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Recent research andproduction environments are deployingmore container technologies for the execution ofHPCapplications and
for reproducing scientific workflows or computing environments. Research works, however, have not accounted for performance
interference when executing corunning applications in containers though the absence of an efficient performance isolation layer
cannot guarantee the absence of performance interference among multiple corunning applications which share resources. In this
research, we propose an interference-aware scheduling method that mitigates the problem of performance interference based on
applications’ I/O and CPU usage profiles. The proposed method estimates the amount of interference between various pairs of
applications and coschedules thembased on estimated interference.We evaluate the proposedmethod for both Bag-of-Tasks (BOT)
scientific applications and scientific workflows and compare our method to theWeightedMeanMethod. Ourmethod improves the
performance of the target scientific application by coscheduling applications with the least estimated interference ratios.

1. Introduction

Due to their almost zero start-up times, minimal run-
time overhead, lightweight feature, and the relatively higher
deployment density per physical host [1–3], Linux con-
tainers are being deployed as efficient virtual technology
solutions in research and production environments and in
the cloud [4, 5]. Scientific researchers, in particular, are
deploying containers to reproduce scientific workflows [6]
and benchmark VirtualMachines [7] and provide distributed
storage [8]. Efficient resource allocation to the containers in
a manner that guarantees high performance is thus of utmost
importance. Correspondingly, performance evaluations of
containers by Xavier et al. [9, 10] establish the need for
an efficient isolation layer to facilitate resource sharing in
HPC environments. From their experiments Xen had better
isolation than containers due to nonsharedOperating System
(OS) indicating potential performance interference when
corunning applications in container-based virtualization sys-
tems.

Also, existing Container Cluster Managers (CCM) [11–
13] allocate physical resources to containers in a manner that

maximizes the deployment density per node [3] without
considering the cost to performance. Ideally, there should
be no interference in performance of corunning containers;
however, due to contention for shared physical resources, the
performance of a given application varies with the coexecuted
applications on the same physical resource. Particularly, as
some applications alternate between computation and I/O
phases, performance interference is most apparent when
corunning applications involve multiple I/O operations. Esti-
mating the interference introduced by different applications
concurrently running on a given node and scheduling appli-
cations accordingly has become a necessity when aiming to
maximize the performance of applications. Research works
so far have focused on the performance interference of
data-intensive and I/O intensive applications in traditional
hypervisor-based virtualization (HPV) environments; how-
ever, to the best of our knowledge, this research is the first
to propose an interference-aware scheduling scheme for OS-
level virtualization technologies.

The proposed method employs a two-phase schedul-
ing strategy to mitigate interference in OS-level virtual-
ized environments. Our proposed scheduler schedules BOT
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scientific applications and scientificworkflows applications to
resources based on the similarities in the CPU usage and I/O
usage profiles tominimize the interference from coscheduled
applications. In the first phase, it uses information on the
CPU and I/O usage of applications to first estimate the
interference between the different applications and then
coschedules each application with another application of
least interference. In the second phase, the applications
are matched to container resources using different resource
allocation strategies which would further mitigate inter-
ference. The proposed method makes the following novel
contributions:

(i) It establishes the existence of performance interfer-
ence during the execution of corunning scientific
applications.

(ii) It introduces a two-phase interference-aware sched-
uler in OS-level virtualization environments to miti-
gate interference during the execution of applications
in containers.

(iii) It estimates interference among applications based on
computations using Euclidean distances.

(iv) It coschedules applications in a manner that mini-
mizes contention for samephysical host resources and
hence minimizes interference.

The rest of this paper is organized as follows: Section 2
presents the related work and Section 3 describes our
interference-aware scheduler. In Section 4, we explain our
experiment environments and evaluate the results. We finally
conclude this paper in Section 5.

2. Related Works

Interference-aware scheduling in virtualized environments is
still a novel research area. Existingmethods have investigated
interference of Virtual Machines (VMs); however, there is
little research on interference in OS-level technologies like
Linux containers which are currently being deployed inmany
production environments.

