
1

Is Container-Based Technology a Winner for High
Performance Scientific Applications?

Theodora Adufu, Jieun Choi, Yoonhee Kim
Dept. of Computer Science,

Sookmyung Women’s University,
Seoul, Korea

theoadufu@gmail.com, (jechoi1205, yulan)@sookmyung.ac.kr

Abstract—High Performance Computing (HPC) applications
require systems with environments for maximum use of limited
resources to facilitate efficient computations. However, these
systems are faced with a large trade-off between efficient resource
allocation and minimum execution times for the applications
executed on them. Also, deploying applications in newer envi-
ronments is exacting. To alleviate this challenge, container-based
systems are recently being deployed to reduce the trade-off.
In this paper, we investigate container-based technology as an
efficient virtualization technology for running high performance
scientific applications. We select Docker as the container-based
technology for our test bed. We execute autodock3, a molecular
modeling simulation software mostly used for Protein-ligand
docking, in Docker containers and VMs created using OpenStack.
We compare the execution times of the docking process in both
Docker containers and in VMs.

Keywords—High Performance Computing (HPC), Container-
based virtualization, Docker, Hypervisor-based virtualization (HPV),
Cloud Computing, OpenStack.

I. INTRODUCTION

In recent years, virtualization technologies have been
adopted to support efficient scientific computations and high
performance applications. Correspondingly, there have been
diverse Cloud Management Platforms (CMP) which provision
and manage various computing resources. At the infrastructural
level, platforms like OpenStack [1], AmazonEC2 [2], and
Nimbus [3] are mostly used to provision and manage both
private and public cloud platforms with their processor, stor-
age, and network resources. These aforementioned middleware
systems developed on the basis of hypervisor (HPV) virtual-
ization technology however, require the installation of Guest
Operating Systems (Guest OS) for each virtual machine (VM)
created. This approach requires memory resources and slows
down overall execution times of applications. Containers on the
other hand, do not require Guest OS thus are more light-weight
compared to hypervisor-based virtualization technologies.

Using Docker container-based systems, we demonstrate that
the light-weight feature of container-based virtualization com-
pared to hypervisor-based virtualization reduces the overall

This research was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of
Science, ICT and Future Planning (NRF-2013R1A1A3007866)

execution times of HPC scientific applications due to approxi-
mately zero start-up time when launching containers. We also
demonstrate that even though the most utilized resource in
the Docker container-based system is main memory (RAM),
Docker manages memory resources efficiently hence creating
a stable environment for HPC applications. We claim that,
for HPC applications which require real-time launching of
resources, container-based systems are more suitable.

The rest of the paper is organized as follows: Section II
explores some related works and Section III gives a brief intro-
duction of hypervisor-based and container-based virtualization
systems with highlights on some differences. Section IV gives
brief details of Docker, OpenStack and Autodocking, in line
with the test bed environments for this paper. The experiment
and the results will be evaluated in Section V and the paper
will be concluded in Section VI.

II. RELATED WORKS

Rajdeep [4], analyzes the Process handling, File Systems
and Namespace Isolation for container-based virtualization
systems such as Docker, Linux Containers (LXC), OpenVZ
and Warden. From their assessment, containers which use
cgroups for resource allocation, chroot for processes and
namespaces for network and resource isolation, have an in-
herent advantage over VMs because of performance improve-
ments and reduced start-up times.

Miguel [5], also conducts benchmark experiments to support
the claim that for better resource sharing and user-oriented
custom HPC environments, there is the need for an isolation
layer without performance overheads. In another paper [6] by
the same authors, performance and manageability of containers
were experimented. From the results of both experiments,
container-based systems performed better in processing, mem-
ory, disks and network tests than HPV systems, represented by
Xen. Xen however had better isolation due to non-shared Oper-
ating System (OS). These experiments are however benchmark
experiments and do not reflect the real performance of HPC
applications in container-based virtualization systems when
deployed.

Using standard benchmarks, Walter [7] also conducts per-
formance evaluation experiments for VMware Server, Xen and
OpenVZ. Results reveal that, OpenVzs operating system-level
virtualization system has the best overall performance.

