
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/337141423

Overcoming GPU Memory Capacity Limitations in Hybrid MPI Implementations

of CFD

Chapter · November 2019

DOI: 10.1007/978-3-030-34914-1_10

CITATION

1
READS

53

3 authors, including:

Some of the authors of this publication are also working on these related projects:

http://dslab.sookmyung.ac.kr/index.php?mid=international View project

Jake Choi

Seoul National University

2 PUBLICATIONS   1 CITATION   

SEE PROFILE

Yoonhee Kim

Sookmyung Women's University

110 PUBLICATIONS   406 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Jake Choi on 07 September 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/337141423_Overcoming_GPU_Memory_Capacity_Limitations_in_Hybrid_MPI_Implementations_of_CFD?enrichId=rgreq-da95c0d2e258823ca92ee7a2c96285e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE0MTQyMztBUzo5MzMxMTI1NTcwODA1NzdAMTU5OTQ4Mjc3ODg3OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/337141423_Overcoming_GPU_Memory_Capacity_Limitations_in_Hybrid_MPI_Implementations_of_CFD?enrichId=rgreq-da95c0d2e258823ca92ee7a2c96285e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE0MTQyMztBUzo5MzMxMTI1NTcwODA1NzdAMTU5OTQ4Mjc3ODg3OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/http-dslabsookmyungackr-indexphpmidinternational?enrichId=rgreq-da95c0d2e258823ca92ee7a2c96285e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE0MTQyMztBUzo5MzMxMTI1NTcwODA1NzdAMTU5OTQ4Mjc3ODg3OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-da95c0d2e258823ca92ee7a2c96285e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE0MTQyMztBUzo5MzMxMTI1NTcwODA1NzdAMTU5OTQ4Mjc3ODg3OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jake_Choi5?enrichId=rgreq-da95c0d2e258823ca92ee7a2c96285e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE0MTQyMztBUzo5MzMxMTI1NTcwODA1NzdAMTU5OTQ4Mjc3ODg3OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jake_Choi5?enrichId=rgreq-da95c0d2e258823ca92ee7a2c96285e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE0MTQyMztBUzo5MzMxMTI1NTcwODA1NzdAMTU5OTQ4Mjc3ODg3OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Seoul-National-University?enrichId=rgreq-da95c0d2e258823ca92ee7a2c96285e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE0MTQyMztBUzo5MzMxMTI1NTcwODA1NzdAMTU5OTQ4Mjc3ODg3OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jake_Choi5?enrichId=rgreq-da95c0d2e258823ca92ee7a2c96285e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE0MTQyMztBUzo5MzMxMTI1NTcwODA1NzdAMTU5OTQ4Mjc3ODg3OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yoonhee_Kim2?enrichId=rgreq-da95c0d2e258823ca92ee7a2c96285e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE0MTQyMztBUzo5MzMxMTI1NTcwODA1NzdAMTU5OTQ4Mjc3ODg3OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yoonhee_Kim2?enrichId=rgreq-da95c0d2e258823ca92ee7a2c96285e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE0MTQyMztBUzo5MzMxMTI1NTcwODA1NzdAMTU5OTQ4Mjc3ODg3OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sookmyung_Womens_University?enrichId=rgreq-da95c0d2e258823ca92ee7a2c96285e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE0MTQyMztBUzo5MzMxMTI1NTcwODA1NzdAMTU5OTQ4Mjc3ODg3OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yoonhee_Kim2?enrichId=rgreq-da95c0d2e258823ca92ee7a2c96285e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE0MTQyMztBUzo5MzMxMTI1NTcwODA1NzdAMTU5OTQ4Mjc3ODg3OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jake_Choi5?enrichId=rgreq-da95c0d2e258823ca92ee7a2c96285e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE0MTQyMztBUzo5MzMxMTI1NTcwODA1NzdAMTU5OTQ4Mjc3ODg3OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Overcoming GPU Memory Capacity Limitations
in Hybrid MPI Implementations of CFD?

