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Abstract—Cache management is a significant aspect of exe-
cuting applications on GPUs. With the advancements in GPU
architecture, issues such as data reuse, cache line eviction and
data residency are to be considered for optimal performance.
Frequency of data access from global memory has significant
impacts on the performance of the application with increased la-
tencies. However, the L2 cache data residency feature by NVIDIA
promises to reduce the overheads associated with frequent data
accesses. Through the information extracted from static profiling
analysis, we quantitatively analyzed the frequency of data reuse
by threads to determine whether an application has frequent
data accesses or not. We also estimated the size of access policy
window from which persistent data should be cached to avoid
stalling of warps. Also with our proposed approach, we observed
that L1 cache load throughput increased by 2.75% for GEMM,
0.33% for 2DConv St and 0.46% for 2DConv Large respectively
as data was resident in the L2 cache.

Index Terms—L2 Residency Control, Coalescing Graph, Static
Profiling, Frequently Accessed Data

I. INTRODUCTION

Recent advancements in computational science, specifically

the improved capabilities of Graphics Processing Units (GPU),

are mainly driven by compute-intensive workloads, such as

Machine Learning (ML) and High performance computing

(HPC) applications. In HPC and cloud environments [1] [2]

[3] [4], GPUs remain a necessary computing resource for the

efficient execution of diverse workloads.
Modern GPU architectures offer users exponential GPU

capacity for the execution of diverse applications. However

misaligned memory accesses, poor data locality in the cache

memory, high miss rates and cache thrashing can be costly on

performance. GPUs can hide memory access latencies with

computation as multiple threads execute the same instruction

in parallel however this can be further improved by managing

caches efficiently.
NVIDIA, with it’s Ampere architecture, offers a new feature

that allows the programmer to manage data persistence in a

defined portion of the L2 cache through the use of APIs [5].

Defining and maintaining persistent data in the set-aside region

ultimately enables higher bandwidth and further lowers access

latency to device memory.
However, applying residency control in the L2 cache is a

laborious task if the programmer desires any significant results.

†Corresponding Author: Sookmyung Women’s University, Department of
Computer Science, yulan@sookmyung.ac.kr

The programmer is expected to define a set-aside portion,

understand the data reuse frequency of the application and

also consider the same in concurrently running applications.

Fine-tuning the L2 cache residency configurations add to the

programmer’s burden of optimizing the performance of an

application.

This paper investigates the use of static profiling using PTX

code to determine the L2 cache residency control configura-

tions as a means of optimizing memory and thus improving

performance. Our research work focuses on determining the

size of the data reads to be considered in the access window

(num bytes). Through this study,

• We determine the memory access patterns of applications

through static profiling

• We determine the data access type of the application

using quantitative analysis on the frequency of data reuse

by threads and classify the applications into one of two

groups

• We estimate the size of the access policy window for

each application and use the estimated value to tune the

L2 residency in the application.

• We evaluate the approach with selected applications.

The proposed approach eliminates the time spent in dy-

namically profiling the application during each run and is in-

dependent of different GPU architectures. Our work promises

to optimize performance in concurrently running applications

in spatially shared environments.

The rest of the paper is organized as follows: in Section

2, we briefly describe the background and motivation for this

study. In Section 3, we give details of the proposed static

profiling approach to determining the configurations for the

L2 cache. We then go on to describe the configurations for

the L2 cache residency introduced by NVIDIA in Section 4.

We present the quantitative results of our study in Section 5

and discuss some related works in Section 6. We conclude the

paper in Section 7.

II. BACKGROUND AND MOTIVATION

According to Walden et al. [6], the data layout of applica-

tions like the sparse matrix in memory, along with relatively

small blocks, poses a challenge for GPU architectures to utilize

the memory bandwidth effectively. Threads from such appli-

cations require data accesses to different memory locations
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during executions however these accesses must be coalesced to

improve data locality and hence reduce the number of memory

transactions required to serve a given computation.