In their investigations on resource and security isolation
in container technologies through benchmark experiments,
Soltesz et al. [14] demonstrate that container-based systems
are twice more suitable for server-type workloads. This
finding coupled with the findings of Xavier et al. [9, 10] estab-
lish the premise that, for HPC scientific environments, the
absence of performance interference cannot be guaranteed.

In hypervisor-based environments, interference-aware
schedulers such as DejaVu [15] use an “interference index”
to estimate interference between workloads. However, deter-
mining the interference index requires profiling of low-
level metrics of workloads over many hours which is time-
consuming. Also, workload clustering analysis is only used
to determine which sets of applications require interference-
aware scheduling without estimating the interference intro-
duced by coscheduled applications.

TRACON [16] also predicts interference in paravirtu-
alized environments based on the I/O usage of the guest
and native driver domains. Interference prediction based on

three models, Weighted Mean Method (WMM), the Linear
Model (LM), and the Nonlinear Model (NLM) is applied and
the application runtime and I/O throughput of the various
applications are compared, respectively. With the results of
their prediction, incoming tasks are coscheduled to resources
with applications of least interference. However, this method
was applied to only Virtual Machines (VMs). The proposed
method employs a two-phase interference-aware schedul-
ing method which first estimates the interference between
applications using clustering analysis and then schedules the
applications to suitableOS-level virtual resources in amanner
that minimizes contention and hence mitigates interference.

The native Container ClusteringManager for the recently
widely adopted Docker containers [17], Docker Swarm
[11], employs a manager-agent deployment structure which
includes a host that runs a Swarm manager and other hosts
which run a Swarm agent each for the management of
container clusters. The Swarm manager orchestrates and
schedules containers on the hosts according to three (3)
scheduling policies: bin-packing, spread, and random [18].
The proposed method adds interference awareness to the
existing container placement strategies of Docker Swarm.

3. Interference-Aware Scheduling Based on
Clustering Analysis

According to research [16, 19, 20], we consider interference
as the change in the relative total execution time of an
application due to the execution of concurrently running
applications. We propose a two-phase interference-aware
scheduling algorithmbased on application clustering analysis
in this section.

In the first phase of the proposed interference-aware
scheduler, applications are coscheduled for execution accord-
ing to the result of application clustering analysis using the
𝐾-means algorithm. After clustering the applications, the
coscheduled applications are then scheduled to the suitable
resources by a resource scheduler in the second phase of
the proposed scheduling procedure. The interference-aware
scheduling shows a scheduling procedure for multiple appli-
cations waiting to be scheduled unto container resources in a
manner that mitigates interference.

First, using profile data of peak CPU and I/O usage, appli-
cations are clustered into specified number of clusters using
the𝐾-means algorithm [21].Then, the interference between a
selected application known as the target application and other
applications in the clusters is computed according to an inter-
ference ratio. The application with the least interference is
then coscheduled with the selected application and executed
according to the container placement strategy indicated by
the user. Each application is executed in a different container
in all our experiments. The key notations used in this paper
are listed in Notations.

3.1. Algorithm 1: Interference-Aware Scheduler. Algorithm 1
starts when a new application joins the queue with profile
information on CPU utilization and I/O usage (Line (1)).
The scheduler then uses the 𝐾-means clustering algorithm
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Input: A QueueQ = {𝑥1, 𝑥2, . . . , 𝑥𝑛}
(1) New application arrives;
(2) while (Q =! 0) do
(3) Cluster(𝑖)(𝑥ℎ, 𝑐𝑖)← Invoke 𝐾-means algorithm;
(4) 𝑥𝑗 ← Select𝑋𝑗(𝑥ℎ, 𝑐𝑖);
(5) dist(𝑥𝑗, 𝑐𝑗)← CalcDist(𝑥𝑗, 𝑐𝑗);
(6) for each 𝑥ℎ in Cluster(𝑖)(𝑥ℎ, 𝑐𝑖) do
(7) dist(𝑥ℎ, 𝑐𝑗)← CalcDist(𝑥ℎ, 𝑐𝑗);
(8) 𝑟𝑗ℎ ← Calc𝑅(dist(𝑥𝑗, 𝑐𝑗), dist(𝑥ℎ, 𝑐𝑗));
(9) end for
(10) end while
(11) 𝑥ℎ ← SelectMin(𝑟𝑗ℎ);
(12) if 𝑟𝑗ℎ ≤ 𝛼 then
(13) Perform resource selection;
(14) end if
(15) Perform resource selection;
Output: Co-execute 𝑥𝑗, 𝑥ℎ