Jake Choi1, Yoonhee Kim2, and Heon-young Yeom1

1 Department of Computer Science, Seoul National University
2 Department of Computer Science, Sookmyung Women’s University

Abstract. In this paper, we describe a hybrid MPI implementation of a
discontinuous Galerkin scheme in Computational Fluid Dynamics which
can utilize all the available processing units (CPU cores or GPU devices)
on each computational node. We describe the optimization techniques
used in our GPU implementation making it up to 74.88x faster than the
single core CPU implementation in our machine environment. We also
perform experiments on work partitioning between heterogeneous devices
to measure the ideal load balance achieving the optimal performance in
a single node consisting of heterogeneous processing units. The key prob-
lem is that CFD workloads need to allocate large amounts of both host
and GPU device memory in order to compute accurate results. There
exists an economic burden, not to mention additional communication
overheads of simply scaling out by adding more nodes with high-end sci-
entific GPU devices. In a micro-management perspective, workload size
in each single node is also limited by its attached GPU memory capacity.
To overcome this, we use ZFP, a floating-point compression algorithm to
save at least 25% of data usage in our workloads, with less performance
degradation than using NVIDIA UM.

Keywords: CFD · MPI · CUDA · GPU · compression · memory

1 Introduction

The rising demand for analyzing more complex aerodynamic applications has
led to the development of high-order methods that break through the limita-
tions of conventional 2nd-order finite volume methods (FVM). The high-order
methods possess many attractive features: the capability to achieve arbitrary
high accuracy with compact stencils, high spectral resolvability fitted to turbu-
lence simulation, and high scalability under large parallel computing systems.

In this paper, the three-dimensional compressible Navier-Stokes equations
given by

∂Q

∂t
+ ∇ · Fc(Q) = ∇ · Fv(Q,∇Q), (1)

? This research was supported by Next-Generation Information Computing Develop-
ment Program through the National Research Foundation of Korea (NRF) funded
by the Ministry of Science, ICT (2015M3C4A7065646).



2 Jake Choi, Yoonhee Kim, and Heon-young Yeom

where Q are conservative variables and Fc(Q),Fv(Q,∇Q) are convective
and viscous fluxes respectively, are considered.

Among various high-order methods, we focus on the discontinuous Galerkin
method [21] that is the most widely used in CFD society because of its intu-
itive form and rigorous mathematical backgrounds. Applying the discontinuous
Galerkin method into Eq. (1), we finally get the following weak formulation on
each element Ω: ∫

Ω

∂Q

∂t
φdV +

∫
∂Ω

(
F̂c · n − F̂v · n

)
φdA =∫

Ω

∇φ · (Fc − Fv) dV , (2)

where φ is the orthogonal basis computed from the modified Gram-Schmidt

process [22]. Here, F̂c · n is a monotone numerical convective flux used in FVM,

and F̂v · n is a numerical viscous flux computed via BR2 method [23].
Both massively multicore GPUs and clusters of CPUs can be used to ac-

celerate such high-order methods of computational fluid dynamics (CFD). CFD
workloads are composed of calculation-heavy tasks, where input and output data
can be divided into independent portions, with little communication necessary
in each iterative step. Therefore, the benefit of performing calculations in par-
allel outweigh the costs of communication among different independent tasks.
In this paper, we initially implement a hybrid MPI implementation to acceler-
ate CFD workloads on both CPUs and GPUs in parallel. We show performance
improvements of up to 22% compared to the GPU-only version.

One potential problem that can arise is that data allocated to the GPU
could exceed device memory capacity. Workload sizes beyond hundreds of GB
cannot be fully contained in even high-end GPU devices like the Tesla P100,
which only possess a mere 16 GB of memory capacity. To rectify this, previously
unnecessary memory management operations transferring data to and from host
memory need to be taken in each iteration step, leading to large overheads. In
order to not deal with such nuisances, NVIDIA UM (Unified Memory) [25] can
be used to unify the GPU device memory with host memory.

Introduced in CUDA 6, NVIDIA UM is a single memory address space that is
accessible from any processor in the system [26]. It allows applications to allocate
data that can be written or read to from code running on either CPUs or GPUs.
Using UM eliminates the need for explicit memory copies from host memory
to GPU device memory. The system will automatically perform page migration
on-demand to the memory of the accessing processor. Even though UM provides
simplicity in its usage, the system is ignorant of the actual data access patterns
of applications using it. In our evaluation, we show that total performance drops
significantly if the working set size for the GPU process exceeds its total device
memory.