Optimizing the performance of memory-intensive applica-

tions on GPUs thus requires an in-depth understanding of

the memory hierarchies of the GPU architecture in order to

maximize the data locality among threads. Developers need

to understand how to coalesce memory accesses and how to

manage control flow divergence of threads to leverage the

benefits of the warp architecture and improve performance.

Profiling applications give some insight into the data access

patterns to improve data locality and aid in co-locating data

and computations. This could also be leveraged to take advan-

tage of the data persistence feature introduced by NVIDIA.

Typically, data that is frequently accessed should be pro-

tected from early eviction in order to reduce memory latencies

and mitigate cache thrashing. Wang et al. [7] identify frequent

access patterns based on user requests. Devashree et al. [8]

through static profiling based on PTX code, obtain access

patterns and analyze data reusability between thread blocks

to determine data locality. Carlo et al. [9] and Fensch et.al

[10] determine data access locality using complier-based hints

and software generated self test approaches respectively.

In modern architectures, the data loads from the DRAM

are cached in the L2 cache by default in an attempt to

maximize memory bandwidth by using as much fast memory

and as little slow-access memory as possible. However when

executing many machine learning (ML) and high performance

computation (HPC) applications, due to the relatively small

ratio of cache sizes to input data sizes [11], there is the need

to prioritize the data to be cached. Prior researchers [11] [12]

[13] [14] [15] having observed that cache lines are sometimes

evicted before they are accessed by the threads that need the

data, have suggested different approaches to improve cache

management.

With NVIDIA’s L2 cache residency control feature, when a

CUDA kernel accesses a data region in the global memory re-

peatedly, such data accesses can be considered to be persisting.

Data considered to be persistent are stored in a set-aside region

and will be last in the eviction priority order. The persistence

offered by this evict last policy provides the opportunity to

cache frequently accessed data and thus minimize the time

spent in fetching newer cache lines from the global memory

during executions. The residency control feature is particularly

useful when the the data locality is high and the access patterns

are highly coalesced per memory load.

We illustrate the implementation of L2 cache residency

control for data requests from a single kernel and for concur-

rently running kernels when the data requests from the global

memory by each kernel is greater than the available L2 cache

memory.

Scenario 1: Single data request and residency control
With a hitRatio of 1.0 (Figure 1), a single kernel with access

window twice the size of the set-aside area, will evict cache

lines to keep the most recently used data from the access

window, in the set-aside portion of the L2 cache because the

Fig. 1. Residency Control for a single kernel

set-aside area is smaller than the window. With uncoalesced

access patterns this will further result in thrashing as the cache

lines will not be maximized

Scenario 2: Concurrent data requests and residency
control

Fig. 2. Residency control for concurrent kernels

In the case of two concurrently running kernels from

different applications(Figure 2), a hitRatio of 1.0 for both Apps

will result in cache lines being evicted by each kernel to keep

only the most recently used data each requires when competing

for the shared L2 cache resource.

Fig. 3. No set-aside area in L2 cache [16]

Moreover, research by Adufu et al. [16] using the new

NVIDIA residency control feature, revealed that when resi-

dency controls were enforced during the concurrent execution

of two applications, warps were stalled for the histogram64

kernel (Figure 3 and Figure 4). This gives rise to the need
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to characterize applications based on their access patterns in

order to maximize the new L2 residency control feature.

Fig. 4. Set-aside area in L2 cache [16]

From the above, it is imperative to quantitatively determine

the amount of frequent accesses by the application and identify

the access patterns in order to maximize the benefits of the L2

cache residency control feature.

III. DEGREE OF COALESCING THROUGH STATIC

PROFILING

We adopt a static profiling approach based on the PTX code

of a workload [17] [8]. Using this approach, we obtain the data

accesses to addresses in global memory by threads in a warp.

Fig. 5. Procedure for Static Profiling and Residency Control

From Figure 5, we first assemble a PTX code from the

application’s executable and then build a syntax tree using a

modified PTX parser obtained from [18]. From the tree, we

trace the global memory accesses by threads within each warp.