Algorithm 1: Interference-aware scheduling algorithm.

to group the applications into 𝐾 clusters. The 𝐾-means algo-
rithm partitions data into multiple sets with each containing
a unique center or centroid. For a queue containing a set
of applications, Q = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, with initial centroids
given as 𝐶 = {𝑐𝑖 | 𝑖 = 1, 2, . . . , 𝑘}, the algorithm calcu-
lates the distance between each data point and cluster cen-
troids.

Next, the scheduler randomly selects an application
from any of the 𝐾 clusters (Line (4)) known as the target
application and calculates the interference ratio between
that application and other applications in different clusters
(Lines (5)–(9)). The scheduler then selects the application
with which the target application has the least interference
according to the calculated interference ratio (Lines (11)) and
compares the interference ratio to a preset threshold value,
𝛼. If the ratio is less than the threshold value, the scheduler
then invokes the resource selectionmethod to select a suitable
node from the cluster (Lines (13)-(14)).

The method returns nodes for the execution of each
pair of applications into containers according to their
resource demands. Then the applications are coscheduled
to containers on the node accordingly. Otherwise, the sys-
tem considers other placement strategies of Docker Swarm
according to the clustering policies selected on the available
nodes.

3.2. Interference Detection and Interference Ratio, 𝑟𝑗ℎ. The
proposed approach clusters all the applications in the queue
into 𝐾 clusters using profile data on their peak CPU and
I/O usage. To calculate the interference ratio between the
randomly selected application and other applications in
other clusters, our approach computes a two-dimensional
Euclidean distance between the selected application 𝑥ℎ(𝑎, 𝑏)
and the centroid of its cluster 𝐶𝑖(𝑐, 𝑑) and that of other
applications 𝑥𝑗(𝑎, 𝑏) and the centroid of the target application
𝐶𝑖(𝑐, 𝑑) according to (1). With the result, an interference ratio
is calculated according to equation (2) and the results are used

to select container resources for the execution of coscheduled
applications.

CalcDist (𝑥ℎ, 𝐶𝑖) = √(𝑎 − 𝑐)2 − (𝑏 − 𝑑)2, (1)

Calc𝑅 = dist (𝑥ℎ, 𝐶𝑖)
dist (𝑥𝑗, 𝐶𝑖)

. (2)

3.3. Algorithm 2: Resource Selection Method. Interference-
aware scheduling methods for scientific applications aim
at minimizing the performance overheads introduced by
coscheduling applications on a particular physical resource.
It is therefore important that, in a container cluster, the
resource that minimizes the likelihood of interference is
selected. At the second phase of the proposed schedul-
ing method, we adopt the placement strategies of Docker
Swarm to schedule container resources to applications. The
Swarm manager orchestrates and schedules containers on
the hosts according to three (3) scheduling policies: bin-
packing, spread, and random [18]. The bin-packing strategy
chooses physical resources based on the highest number
of containers running on that resource whilst the random
scheduling strategy does not consider the number of running
containers. The spread strategy, on the other hand, schedules
applications to physical resources with the least number of
containers running on them. We adopt the spread strategy
as our default strategy with the assumption that the number
of containers reflects the amount of resource contention for
resources in the system.

When the resource selection method is called, the
resource scheduler looks for available nodes and considers
the container placement strategy indicated by the user.When
the default strategy indicated is the spread strategy as used
in our experiments, the node with the least number of
containers is returned (Lines (4)-(5)). On the other hand,
when the bin-packing strategy is used, the available node
with the highest number of containers is returned (Lines
(8)-(9)). With the random strategy, any available node is
returned (Lines (11)-(12)). The method returns the results of
executing the applications in the containers to the scheduling
algorithm.