In order to overcome such performance limitations, our GPU implementa-
tion utilizes CUDA-based ZFP [31], a floating point compression algorithm, to
compress the working set data in the pre-processing step. We achieve lossless



Overcoming GPU Memory Capacity Limitations... 3

compression rates of up to 50%, and perform partial block decompression on the
GPU. We evaluate the performance overheads of decompression for various CFD
workloads in comparison to the baseline UM performance. We also evaluate the
amount of compression we can achieve on the working set without incurring data
loss.

To summarize, our paper makes the following contributions:

– We derive GPU kernel implementations of CFD from the CPU version that
are optimized to perform better than the cuBLAS library on general con-
sumer commodity GeForce GPUs.

– Our GPU implementation is capable of utilizing NVIDIA UM.

– We utilize MPI to allow parallel execution on both CPUs and GPUs in a
heterogeneous environment.

– We use two techniques, ZFP partial block decompression, and GPU memory
overwriting to reduce data usage by up to a maximum of 50% with less
overhead than simply managing data automatically with UM.

The rest of this paper is structured as follows. We first examine related work
in Section 2. Subsequently, we describe the implementation of our techniques in
three subsections in Section 3. We describe our experimental setup and show
evaluation results in Section 4, and conclude with directions for future work in
Section 5.

2 Related Work

The field of CFD has an extensive amount of existing literature mainly con-
sisting of GPU implementations that boast magnitude-of-order speedups over
sequential single-threaded CPU code. Work using multi-threaded CPU imple-
mentations also seem to compete against their GPU counterparts. The common
thread of such works is that most advocate using purely homogeneous multi-
threaded CPU [19, 20] or GPU [8, 9, 16] implementations, but rarely are hybrid
implementations considered. Such works essentially recommend competing im-
plementations with a preference towards one type of architecture. However, our
work uses an heterogeneous MPI implementation which can take full advan-
tage of all available processing units. Some GPU implementations are able to
utilize multiple devices [11, 17, 18] for scalability, but these works also do not
consider CPU usage in parallel. Albeit there are less common works which sug-
gest efficient methods of using a combination of either MPI or OpenMP to solve
CFD problems in heterogeneous systems [28], these works deal with less complex
methods that are lower-order. They also do not mention GPU memory capacity
issues regarding large workloads at all. Moreover, to the best of our knowledge,
we were unable to find any related work that dealt with reducing the data usage
of CFD workloads in GPU memory.



4 Jake Choi, Yoonhee Kim, and Heon-young Yeom

3 Implementation

Our GPU implementation has two versions, one using NVIDIA UM, and the
other using manual CUDA memory operations. Workload size is limited to GPU
device capacity when ordinary cudaMalloc is used, but using UM allows the
workload size to reach host memory limits. In the latter case we prefetch data
from the host to GPU memory by using cudaMemPrefetchAsync. Table 1 shows
the size of major data arrays along with their access type in our GPU kernels.

When executing our GPU implementation, only one CPU core is responsible
for the management of GPU operations. This leaves the other cores idle. By
partitioning the workload in the pre-processing stage using ParMETIS [29], we
assigned different weights to different MPI processes, allocating a subset of the
data to each process. By doing so, we are able to independently execute differ-
ent processes on either GPU devices or CPU cores, based on the rank of the
process. In the following Subsections 3.1, 3.2, and 3.3, we will explain the GPU
optimizations we performed in detail, along with how we used ZFP compression
or memory buffer overwriting to save data usage when GPU memory capacity
is not sufficient to completely contain the given workload.

3.1 CUDA Optimizations

The CUDA implementation consists of a total of 17 separate kernels. Among
these 17 kernels, 9 are used in calculations needed for computing intermediate
rhs values, 5 are used for updating the solution values and the remaining 3 is
for calculating the time step after each iteration. A profiling of the kernels using
nvprof [10] is performed to show which kernels take up the majority of program
time in Table 1. Kernels with less execution time are omitted. Among the nine
major kernels, three kernels each are responsible for calculating the face, periodic
boundary and boundary, and cell values, respectively. We prefix such kernels as
first loop #, third loop #, and fourth loop # respectively. Each kernel runs with
a different number of spawned threads and blocks. Intermediate data is stored
in global memory. If there are no data dependencies among the kernels, we run
them in different CUDA streams so that they can run simultaneously when GPU
streaming multiprocessors are not fully utilized.