This is derived based on addresses accessed using the ld.global
command in the PTX code.

We then extract information on the frequency of accesses

per data region and calculate a coalescing efficiency or the

degree of coalescing using Equation 1 defined in Kim’s

dissertation [17] for a range of 128 Bytes per warp.

Degreeofcoalescing =

32∑

n=0

Coalescingsectors[n]

warpcount
(1)

The range of 128 Bytes is used for data locality analysis

since it is synonymous to a cache line size of 128 Bytes.

For each warp, the range is defined as 128 Bytes from the

start position of the sector first accessed by a thread of the

warp. We also assume that the size of the data read per access

is constant at 4 Bytes per data read (1 data region) based

on observations from the sizes of data accesses across some

selected applications.

IV. L2 CACHE RESIDENCY CONFIGURATION BASED ON

STATIC PROFILING

NVIDIA’s L2 cache residency control feature [19], allows

developers to influence the persistence of data in the L2 cache

and hence lower latency accesses to global memory. However

this is highly dependent on the frequency of data access

by threads. Data accessed frequently and thus considered

persistent are stored in a set-aside region. By so-doing, the

data in the set-aside region is considered last in the eviction

priority order.

Fig. 6. L2 cache configurations [19]

Until now, configuring the access policy window (Figure 6)

was dependent on recommendations by NVIDIA and guess-

work. This approach lacks in quantitative analysis of the data

access patterns and frequency from the global memory.

Another approach requires dynamically profiling the work-

load to obtain information of data transfers from the global

memory to the threads through the caches. This however

does not expose the access pattern which is necessary for

configuring the streaming or persistence property in the access

window.

From the static profiling approach described in Section 3,

we obtain quantitatively, the frequency of data accesses to

the global memory. With this extract, the configurations of

the access window (Figure 6) can be leveraged to maximize

residency control and performance for each workload.

The required configuration (Figure 6) for controlling the

data residency in the L2 cache include the following: 1.
The size of the set-aside area 2. The base data region for

persistence 3. The size of data reads to be considered for

persistence or streaming policies. 4. The hit ratio of accesses

that receive the hitprop property. 5. The hitprop property of

either streaming, normal or persistence.

The size of the L2 cache set-aside area for persisting

accesses may be adjusted within limits. NVIDIA recommends
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that the maximum limit (75% of the L2 cache memory) be

set-aside for persistence. Next is the base data region for the

persistence. From our observations of running single appli-

cations on the NVIDIA A30 architecture, the data accesses

begin from 1024 Bytes. The base pointer (ptr*) can thus be

configured to point to the first data element that is copied from

host to device using the cudaMemcpyAsync API.

The size of data reads to be considered for persistence in

the L2 cache can be controlled using both the num bytes

and the hit-ratio. Our research work focuses on determining

the size of the data reads to be considered in the access

window (num bytes) and determining the hitprop property to

be applied to each application during execution.

A. L2 Access Window Size, num bytes

When a warp executes a global memory access instruction,

the efficiency of the global memory access is determined

based on the memory addresses accessed by threads within the

warp. From the profiled information, we are able to predict

how many sectors will be accessed during the execution of

each warp. We estimate the size of the accessWindowPolicy

or num bytes based on the estimated number of sectors

(Estimated Sector Access, ESA) accessed per warp [17]. In

GPU architectures, a sector has a size of 32 Bytes (B). Thus

we compute the access window size (num bytes) required to

serve data requests per execution using Equation 2.

Num bytes = ESA× 32×Warpcnt (2)

B. Hit Property Through Access Pattern Characterization

When each thread in a warp accesses a contiguous data

region within a cache line repeatedly, the number of cache

lines required for a transaction reduces maximizing the bene-

fits of data persistence. However, Adufu et al. [16] suggest that

applying persistence to kernels with streaming data accesses

may serve as a performance bottleneck. Thus, we considered

the maximum data accesses per cache-line as well as the

coalescing co-efficient of applications to characterize them as

either streaming (S) or persistent (P) according to the caching

policy given by NVIDIA.