4. Experiments

Scientific applications are classified into Bag-of-Tasks (BOT)
and scientific workflows [22] represented as Direct Acyclic
Graphs (DAG). In this section, we describe the experiment
environments and establish performance interference when
corunning BOT applications and scientific workflows in
OS-level virtualized environments. We then compare the
proposed method to the Weighted Mean Method for BOT
scientific applications.We also experiment which of the three
(3) container placement strategies of Docker Swarm best
mitigates performance interference for both BOT scientific
applications and scientific workflows.

4.1. Experiment Environments. We use Docker containers,
a lightweight virtualization solution for fast creation and
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Input: NodeList N = {(𝑛𝑖) | 𝑖 = 0, 1, . . . , 𝑚}, Co-scheduled applications [𝑥ℎ(min𝐶, min𝑅)],
[𝑥𝑗(min𝐶, min𝑅)]
(1) Set resource available == true;
(2) Set default == spread;
(3) if resource available == true then
(4) Node, 𝑛𝑖 ← FindNode(mincont);
(5) contℎ ← Create[𝑥ℎ(min𝐶, min𝑅)];
(6) else
(7) if default == binpack then
(8) Node, 𝑛𝑖 ← FindNode(maxcont);
(9) contℎ ← Create[𝑥ℎ(min𝐶, min𝑅)];
(10) else
(11) Node, 𝑛𝑖 ← FindNode(rancont);
(12) contℎ ← Create[𝑥ℎ(min𝐶, min𝑅)];
(13) end if
(14) end if
(15) Results← Execute(𝑥ℎ);
Output: Execution Results

Algorithm 2: Resource selection method.

Table 1: Profiles of applications characteristics.

Application I/O Read (KB) I/OWrite (KB) CPU usage%
Update-Heavy 2,600 55 97.4
Read-Only 1,890 1 82.2
Read-Modify-Update 1,150 10 40.6
Melt 3500 44 18 100

execution of applications independent of a hypervisor layer.
To manage the scheduling of Docker containers, we deploy
Docker Swarm. Our experiment environment consists of two
nodes on the same local network with one node serving as
both the Docker Swarm Manager node and an execution
node and the other node serving as an execution node only.

The nodes in our system have a total RAM of 8GB and
12 CPU cores for the manager node and total RAM of 8GB
and 4 CPU cores for the other execution node, respectively.
Each of the server machines are operated by Trusty Tahr
Operating System. To validate the accuracy of our results,
we deploy Ubuntu 14.04-based container images which have
been preinstalled with the scientific applications used for the
experiments.

4.2. Performance Interference in Bag-of-Tasks (BOT) Scientific
Applications. We first validate the postulation that there
is performance interference in containers when corunning
BOT scientific applications using an illustrative experiment.
For this experiment, we consider scientific applications with
four different workloads. Three (3) of the workloads are
variations of YCSB applications, each with a different I/O
and CPU usage profile, whilst the other application is Melt,
a variation of LAMMPS [23]. The workloads and their I/O
characteristics are briefly described as follows.

Yahoo Cloud System Benchmark (YCSB) [24], a basic
benchmark for cloud systems, includes a set of six (6)
core workloads that define the running of data-intensive
applications in virtual environments. These benchmarks

represent applications with varying I/O intensities and I/O
access patterns. For these experiments, we deploy three (3)
of the workloads, the Update-Heavy, Read-Only, and Read-
Modify-Write workloads, due to their various I/O intensities
and I/O access patterns. The I/O access pattern of Update-
Heavy Workload and Read-Only Workloads take the form
of random reads whilst the Read-Modify-Write workloads
access I/O sequentially as the application reads the database.

Melt, a variation of a molecular dynamics code known as
Large-scale Atomic Molecular Massively Parallel Simulator
(LAMMPS) [23], is used for simulating different types of
particle behaviors. Melt simulates the rapid melting of a 3d LJ
system and accesses I/O resources in a bursty manner with
maximum I/O reads taking place at the beginning and end of
the executions.