Algorithm 1 shows the CPU and GPU version of (fourth loop 3). We store
spatially close data in shared memory to take advantage of global memory coa-
lescing, exemplified in line 2. We usually set the blockDim and gridDim of each
kernel to match the respective number of cells, points, states or basis values,
shown as loop indices in the CPU version, with some exceptions, where the
number of spawned threads of the kernel is set to 32 to match the warp thread
count, for performance optimization reasons. Using atomic functions for Algo-
rithm 1 shows better performance than shared memory reduction because there
is little contention amongst the blockIdx.y axis blocks for the same memory lo-
cation, and using reduction will cause poor memory access patterns and lower
functional utilization.



Overcoming GPU Memory Capacity Limitations... 5

Algorithm 1 Third stage of calculation of cells

Input: 2D vectors cell coefficients as cc, flux
Output: 2D vector rhs as rhs

CPU Version

1: for i← 0 to num cells do
2: for j ← 0 to num points do
3: for k ← 0 to num states do
4: for l← 0 to num basis do
5: for m← 0 to dimensions do
6: rhsi,k,l ← rhsi,k,l − (cci,j,l,m ∗ fluxi,j,k,m)
7: end for
8: end for
9: end for

10: end for
11: end for

GPU Version
i← blockIdx.x, j ← blockIdx.y
l← threadIdx.x

1: procedure fourth loop 3 . Performed in parallel
2: Declare shared memory cc
3: cc k,m ← cci,j,k,m
4: for k ← 0 to num states do
5: temp← 0
6: for m← 0 to dimensions do
7: temp← temp− (cc k,m ∗ fluxi,j,k,m)
8: end for
9: atomicAdd temp to rhsi,k,l

10: end for
11: end procedure

3.2 ZFP Compression and Block Decompression

ZFP is a fixed-rate, near-lossless compression scheme that maps small blocks
of 4d values in d dimensions to a fixed, user-specified number of bits per block,
thereby allowing read and write random access to compressed floating-point data
at block granularity [2]. ZFP shows much higher compression rates for floating-
point data compared to other generic lossless compression schemes like Gzip [4],
bzip2 [5], or even floating point compression schemes like FPZIP [6]. This is
because floating-point values have tailing mantissa bits that are too random to
compress effectively [7]. ZFP is also relatively accurate because of its bounded
relative error [3]. It supports three modes: fixed-rate, fixed-accuracy, and fixed-
precision. In fixed-rate mode, each d-dimensional compressed block of 4d values
is stored using a fixed number of bits that we can set as a parameter.

Our scheme uses CUDA ZFP to compress and decompress data in the GPU
in parallel. We use fixed-rate mode as the other modes are not supported by



6 Jake Choi, Yoonhee Kim, and Heon-young Yeom

Table 1. List of Major Data Arrays Referenced in GPU Kernels and Major Kernels

Array Name RW % of Data Kernel Avg. Time % of
Usage Name Time

cell coefficients R 50.81% fourth loop 3 9.74ms 38.18%
cell basis value R 16.94% fourth loop 1 5.93ms 23.24%

face owner basis value R 5.77% third loop 1 3.95ms 15.47%
face neighbor basis value R 5.77% third loop 3 2.81ms 11.01%

face owner coefficients R 5.77% first loop 1 1.22ms 4.79%
face neighbor coefficients R 5.77% first loop 3 583.88µs 2.29%

peribdry owner basis value R 1.15% fourth loop 2 490.32µs 1.92%
peribdry neighbor basis value R 1.15% third loop 2 334.34µs 1.31%

peribdry owner coefficients R 1.15% memcpy HtoD 7.38µs 1.10%
Flux RW 3.02% first loop 2 125.88µs 0.49%