We define a threshold of minimum accesses per cache line,

α required for an application’s accesses to be considered as

persistent. We set the value of α to α = 16,384 (50% * 1024

threads * 32 warps) based on the maximum number of ac-

cesses possible within 1 SM on the Ampere Architecture. For

accesses greater than the defined threshold, α, we consider the

coalescing efficiency to predict whether enforcing persistence

would result in improved performance. We set a threshold

for the coalescing co-efficiency as β, 0<β<1, so that if an

application’s coalescing efficiency is higher than β = 0.5 then

the application should be configured to implement L2 cache

data persistence.

V. EXPERIMENT ENVIRONMENT

We evaluated the proposed approach by statically profiling

some application workloads from Polybench [20] benchmarks

in an environment described in Table I. We present the

grid/block dimensions of the workloads used in our evaluation

in Table II.

TABLE I
EXPERIMENTAL SET-UP

GPU Device NVIDIA A30
Device Memory 24GB
GPU memory bandwidth 933 GB/s
Cuda version 12.0
Nvidia-smi/ GPU Drivers 525.60.13
DCGM version 3.1.3
Nsight Compute version 2022.04

TABLE II
WORKLOAD GRID-BLOCK DIMENSIONS

WORKLOAD GRID X GRID Y THREAD X THREAD Y
2DConv St 128 32 32 8
BICG 256 1 16 1
GEMM 2 8 32 8
Gramschmidt 8 1 256 1
2DConv XLarge 512 32 32 1

Fig. 7. Estimated Access Window Size per application

TABLE III
ACCESS FREQUENCIES AND COALESCING EFFICIENCY PER KERNEL

WORKLOAD CE Number of
Warps

Frequent
access

Access
type

2DConv St 0.92 294912 9216 S
BICG K1 1 163840 1064960 P
BICG K2 0.53 163840 1064960 P
GEMM 1 1408 384 S
Gram 1 1 448 6144 S
Gram 2 1 128 6144 S
Gram 3 1 2176 12288 S
2DConv XLarge 0.92 1179648 18432 P

A. Observation 1: Frequency of accesses

From Table III, it was observed that the BICG kernels

(BICG K2 and BICG K2) have the highest maximum number

of accesses to the global memory, per cache-line. Applications
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with large grid, block dimensions are more likely to benefit

from the L2 cache residency controls than applications with

small grid, block dimensions since the number of accesses

increase with the number of threads concurrently accessing a

particular data region. However, from Figure 7 BICG kernels

had much lower estimated access window sizes compared to

applications like 2DConv XLarge. This meant that, though

BICG had the greatest number of accesses, these accesses were

to the same data regions within the cache-line.

B. Observation 2: Coalescing Graph of the Applications

From the coalescing graph (Figure 8) proposed by Kim

[17], we can determine if frequent accesses are to the same

data location or to different locations/sectors in the cache-line.

When all threads access the same data location for instance,

there is high coalescing and high data reuse as was in the case

of BICG K2. This however translates into smaller estimated

access window sizes.

Fig. 8. Coalescing graph for workloads

We observed also that, the degree of coalescing was the

same for 2DConvolution workloads, 2DConv Standard and

2DConv XLarge, regardless of the the data size or the

grid/block dimensions of the workload. The 2DConv Standard

has smaller grid/block dimensions and a data set of

(4096*4096) however it has the same coalescing efficiency

as 2DConv XLarge which has a bigger grid/block dimension

and data set (16384 *16384).

Applications with large dimensions have the same average

coalescing graph since the access patterns does not change

with thread block dimensions but only increases the number of

frequent accesses per data region. This is because the profiling

of access patterns depend on how threads request data from

global memory. Our observation makes it easier to estimate

the total average number of accesses per data region.