Using Glances profiling tool [25], we obtain data of
the I/O and CPU usage by each of the above scientific
applications when run alone as shown in Table 1. For each
characteristic, the data represented is based on the peak value
obtained for each application during their execution life-
cycle. We evaluate only two characteristics, CPU and I/O, per
application and perform clustering analysis based on them.

In the experiment, we select the Update-Heavy workload
as our target application and assume that only two con-
tainers can run on the same node simultaneously. Thus in
this experiment scenario, we coexecute the Update-Heavy
workload with Read-Only workload, YCSB Read-Modify-
Update workload, Melt (3500), and another YCSB Update-
Heavy workloads, respectively, under the same conditions.
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Table 2: Application clusters and their interference ratios.

Cluster Application I WMM
Cluster 0 Update-Heavy 1.00000 0.00023
Cluster 0 Read-Only 0.00052 0.43790
Cluster 1 Read-Modify-Update 0.00267 0.85731
Cluster 1 Melt 0.00015 1.48595

Interference, secs
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Figure 1: YCSB Update-Heavy workload with other applications.

We present the results of the change in execution times
of the Update-Heavy workload when corun with other
workloads as well as the change in throughput in Figure 1.

Figure 1 shows the changes in execution time of Update-
Heavy workload from Cluster 1, when coexecuted with
different applications. The execution time of YCSB Update-
Heavy in each run is compared to the execution time of
Update-Heavy when executed alone in a container on the
physical node. In this experiment, the change in the execution
time is reflective of the amount of performance interference
due to coscheduling with other applications.

From the results, YCSB Update-Heavy workload with
Read-Only update workload relatively experiences the most
interference of about 293 seconds when coexecuted whilst
YCSB Update-Heavy workload experiences the least inter-
ference of 34 seconds when coexecuted with Melt applica-
tion. We attribute these variations in the execution times
to contention for same I/O resources. Particularly, YCSB
Read-Only workloads take a longer time to process data
requests and retrieve the required data from the database,
thus increasing the time spent on I/O operations. In effect, the
YCSBUpdate-Heavyworkload spendsmore time contending
for I/O resources shared with YCSB Read-Only workloads.
Consequently, the throughput forYCSBUpdate-Heavywork-
load when coexecuted with Read-Only workloads is the least
due to relatively longer execution time. This validates our

hypothesis that there is performance interference among con-
tainers on the same physical resource. The results also show
that it is imperative to estimate the performance interference
between colocated applications during the coscheduling of
applications.

4.3. Comparing the Proposed Method and the Weighted Mean
Method (WMM). We evaluate the relationship between the
proposed interference ratio and the execution times of
some Bag-of-Tasks applications and compare our results
with results obtained from scheduling using Weighted Mean
Method and a noninterference-aware method based on the
bin-packing scheduling method of Docker Swarm.

WeightedMeanMethod [16] also uses Euclidean distances
to determine weights of each application according to the
Principal Component Analysis (PCA). Some research works
[16, 26] use the similarity between workload characteristic
vectors of applications and account for noise, redundancy,
and similarity in applications characteristics by using the
principal components of a vector. It then uses the reciprocal
of their distances as the weights to get the predicted response.

In Table 2, we present the details of the estimated inter-
ference calculated using both the proposed method and
the Weighted Mean Method. Both estimations are based on
the CPU usage and I/O of four (4) workloads of scientific
applications when executed with different parameters. We
choose Update-Heavy workload as our target application and
conduct the ensuing experiments with it. The table contains
the interference ratio of all the applications in the queue
waiting to be scheduled to resources in the system. From the
results, applications in Cluster 0 have the highest amount of
interference with Update-Heavy workload.

In this experiment, we submit 1 Update-Heavy workload,
1 Melt application, and 1 Read-Only workload and coexe-
cute them in three runs using three scheduling strategies:
the proposed interference-aware method, Weighted Mean
Method, and no-interference scheduling methods. The no-
interference method, which does not account for interfer-
ence, is based on Docker Swarm’s bin-packing strategy and
chooses resources based on the highest number of containers
running on that resource.