solution RW 0.17% memcpy DtoD 15.39µs 0.05%
rhs W 0.17%

CUDA ZFP. The reason for this is because we need random access to the com-
pressed blocks. In fixed-rate mode, the size of all compressed blocks are constant,
allowing partial decompression to take place at any order. The number of bits
that are used to store each block is input as a parameter to the compression
and decompression functions. This parameter needs to exactly be a power of
two otherwise the number of actual compressed bits per block will be rounded
up to the next largest power of two. Therefore in fixed-rate mode, we can only
achieve exact compression ratios of 50%, 75%, 87.5%, and so forth. We directly
incorporate the encoding and decoding functions from source, because the GPU
API is not exported into the shared library when compiled. Before application
modifications are made, we take note of which read-only data buffer would poten-
tially use the greatest amount of space in GPU device memory, and is referenced
scarcely. This is because our goal is to minimize decompression overheads and
data loss. We encode the largest buffer directly into GPU device memory only
once in the pre-processing stages by directly calling the encode launch kernel
function for one-dimensional arrays of type double.

Decompression is performed directly in the kernels before references to the
compressed arrays are made. We modified the device decode functions to work
with larger block indices, up to the value limit of type unsigned long. Then,
we used block decompression in each thread of our calculation kernel which
references the data values in the compressed buffer. Because fixed-rate mode
requires each block to contains 4d values, where d = 1, we can obtain 4 decoded
64-bit values from the decode function per CUDA thread. Because the number
of threads per CUDA block is equivalent to the basis value, some of the threads
would have to wait in a synchronization step before the results from the other
threads are all stored in shared memory. Once block decompression is finished,
the kernel continues with its task. By using block decompression, we can amortize
the overhead of decompression in the calculation kernel itself without incurring



Overcoming GPU Memory Capacity Limitations... 7

additional kernel launch overheads, and can discard the decompressed values
from shared memory after they are used.

3.3 Overwriting GPU Data Buffers Using Memory Copy

A naive method of saving GPU memory capacity is to keep only the absolute nec-
essary data in GPU device memory. We can perform this by calling cudaMemcpy

before the kernel referencing the data is launched and calling cudaFree imme-
diately after the kernel execution completes before the next kernel is launched.
Not only is this method extremely inefficient, it is also impractical to pipeline.
Data residing in GPU memory would have to be constantly freed and copied
before each calculation step, leading to large data transfer overheads. Addition-
ally, cudaFree is a synchronous operation with an internal synchronization call.
Therefore we cannot pipeline the kernels with the data transfers.

We use a different technique of avoiding cudaFree altogether by sharing
buffers across multiple kernels. Like in Section 3.2, we select the cell coefficients
buffer because it utilizes the largest capacity. Once the kernel using this buffer
finishes execution, we simply overwrite its contents using cudaMemcpy with the
host data that we do not want to store in GPU device memory. We are able to
save GPU space because we do not have to cudaMalloc distinct buffers for such
arrays. Based on Table 1, we are able to theoretically save a maximum of 50%
of GPU space if we utilize the largest buffer for all of the required data.

4 Evaluation

4.1 Experimental Setup

We use two experimental environments. The first environment is a single private
machine equipped with NVIDIA GeForce GTX 1050 Ti using the Pascal archi-
tecture. The CPU we use is an Intel i7-7700 @ 3.6GHz with 4 physical cores. The
second environment consists of a single server node equipped with 2 NVIDIA
GeForce Titan XP also using the Pascal architecture. The CPU for this node is
an Intel Xeon E5-2683 @ 2.1GHz with 2 sockets equipped with 16 cores each.

4.2 Performance Results

Figure 1 shows the performance results of both the CPU and GPU implemen-
tation in both environments. The x-axis shows the size of the workload that we
used, and the y-axis is the execution time in seconds or the speedup. We notice
that the multi-core version utilizing all 8 cores with hyper-threading on shows
a maximum speedup of 4.45 times the sequential version. Using the GTX 1050
Ti speeds up performance up to 9.02 times sequential code. Titan XP shows
speedups of up to 74.88 times the sequential version. Both experiments ran each
workload for 100 iterations.

