the proposed model and algo-
rithms in a heterogeneous infrastructure consisting of cluster
and cloud environments. Through the proposed algorithm,
it was possible to efficiently provision resources in terms of
cost and performance by inferring appropriate resources in
which user requirements and available systemic resources
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were considered; furthermore, it was possible to effectively
manage resources in response to changes in the available sys-
temic resources. In this paper, the results that were mostly
influenced by the number of VM vCPUs in the CPU-intensive
applications were presented. In the future, we will carry
out more experiments with diverse types of HPC and HTC
applications. Furthermore, it will be necessary to conduct
a performance comparison experiment with other inference
techniques (related studies). Advanced adaptive algorithms
are also needed to accurately predict the amount of resources.
To do this, we will extend the job history data to conduct per-
formance comparison experiments.
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