507Copyright 2015 IEICE APNOMS 2015



2

Memari [8], proposes a new network protection approach,
Honeynet, based on container-based virtualization. This in-
creased security and system stability by isolating compromised
honeynets from other honeypots on the server. Container-
based virtualization also enables fast deployment and easier
maintenance of honeypots for low physical resource utilization.
During the experiments, honeynets implemented using LXC
container-based virtualization proved more stable than those
using KVM and VMware.

Stephen [9] demonstrates that container-based systems are
more suitable for usage scenarios that require high levels of
isolation and efficiency such as HPC Clusters. Resource isola-
tion and security isolation were examined for some container-
based systems and benchmark experiments were conducted to
support their claims. Their results indicate that container-based
systems perform two times better for server-type workloads
than hypervisor-based systems.

III. HYPERVISOR-BASED VIRTUALIZATION VS
CONTAINER-BASED VIRTUALIZATION

Virtualization technologies first adopted by IBM to support
high-level software sharing have improved server utilization by
allowing multiple Operating Systems to run in isolated virtual
machines (VM) hosted on a single physical server [10].

For traditional virtualization, the hypervisor manages the
computing resources of the host machine. Memory resources in
particular can be overcommitted in hypervisor-based systems
since most processes (or Virtual Machines) do not exhaust all
of their allocated memory. Thus through cloud management
platforms, VMs are provisioned and managed on each host
machine such that users are able to access more computing
resources than is physically available.

On the other hand, container-based virtualization sometimes
known as Operating System-Level Virtualization, is deployed
to improve resource sharing. It allows for multiple isolated
user-space instances and facilitates the creation and mainte-
nance of multiple environments customized according to each
users needs. Container-based systems create abstractions for
guest processes directly without the need to host a Guest OS
thus reduces the overhead of creating a new VM with a Guest
OS for each application.

Fig. 1: Architectures for Hypervisor-based virtualization and
container-based virtualization. Updated from [11].

Processes (or containers) are isolated using namespaces
which have a lower performance overhead. Without the hyper-
visor, CMP and Guest OS layers as seen in Fig. 1, containers
are lighter and hence easier and faster to launch. Also, they are
likely to use less memory and disk-space allowing for multiple
containers to be launched on a single host.

IV. DOCKER, OPENSTACK AND MOLECULAR
DOCKING

A. DOCKER

The Docker container-based technology, has a single shared
operating system with multiple isolated user space instances
running on a single host [12]. Docker uses cgroups to allocate
resources such as CPU, Memory and I/O control to contain-
ers [13]. To maximize memory resources utilization, Docker
engine uses swapping technique thus, swap memory can also
be explicitly allocated using cgroups.

B. OPENSTACK

Currently, hypervisor-based cloud platforms managed by
Cloud Management Platforms (CMP) like OpenStack, provi-
sion and manage computing resources for large-scale scientific
experiments.

OpenStack, has multiple services which enhance the ef-
ficient management of cloud resources. This includes the
Nova Compute which is used for the creation of new virtual
machines or instances. The resources of each VM such as
RAM, disk and vCPUs, created using Nova Compute is
defined by using default or user-defined install templates or
flavors [14]. Memory and CPU can be overcommitted on
compute nodes enabling access to more computing resources
though this affects the performance of the instances [15].
This notwithstanding, OpenStack is widely deployed for the
provisioning and management of cloud resources for HPC
applications.

C. AUTODOCKING (MOLECULAR DOCKING)

High Throughput Computing(HTC) and Many Task Com-
puting(MTC) applications usually consist of millions or bil-
lions of tasks with relatively high per task execution time.
Tasks may be small or large, uniprocessor or multiprocessor,
compute-intensive or data-intensive. For our experiments, we
select autodock3, a molecular modeling simulation software,
from a wide range of scientific computing applications to
represent CPU intensive jobs. Molecular docking refers to a
Structure-Based Drug Design (SBDD) computation through
which the prediction of the binding modes of small molecule
ligands within the active site of a target protein models is
done [16]. The development of drugs such as HIV pro-
tease inhibitors is based on such structure-based design and
screening strategies requiring the management of high volumes
of data [17]. Docking experiments are compute-intensive and
require fast and reliable access to memory.