In each run, the proposed method schedules both
Update-Heavy workload andMelt on the same node because
Melt has the least interference of 0.00015 compared to
0.00052 when scheduled with Read-Only workload. The
Weighted Mean Method however schedules both Update-
Heavy workload and Read-Only workload on the same node
because Read-Only workload has the least interference of
0.43790 compared to 1.48595 when scheduled with Melt. The
no-interference scheduling method which does not consider
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Figure 2: YCSB Update-Heavy with different scheduling strategies.

interference ratio between applications also coruns Update-
Heavy workload with Read-Only workload which has a
relatively higher interference ratio of 0.00052 according to
our proposed method.

Figure 2 describes the scheduling result showing execu-
tion times of YCSB Update-Heavy workload when coex-
ecuted with other applications using different scheduling
strategies. For each scheduling method, we obtain the exe-
cution time of the workflow, YCSB Update-Heavy workload,
and compare the results. From the results, the execution time
of our proposed method is least at 732.89 seconds. However,
the execution time of the no-interference and WMM is
same at 1003.45 seconds since they coexecute the same
applications.

The WMM model predicts interference by calculating
the Euclidean distances between the data points in the
clustering space and chooses three nearest data points whose
reciprocal is used as the weights to get the predicted response.
This does not guarantee an accurate prediction when the
applications to be scheduled have highly variable differences
in I/O intensities.The proposedmethod, however, guarantees
a more accurate relationship between the prediction and
the actual performance interference of applications because
it predicts interference based on the distances between
the target application and the application considered for
coexecution.

4.4. Interference-Aware Scheduling for Dynamic Workloads.
In the previous scenarios, the proposed method is able to
improve the execution time for which the Update-Heavy
workload application is executed for static workloads. In
other words, all the applications were present in the queue
at the time of the scheduling. In this section, however, we
examine the scheduling of a dynamic workload since in
real scenarios, tasks arrive dynamically. Thus, a simulation
experiment using CloudSim [27], which considers the arrival
of different tasks every 15 seconds, is conducted in this section
to show the improvement in throughput for both Heavy I/O
tasks and light I/O tasks by the proposed interference-aware
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Figure 3: Throughput for tasks using interference awareness.

method. We modify cloudlets to have Heavy I/O tasks and
light I/O tasks according to their use of resources.

We begin the executionwith 50000 tasks and increasingly
submit tasks at an interval of 15 seconds. We increase the
job size from 50000 tasks to 100000 tasks, 150000 tasks,
and 200000 tasks for both types of tasks. As soon as the
jobs arrive, interference is calculated and the applications
are rescheduled according to the interference-aware method.
This translates to an increased number of tasks being exe-
cuted within a given period of time since tasks are scheduled
in a manner that reduces interference.

Accordingly, the throughput of all the applications in the
system is relatively higher than for jobs which are scheduled
with the no-interference-aware method:

Throughput, 𝑇 = Number of applications
Execution time

. (3)

The threshold for the interference-aware method is ran-
domly set at 0.2 and throughput 𝑇 is calculated according to
(3) as the number of tasks completed during an execution, per
the time of execution. As jobs with different characteristics
are executed, their throughput and the number of jobs
executed are compared using the proposed method and the
no-interference scheduling method.

From the results in Figure 3, the execution of tasks using
both the proposed method and a no-interference method
decreases in throughput for increasing number of applica-
tions due to increasing time taken to execute the applications
as a result of interference and an increasing number of
tasks which were not scheduled for execution due to the set
interference ratio. However the throughput of the proposed
method is slightly higher due to the reduced time taken for
execution as a result of I/O interference mitigation. Also,
Heavy I/O tasks for both scheduling methods have a lower
throughput since most of the execution time of these tasks
are spent performing I/O operations instead of computations.
This adds to the fact that including interference awareness in
scheduling decisions helps improve the throughput and the
performance of applications.
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Table 3: Applications’ profiles, clusters, and their interference ratios.