Figure 2 shows the results when a small workload is run on the private
machine, and a bigger one on the server machine. The first two columns of each



8 Jake Choi, Yoonhee Kim, and Heon-young Yeom

Fig. 1. GeForce GTX 1050 Ti and Titan XP Performance Results (100 iterations)

Fig. 2. Hybrid run using MPI on (7,7,7) and (10,10,10) workloads

Fig. 3. Hybrid run using MPI on Multiple GPU Devices



Overcoming GPU Memory Capacity Limitations... 9

Fig. 4. Comparison of Data Saving Techniques with Unified Memory

division denote sole GPU or CPU execution times, and the remaining columns
show heterogeneous execution times. The two parameters of the x-axis show the
number of MPI processes, and weight given to a single GPU device. Results show
that assigning a workload weight of 72% to the GPU causes the most speedup
(about 11% compared to GPU-only) for the server machine. We believe the
speedup is not completely scalable because of the MPI communication overheads.
There are a fewer number of cores co-located near each other in the private
machine, causing less communication overheads. Each individual core also has
a greater clock frequency, contributing to higher performance per core. In the
private machine, we experience a speedup of about 22% compared to when the
GTX 1050 Ti executes the code exclusively.

Using multiple GPU devices also further reduce execution time, as shown
in Figure 3. We run the workload in two Titan XPs in parallel using MPI,
and assign half the weight to each device. As the workload size becomes larger,
performance generally becomes better as the divisibility of the workload from
the ParMETIS library becomes more congruent. The middle cases (9,9,9) and
(10,10,10) actually experience a greater than linear speedup, most likely due
to the kernels being more optimal in block and thread size to allow the kernel
optimizations to work more efficiently.

Running the workload on all processing units actually performs worse than
dividing the workload equally into multiple GPU devices. We do not execute
the program with too many CPU cores, because partitioning the workload too
finely will prevent some MPI processes from receiving any data at all, leading to
errors. In order to properly experience program speedup, the GPU device must
be assigned the proper ratio of workload depending on its processing power
relative to a single CPU core. We use heuristics to find the optimal weight
that we have to give each processing unit in the cluster. However, ParMETIS



10 Jake Choi, Yoonhee Kim, and Heon-young Yeom

cannot allocate an exactly equal amount of data to each process, which leads
to synchronization discrepancies. This could cause CPU cores to lag behind the
GPU devices, which would be idle in MPI Wait() while the CPU cores are still
busy.

We compare our data usage saving techniques with NVIDIA UM on both
GPU devices in Figure 4. We run a (8,8,8) workload for 100 iterations. We
performed the experiment by filling up the GPU memory using cudaMalloc to
guarantee that the UM paging mechanism will be called when the workload exe-
cutes. When GPU memory is insufficient, resorting to UM slows down program
execution more than one order of magnitude because of page faults. We com-
pressed cell coefficients (see Table 1) with a fixed-rate of 50% so that data loss
would be minimized. Therefore we were able to save 25% of total data usage and
reduced execution time by up to 6.4 times UM. Likewise, we eliminated the
cell basis value, face owner basis value and face neighbor basis value
buffers for our memory copy overwrite technique, saving a total of 28.48% of
data usage while achieving a speedup of up to 3 times UM. Memory copy over-
write has more overhead than block decompression, and that is because the time
spent in additional cudaMemcpy operations exceed the amortized kernel decom-
pression time by more than a factor of two. These operations are repeated five
times in each iteration, causing large overheads.

5 Conclusion and Future Work

CFD is a widely researched application relevant to many scientific fields. Im-
plementations of CFD are scalable, as the application running time generally
decreases when the number of processing units (GPU or CPU) are increased.
However, scarcity of GPU memory compared to host memory limits CFD work-
loads to GPU device memory capacities.

Our solution, which includes ZFP block decompression and memory copy
overwrites allows a minimum of 25% larger CFD workloads to run with ade-
quate performance on different types of commodity GPUs, without resorting to
additional money spent on purchasing more GPU devices, or cluster nodes for the
need of adding more GPU slots. The effect is for more data to be packed in the
GPUs of each cluster node, reducing MPI communication overheads which can
potentially hamper the scalability of execution time of the application. Our GPU
implementation performs up to 74.88 times faster than the sequential version on
cheap, commodity GPUs. Finally, we are able to further increase performance
by partitioning the application workload to different MPI processes to utilize all
heterogeneous processing units in the cluster.