508



3

Fig. 2: Illustration of binding of inhibitor Dmp323 to HIV
protease. Picture taken from [17].

Docking experiments are compute-intensive and require
fast and reliable access to memory. They also require the
management of high volumes of data [17]. For typical docking
systems, docking is repeated several times in order to obtain
consistent and accurate results from the analysis of the pre-
dicted energy values. For this experiment also, a single docking
process will be executed repeatedly in each of the containers
and VMs created. However, only one ligand and protein pair
will be used for docking as a miniature representation of large-
scale docking processes. The docking application used in this
experiment is the suite of autodock3 tools [18] compatible with
Linux Operating System.

V. EXPERIMENTS AND EVALUATION

The molecular modeling simulation software, autodock3,
is executed in containers and VMs hosted on two Intel(R)
Core(TM) i7 CPU 950 @ 3.07GHz server machines. Each
machine has a total RAM size of 30GB and runs Ubuntu 14.04
Trusty Tahr Operating System. The base image selected for
creating the Docker containers and for the Guest OS in the
VMs, is Ubuntu 14.04 to ensure fair comparisons.

The first set of experiments take into account the start-up
times of both the containers and VMs as this is very essential
in measuring the overall execution times of applications and
especially for resource scaling decisions. Each of the contain-
ers and VMs was created independently using Ubuntu 14.04
Server image with a memory allocation of 1GB and 1 vCPU.
The relevant working files and directory were preloaded unto
the base images used for the experiments.

The results in Fig. 3 show that in the Docker container,
it takes an average of 176 seconds to launch a container and
execute the autodock3 while it takes an average of 191 seconds
to launch a VM instance and run autodock3. Autodocking in
the Docker containers is executed over a relatively shorter
time period than in the VMs as a result of longer start-up
times associated with launching new VM instances. This is
because contrary to the VMs, Docker does not have to start-up
Guest OS in the containers. Many large-scale elastic scientific
applications require resource auto-scaling thus seek to launch
instances in the least time possible. Also, for large scientific
workflow applications where each task requires the creation of
a new container, Docker containers seem more suitable.

The graph in Fig. 3shows the average execution times of
running autodock3 in 5 containers and VMs each.

Fig. 3: Comparing total execution times of autodock3 in
Docker Containers and VMs.

The second set of experiments seek to measure how memory
allocations in Docker containers compares with similar allo-
cations in VMs. Similarly, each of the containers and VMs
was created independently using Ubuntu 14.04 Server image
but with a memory allocation of 3GB. In order to measure
the effect of memory allocations on the execution times of the
docking process without the influence of start-up times, the
containers and VMs were launched before the Autodocking
processes were executed. For instance, for the total memory
allocation of 12GB, 4 containers and 4 VMs were launched
and autodock3 was executed in parallel on each of them. The
average time for executing autodock3 in all running containers
and VMs is compared in a graph.

Fig. 4 displays the execution times for parallel execution
of autodock3 in Docker containers and VMs when the total
amount of main memory allocated is 12GB, 24GB, 36GB and
48GB respectively.

Fig. 4: Total execution times of autodock3 in Docker Contain-
ers and VMs for different memory allocations

The results show that when the amount of allocated memory

509



4

is 12GB, autodock3 takes a relatively shorter time to execute in
both Docker containers and VMs. The average execution time
of the docking process increases with increase in allocated
memory as a result of multiple processes running simultane-
ously thus requiring more resources.

For total allocated memory of 24GB however, autodock3
performs better on VMs than in Docker containers. This
reveals that there are some performance overheads in Docker
containers due to physical resource limitations. When more
than available physical memory resources are allocated to
the containers and VMs however, Docker containers perform
better than VMs for a total memory allocations of both 36GB
and 48GB. For 48GB, autodock3 executes in parallel in all
Docker containers but fails to run in the VMs. This is due to
Openstacks available memory overcommit ratio of 1.5 RAM.
Following this ratio, only VMs with a total memory allocation
of about 45GB can be launched in parallel on our host machine
thus the failure for 48GB of memory allocation. This reveals
another strength of Docker containers which is conducive for
traditional parallel scientific HPC applications.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we demonstrate that during the execution of
scientific applications, overall execution times for container-
based virtualization systems are less than in hypervisor-based
virtualization systems due to differences in start-up times.