Cluster Application Memory usage (MB) CPU usage% Interference ratio, 𝑟
Cluster 0 CFD 512KB 403,230,720 206.7 0.000432
Cluster 1 Melt 500 23,183,360 100 0.0194
Cluster 1 Melt 1000 23,314,432 100 0.0191
Cluster 1 Melt 1500 23,445,504 100 0.01886
Cluster 1 Melt 2000 23,576,576 100 0.01858
Cluster 1 Melt 2500 23,707,648 100 0.01831
Cluster 1 Melt 3000 23,838,720 100 0.0186
Cluster 1 Melt 3500 23,969,792 100 0.01781
Cluster 1 Peptide 500 32,460,800 100 0.0093
Cluster 1 Peptide 1000 33,382,400 99.99 0.0089
Cluster 1 Peptide 1500 34,213,888 99.99 0.0085
Cluster 1 Peptide 2000 35,606,528 100 0.00797
Cluster 1 Peptide 2500 36,810,752 100 0.00754
Cluster 1 Peptide 3000 37,613,568 100 0.00727
Cluster 1 Peptide 3500 38,817,792 100 0.00691
Cluster 2 GALFA 5 14,708,736 132.9 1
Cluster 2 GALFA 10 14,716,928 126.2 0.9535
Cluster 2 GALFA 15 14,745,600 121.01 0.8199
Cluster 2 GALFA 20 14,766,080 119.5 0.745
Cluster 2 GALFA 25 14,782,464 117.9 0.6949
Cluster 2 CFD 2KB 13,967,360 201.4 0.2928
Cluster 2 CFD 32KB 14,098,432 205.2 0.3796

4.5. Performance Interference for Scientific Workflow Appli-
cations. We also validate interference awareness for coexe-
cuting scientific workflows using similarities between CPU
and memory usage profiles. For this experiment, we select 1
scientific workflow,Montage GALFA [28], and three (3) BOT
applications, CFD [29], Melt, and Peptide [23]. We cluster
these applications into three clusters based on the CPU and
memory usage profiles when the applications are coexecuted
with Montage GALFA as shown in Table 3.

Montage GALFA, a data-intensive workflow application,
is anAstronomical ImageMosaic Engine for creatingmosaics
using multiple astronomical images. In this paper, the Mon-
tage GALFA application shrinks five (5) data cubes by
averaging different number of planes (5, 10, 15, 20, 25) and
then aggregates them into amosaic [30] following threemajor
steps.

The second target application is an aerodynamic variation
of a Computational Fluid Dynamics (CFD) simulation appli-
cation used for 2-dimensional Euler unsteady flow analysis.
In this experiment, we deploy different meshes with sizes
2 KB, 32 KB, and 512 KB, respectively.

The third and fourth target applications,Melt and Peptide,
are variations of LAMMPS. Whilst Melt simulates the rapid
melting of a 3d LJ system, Peptide simulates the granular par-
ticle pour and flow of both 2D and 3D systems. We iteratively
run coscheduled applications which have shorter execution
times such as Melt and Peptide applications throughout the
experiments to maintain fairness.

Table 3 describes the result of performing clustering
analysis for the applications using the proposed approach.

From the analysis, the applications are grouped into 3
clusters. Cluster 1 has the highest number of applications
(15) whilst Cluster 2 has 7 applications and Cluster 0 has
only 1 application, respectively. We choose Montage GALFA
(5) as our target application from Cluster 2 and conduct
the ensuing experiments with it. The table also contains
the interference ratio of all the applications in the queue
waiting to be scheduled to resources in the system. From the
results, applications in Cluster 2 have the highest amount of
estimated interference withMontageGALFA (5 planes) using
the proposed method.

Figure 4 shows the changes in execution time of GALFA
workflow application, in Cluster 2, when coexecuted with
applications from different clusters, 𝐶0, 𝐶1, and 𝐶2, respec-
tively. The interference ratio of the applications relative to 𝐶2
is 0.00043, 0.01781, and 1, for𝐶0,𝐶1, and𝐶2, respectively.The
execution time of𝐶2 in each run is compared to the execution
time of𝐶2 when executed alone in a container on the physical
node. In this experiment, the difference in the execution time
is considered as the amount of performance interference due
to coscheduling with another application.