In future work, we shift our focus to how we can manage multiple CFD
applications running simultaneously. We also want to automate the process of
finding optimal weights, especially when network nodes are used. Finally, we
pursue a generalized compression method in the system layer.



Overcoming GPU Memory Capacity Limitations... 11

References

1. Jianqi Lai, Hua Li, and Zhengyu Tian. 2018. CPU/GPU Heterogeneous Parallel
CFD Solver and Optimizations. In Proceedings of the 2018 International Confer-
ence on Service Robotics Technologies (ICSRT ’18). ACM, New York, NY, USA,
88-92. DOI: https://doi.org/10.1145/3208833.3208847

2. P. Lindstrom, ”Fixed-Rate Compressed Floating-Point Arrays,” in IEEE Transac-
tions on Visualization and Computer Graphics, vol. 20, no. 12, pp. 2674-2683, 31
Dec. 2014. doi: 10.1109/TVCG.2014.2346458

3. P. Lindstrom, Error Distributions of Lossy Floating-Point Compressors, Joint Sta-
tistical Meetings 2017, pp. 2574-2589, October 2017.

4. P. Deutsch, GZIP file format specication version 4.3,RFC, vol. 1952, pp. 112, 1996.
[Online]. Available: https://doi.org/10.17487/RFC1952

5. Bzip2, http://www.bzip.org/, 2018, online.
6. Lindstrom and M. Isenburg, Fast and efficient compression of floating-point data,

IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 5, pp.
12451250, 2006.

7. Tao, Dingwen & Di, Sheng & Liang, Xin & Chen, Zizhong & Cappello, Franck.
(2019). Optimizing Lossy Compression Rate-Distortion from Automatic Online
Selection between SZ and ZFP. 10.1109/TPDS.2019.2894404.

8. P. Niksiar, A. Ashrafizadeh, M. Shams and A. H. Madani, ”Implementation
of a GPU-based CFD Code,” 2014 International Conference on Computational
Science and Computational Intelligence, Las Vegas, NV, 2014, pp. 84-89. doi:
10.1109/CSCI.2014.21

9. Mintu SA, Molyneux D. Application of GPGPU to Accelerate CFD Simulation.
ASME. International Conference on Offshore Mechanics and Arctic Engineering,
Volume 2: CFD and FSI ():V002T08A001. doi:10.1115/OMAE2018-77649.

10. NVIDIA Corp: Profiler users guide. https://docs.nvidia.com/cuda/profiler-users-
guide/index.html#nvprof-overview (2017). An optional note

11. Griebel, M. & Zaspel, P. Comput Sci Res Dev (2010) 25: 65.
https://doi.org/10.1007/s00450-010-0111-7

12. Huanfu Xu, Xiaogang Deng, Lilun Zhang, Jianbin Fang, Guangxue Wang, Yi Jiang,
Wei Cao, Yonggang Che, Yongxian Wang, Zhenghua Wang, Wei Liu, and Xinghua
Cheng. 2013. Collaborating CPU and GPU for large-scale high-order CFD simu-
lations with complex grids on the TianHe-1A supercomputer. J. Comput. Phys.
278, C (October 2013), 275-297. DOI: https://doi.org/10.1016/j.jcp.2014.08.024

13. Videocardbenchmark.net. (2019). PassMark Software - Video Card (GPU) Bench-
mark Charts. [online] Available at: https://www.videocardbenchmark.net/ [Ac-
cessed 24 May 2019].

14. Cpubenchmark.net. (2019). PassMark Software - CPU Benchmark Charts. [online]
Available at: https://www.cpubenchmark.net/ [Accessed 24 May 2019].

15. Ark.intel.com. (2019). Intel product specifications. [online] Available at:
https://ark.intel.com/content/www/us/en/ark.html [Accessed 24 May 2019].

16. Wang, Y., Malkawi, A., & Yi, Y.K. (2011). IMPLEMENTING CFD (COMPUTA-
TIONAL FLUID DYNAMICS) IN OPENCL FOR BUILDING SIMULATION.