We run autodock3, a molecular modeling simulation soft-
ware in containers and virtual machines, in similar host en-
vironments and compare the execution times for the docking
processes. Results from the experiments show that, Docker
manages memory resources more efficiently even when more
than available physical memory resources are allocated to
running instances.

From our results, container-based systems are more efficient
in reducing the overall execution times for HPC applications
and have better memory management for multiple containers
running in parallel. We conclude that Container-based systems
are more suitable for HPC applications.

In the future, we will investigate a framework for running
scientific applications with different characteristics, in cluster
of container-based virtualization systems and evaluate the
optimal environment for efficiently executing the applications.

REFERENCES

[1] OpenStack, http://www.OpenStack.org
[2] Amazon Web Services, http://aws.amazon.com
[3] Nimbus cloud, http://www.nimbusproject.org/
[4] Rajdeep Dua, A Reddy Raja, Dharmesh Kakadia, Virtualization vs

Containerization to support PaaS Cloud Engineering (IC2E), 2014 IEEE
International Conference, pp. 610- 614 (2014)

[5] Miguel Gomes Xavier, Marcelo V. Neves, Cesar A. F. De Rose, Per-
formance Evaluation of Container-based Virtualization for High Perfor-
mance Computing Environments Parallel, Distributed & Network-Based
Processing (PDP), 2013 21st Euromicro International Conference on,
2013, pp. 233-240 (2013)

[6] Miguel Gomes Xavier, Marcelo V. Neves, Cesar A. F. De Rose A Per-
formance Comparison of Container-based Virtualization for MapReduce
Clusters Parallel, Distributed & Network-Based Processing (PDP), 2014
22nd Euromicro International Conference on, 2014, pp. 299-306 (2014)

[7] J. P. Walters, Vipin Chaudhary, Minsuk Cha, Salvatore Guercio Jr.,
Steve Gallo, A Comparison of Virtualization Technologies for HPC,
Advanced Information Networking & Applications, 2008. AINA 2008.
22nd International Conference on 2008, pp. 861-868 (2008)

[8] Nogol Memari, Shaiful Jahari B. Hashim, Khairulmizam B. Samsudin,
Towards virtual honeynet based on LXC virtualization Region 10 Sym-
posium, 2014 IEEE, pp. 496-501 (2014)

[9] Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier, and
Larry Peterson, Container-based Operating System Virtualization: A
Scalable, High-performance Alternative to Hypervisors, EuroSys ’07
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, pp. 275-287 (2007)

[10] Yan Junhao, Lv Aili, Research on the Application of Virtualization
Technology in High Performance Computing Electrical and Electronics
Engineering (EEESYM), 2012 IEEE Symposium on 24-27 June 2012,
pp. 386 388 (2012)

[11] How is this different from virtual machines?https://www.docker.com/
whatisdocker/

[12] James Turnbull, The Docker Book, August 4, 2014, (2014)
[13] Resource Management in a Docker,https://goldmann.pl/blog/2014/09/

11/resource-management-in-Docker
[14] Flavors, http://docs.openstack.org/openstack-ops/content/flavors.html
[15] Overcommiting on compute nodes, http://docs.openstack.org/

openstack-ops/content/compute nodes.html
[16] Ocana K., Benza S., De Oliveira D., Dias J., Mattoso M., ”Exploring

Large Scale Receptor-Ligand Pairs in Molecular Docking Workflows in
HPC Clouds”, Parallel & Distributed Processing Symposium Workshops
(IPDPSW), 2014 IEEE International, pp. 536-545 (2014)

[17] Douglas B. Kitchen, Hlne Decornez, John R. Furr, Jrgen Bajorath,
Docking and Scoring in Virtual Screening for Drug Discovery: Methods
And Applications, Nature Reviews Drug Discovery, 3(11), pp. 93-949
(2004)

[18] Autodock, http://autodock.scripps.edu/

510