From the results, 𝐶2 experiences the most interference
of about 63 seconds when executed with a similar appli-
cation from the same cluster whilst 𝐶2 experiences the
least interference of 4 seconds when coexecuted with 𝐶0.
This also validates our hypothesis that there is performance
interference among containers on the same physical resource
and proves that our proposed interference ratio accurately
predicts the interference among applications from differ-
ent clusters. The results also show that it is imperative to
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Figure 4: Montage GALFA (5 planes) with other applications.

clearly understand the performance relationship between
colocated applications during the coscheduling of applica-
tions.

4.6. Performance Interference for Montage GALFA Using
Different Scheduling Strategies. In this experiment, we submit
1 Montage GALFA (5 planes) workflow, Melt (3500) applica-
tion, and 1 Peptide (3000) application and coexecute them
in three runs using three scheduling strategies: bin-packing,
random, and the proposed interference-aware scheduler.The
bin-packing strategy chooses resources based on the highest
number of containers running on that resource and so
schedules all the applications on the same node. The random
scheduler and the proposed method, however, schedule both
Montage GALFA (5 planes) and Peptide (3000) on the same
node. The proposed method considers the interference ratio
between the applications in making the scheduling decision
and chooses Peptide (3000) which has a ratio of 0.00728
relative to 0.0181 of Melt (3500) applications. Due to the
differences in execution times of both applications, Melt
(3500) and Peptide (3000) applications are run iteratively in
20 runs to cover the span of time for which Montage GALFA
(5 planes) is executed.

Figure 5 describes the scheduling result of our
interference-aware scheduling algorithm, as shown in
Section 3. For each scheduling method, we obtain the
execution time of the workflow, Montage GALFA (5 planes),
and compare the results. From the results, the execution time
of our proposed interference-aware method and the random
method is the least at 2117 seconds whilst that of bin-packing
strategy is the highest at 2177 seconds. This is because
the bin-packing strategy schedules all the applications on
the same node without considering the contention for
shared resources. Also from Figure 5, our method is able
to improve the throughput of Montage GALFA application
by 4.58% relative to the throughput when executed alone.
This also shows that our method is able to mitigate interfer-
ence.

Execution time, secs
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Figure 5: Montage GALFA (5 planes) with different scheduling
strategies.

5. Conclusions

In this paper, we propose an interference-aware scheduling
method for both BOT and scientific workflows in different
experiments. For BOT applications, the proposed method is
compared with the Weighted Mean Method and evaluated
for dynamic workloads whilst for scientific workflows the
methods efficiency is evaluated for three different container
placement strategies. From each of our experiments, we
establish the fact that there is performance interference
among applications when coexecuted using containers on
the same node. Our proposed method however reduces the
amount of interference when compared with other methods.

In the future we further investigate different interference
prediction approaches for applications run in OS-level virtu-
alized environments.

Notations

Q: A queue with a set of applications waiting
to be scheduled

𝑥ℎ: An application in a queueQ with profile
data on resource usage and an
application in Cluster(𝑖)

Cluster(𝑖)(𝑥ℎ, 𝑐𝑖): An 𝑖th Cluster containing 𝑥ℎ data points
and centroid 𝑐𝑖

𝑥𝑗: Another data point in Cluster(𝑖) selected
for coexecution with 𝑥ℎ

𝑐𝑖: The centroid of Cluster(𝑖)
𝑟𝑗ℎ: The interference ratio between 𝑥𝑗 and 𝑥ℎ
Select𝑋𝑗(𝑥ℎ, 𝑐𝑖): Randomly selecting an application from

a cluster
CalcDist(𝑥, 𝑐): Calculating the distance between data

point and centroid
CalcR(𝑥, 𝑐): Calculating interference between two

points
SelectMin(𝑟𝑗ℎ): Selecting the application with the least

interference ratio
𝛼: A threshold value for interference
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default: Container placement strategy indicated
by the user

N: A list of nodes in the node cluster
𝑛𝑖: An 𝑖th node from the list of nodes in the

node cluster
contℎ: An ℎth container on node(𝑖)
FindNode(): Returns available node according to the

parameter indicated
mincont: Node with minimum number of

containers
maxcont: Node with maximum number of

containers
rancont: Randomly selected available node.
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