17. Gorobets, A & Soukov, S & Bogdanov, P. (2018). Multilevel parallelization for
simulating compressible turbulent flows on most kinds of hybrid supercomputers.
Computers & Fluids. 173. 10.1016/j.compfluid.2018.03.011.

18. Oyarzun, G & Borrell, R & Gorobets, A & Mantovani, Filippo & Oliva, A. (2017).
Efficient CFD code implementation for the ARM-based Mont-Blanc architecture.
Future Generation Computer Systems. 79. 10.1016/j.future.2017.09.029.



12 Jake Choi, Yoonhee Kim, and Heon-young Yeom

19. Wang, Yongxian & Zhang, Li-Lun & Liu, Wei & Cheng, Xing-Hua & Zhuang, Yu
& Chronopoulos, A. (2018). Performance optimizations for scalable CFD appli-
cations on hybrid CPU+MIC heterogeneous computing system with millions of
cores. Computers & Fluids. 10.1016/j.compfluid.2018.03.005.

20. Che, Y., Zhang, L., Xu, C., Wang, Y., Liu, W., & Wang, Z. (2014). Optimization
of a Parallel CFD Code and Its Performance Evaluation on Tianhe-1A. Computing
and Informatics, 33, 1377-1399.

21. B. Cockburn, and C.W. Shu, The RungeKutta Discontinuous Galerkin Method for
Conservation Laws V, Journal of Computational Physics 141 (1998), 199-224.

22. H. You, and C. Kim, High-order multi-dimensional limiting strategy with subcell
resolution I. Two-dimensional mixed meshes, Journal of Computational Physics
375 (2018), 1005-1032.

23. F. Bassi, A. Crivellini, S. Rebay, and M. Savini, Discontinuous Galerkin solution of
the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations, Com-
puters and Fluids 34 (2005), 507-540.

24. M Cohen, Jonathan & Jeroen Molemaker, M., A fast double precision CFD code
using CUDA. Parallel Computational Fluid Dynamics: Recent Advances and Fu-
ture Directions. (2009).

25. W. Li, G. Jin, X. Cui and S. See, ”An Evaluation of Unified Memory Technology
on NVIDIA GPUs,” 2015 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, Shenzhen, 2015, pp. 1092-1098. doi: 10.1109/CC-
Grid.2015.105

26. Harris, M., Harris, M., Harris, M., Sakharnykh, N. and Harris, M. (2019). Uni-
fied Memory for CUDA Beginners — NVIDIA Developer Blog. [online] NVIDIA
Developer Blog. Available at: https://devblogs.nvidia.com/unified-memory-cuda-
beginners/ [Accessed 17 May 2019].

27. Harris, M., Perelygin, K., Luitjens, J., Karras, T., Karras, T. and Kar-
ras, T. (2019). Cooperative Groups: Flexible CUDA Thread Programming
— NVIDIA Developer Blog. [online] NVIDIA Developer Blog. Available at:
https://devblogs.nvidia.com/cooperative-groups/ [Accessed 22 May 2019].

28. Oteski, Ludomir & Colin de Verdiere, Guillaume & Contassot-Vivier, Sylvain &
Vialle, Stephane & Ryan, Juliet. (2018). Towards a Unified CPUGPU code hy-
bridization: A GPU Based Optimization Strategy Efficient on Other Modern Ar-
chitectures.

29. G. Karypis and V. Kumar, Parallel multilevel k-way partitioning scheme for irreg-
ular graphs, in Proceedings of the 1996 ACM/IEEE conference on Supercomputing
(CDROM), ser. Supercomputing 96. Washington, DC, USA: IEEE Computer So-
ciety, (1996). [Online]. Available: http://dx.doi.org/10.1145/369028.369103

30. NVIDIA, NVIDIA CUBLAS Library (2019). Available:
https://developer.nvidia.com/cublas

31. Larsen, M. (2019). mclarsen/cuZFP. [online] GitHub. Available at:
https://github.com/mclarsen/cuZFP [Accessed 22 May 2019].

View publication statsView publication stats

https://www.researchgate.net/publication/337141423