C. Observation 3: Hit Property Through Access pattern Char-
acterization

From Table III, we observed that kernels like GEMM,

Gram 1, Gram 2, Gram 3 and 2DConv Standard had less

accesses than the defined threshold of α = 16,384 thus we did

not consider their coalescing efficiencies. For accesses greater

than the defined threshold, α, we considered the coalescing

efficiency before assigning the persistence hit property. For

2DConv XLarge, BICG K1 and BICG K2 kernels, the CE

values were higher than the threshold, β = 0.5 and thus were

assigned the persistent access type, P.

D. Kernel performance using estimated access window sizes
We evaluated the performance of the 2DConv Standard and

2DConv XLarge workloads based on the estimated access

window sizes as well as the values of characterization. We

selected the 2DConv Standard and 2DConv XLarge work-

loads since they had the highest estimated access window sizes

of 36MB and 144MB respectively. For our investigation, we

adopted the recommendation of NVIDIA and set aside 75% of

the L2 cache for persistence. This translated to a maximum of

18MB of L2 cache memory set-aside for persistent accesses.

For each workload, we set the base pointer (ptr*) to the first

data element that was copied from host to device using the

cudaMemcpyAsync API and we set our hit-ratio to 1.0.
Applications with large dimensions have more threads and

are thus more prone to data contention and warp stalls [16].

Thus using the Nsight Compute profiler [21], we validated our

analysis by observing the warp stalls and L1 load throughput

for the two workloads obtained for executions with and

without the L2 cache configured. We configured the L2 caches

based on the num byte configurations represented in Figure 7.

Fig. 9. Warp Stall State of Workloads

We observed that the stall long scoreboard remained rela-

tively the same for the applications for both run-time scenarios

revealing an accurate estimation of the L2 cache access

window size. The slight improvements seen from 21.16 cycles

for Stall no residency control to 21.12 cycles for Stall with

L2 residency control during the execution of 2DConv Large

shows that for workloads with more frequent accesses, L2

helps reduce the warp stalls.
We also considered the L1 cache load throughput of three

workloads to observe if there were improvements in the
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load throughput. With our proposed approach, L1 cache

load throughput increased by 2.75% for GEMM, 0.33% for

2DConv St and 0.46% for 2DConv Large respectively. This

was as a result of increased data availability in the L2 cache

during loads to the L1 cache.

VI. RELATED WORKS

Recent research works have focused on maximizing cache

management. Duong et al. [22] simulate the use of reuse

distance-based bypass policy with warp throttling to protect

hot cache lines from early eviction. Fang et. al [23] deploy

FIFO buffers to reorder memory requests and as a result

shorten the reuse distance of memory requests before they are

sent to L1 caches. However, these works focus on maximising

the L1 cache and not the L2 cache.

Static profiling analysis based on PTX code [8] [13] [17]

has been used to expose data reusability between thread blocks

as well as the data locality that exists between mutual thread

blocks. However, this does not reflect the global memory

access frequencies nor the size of data expected to be fetched

into the L2 cache memory.

Walden et al [6] make use of the new L2 residency control

feature as a memory optimization technique for a sparse linear

algebra kernel. Even though from their experiments, the use of

L2 persistence and asynchronous memory copies improve the

overall performance by 81.2%, they mentioned that they were

unable to explore the impact of the configured L2 set-aside

area on performance.

CONCLUSION AND FUTURE WORK

This paper analyzed L2 cache access patterns for selected

workloads using static profiling of PTX code. Through a trace

of syntax trees built for each workload, we determined the

degree of coalescing for threads within a warp, the frequency

of data access, and estimated the size of data region that

would be considered for L2 residency controls as the access

window. Additionally, we classified the workloads based on

the frequency of accesses and the degree of coalescing.

We validated our approach by comparing the configurations

from our approach for two workloads with different number

of frequent accesses. Our proposed approach did not result

in any further warp stalls like those observed by Adufu et.

al [16]. With our proposed approach, we also observed L1

cache load throughput increases by 2.75% for GEMM, 0.33%

for 2DConv St and 0.46% for 2DConv Large respectively as

data is more resident in cache.

In the future, we intend to explore the use of static profiling

to determine the L2 cache persistence size during scheduling

of different workloads.
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