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Abstract— Graphics Processing Units (GPUs) are getting 

popularly utilized for multi-purpose applications in order to 

enhance highly performed parallelism of computation. As 

memory virtualization methods in GPU nodes are not efficiently 

provided to deal with diverse memory usage patterns for these 

applications, the success of their execution depends on exclusive 

and limited use of physical memory in GPU environments. 

Therefore, it is important to predict a pattern change of GPU 

memory usage during runtime execution of an application. Data 

provenance extracted from application characteristics, GPU 

runtime environments, input, and execution patterns from 

runtime monitoring, is defined for supporting application 

management to set runtime configuration and predict an 

experimental result, and utilize resource with co-located 

applications. In this paper, we define data provenance of an 

application on GPUs and manage data by profiling the execution 

of CUDA scientific applications. Data provenance management 

helps to predict execution patterns of other similar experiments 

and plan efficient resource configuration. 
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I. INTRODUCTION  

Graphics Processing Units(GPUs) are recently used for 
multi-purpose applications due to their high computability 
stems from enabling parallelism of computation and low 
energy consumption. High-level language frameworks such as 
Compute Unified Device Architecture(CUDA) and Open 
Computing Language(Open CL) have improved GPU 
programmability. These language frameworks provide 
memory virtualization features such as Unified Memory and 
virtual address spaces, which can overcome GPU memory 
limitation issues while keeping applications maintaining high 
performance. However, GPU memory virtualization solutions 
often fail to show comparably better performance of 
applications running on GPUs to CPUs.  A number of 
challenges exist on making a success of application’s 
executions, which relies on scheduling schemes in GPU 
environments [4]. Therefore, the prediction of applications’ 
execution patterns has been a key metric for an application 
scheduling scheme. It helps to decide how long each process 
should wait for a free resource. That means it provides insight 
about resource availability [5]. 

There has been a lot of research focusing on discovering a 
workflow pattern that frequently appears and predicting the 
completion of a specific workflow by applying data mining 
techniques on data provenance. The execution patterns 
deriving from accumulated data provenance leads to good 
utilization of resource  [6]. A workload composed of many 
applications of which have uniform execution patterns, results 
in diverse and unexpected results depending on the condition 
of input data and features of an execution environment. 

Therefore, besides of data provenance, management such as 
runtime monitoring and adjustment of an execution plan is 
needed to deploy into a GPU execution environment. The 
management resolves Out Of Memory(OOM) failure of a 
workload, caused by the limit of GPU memory capacity. This 
perspective shows a method of workflow scheduling and 
optimization. In this paper, we define data provenance of an 
application running on GPUs and collect its data by profiling 
the execution of CUDA scientific applications such as  
LAMMPS [7] and GROMACS [8]. Also we perform 
experiments to show that management with data provenance 
can resolve OOM failure and enhance overall workload 
performance by utilizing GPU resource.  

The organization of this paper is as follows. In Section II, 
we discuss some related works. Section III defines data 
provenance for experiments to predict execution patterns and 
the succeeding section shows tracing provenance of scientific 
applications from experiments. Section V shows experiments 
that workload is optimized based on provenance information, 
and we conclude the paper in Section VI. 

II. RELATED WORKS 

[5] presents their approach to predicting execution time of 
programs running on Grid environments, where processing of 
resources is complicated due to the distribution of resources, 
by using data provenance. They recorded three types of data 
provenance including pre-execution, execution, and 
environment provenance feature set. The performance 
prediction is implemented by training machine learning 
models using this data. However, characteristics of GPU 
applications and GPU resources are not included in the feature 
set since they don’t consider GPU applications. Therefore, a 
definition of provenance information is needed that reflects 
characteristics of GPU applications and GPU resources for 
predicting execution patterns accurately.    

[13] proposes a provenance scheme for a cloud computing 
environment, which is based on virtualization. They present 
this provenance framework of the dynamic and abstract 
environment. However, the impact on background running 
workload is not considered in this work, since the execution 
time of GPU workload is greatly affected by the execution of 
other GPU workloads. Our approach to provenance 
framework reflects the effect of background load and GPU 
resources that are not addressed in this paper. 

III. DEFINITION OF PROVENANCE INFORMATION FOR 

EXPERIMENTS 

We propose a method of collecting common/specific data 
for defining provenance information of GPU applications and 
classifying data provenance sets from collected data. 



A. Collecting Data for Defining GPU Provenance 

Information 

Provenance information of applications is captured and 
recorded. Meanwhile, Data that has an impact on an execution 
pattern of applications is also collected. Data provenance 
defined in this paper can be applied for every GPU’s 
manufacturer. As the concept of warp is only limited to 
CUDA programming model, data provenance about warp is 
additional data for NVIDIA GPU.      

 We use NVIDIA System Management Interface(nvidia-
smi)[9] and nvprof profiling tool[10] to collect related data. 
Nvidia-smi is a utility to monitor and manage capabilities, 
based on top of the NVIDIA Management Library(NVML)[9]. 
Nvidia-smi provides information on gpu utilization, which 
shows the percentage of each kernel consumes that executing 
on the GPU, utilization of Streaming Multiprocessor(SM) and 
so forth. Nvprof is a profiling tool that can trace CUDA 
activities. Nvprof is able to profile memory transfer 
throughput, occupancy defined as the ratio of active warps on 
an SM to the maximum number of active warps supported by 
the SM and so forth. 

B. Grouping Data provenance Sets from Collected Data 

Data provenance is related to an execution pattern of 
applications, input data, and execution environment.  It can be  
defined to predict execution pattern. To perform the collection 
of provenance data, we employed monitoring tools, which 
have been described in the section 3.A. We recorded runtime 
processing data by using nvprof. To monitor GPU resource 
usage, we utilized  nvidia-smi. The data sets from collected 
data are grouped into three sets : execution features, pre-
execution features, environment features. 

1) Set 1: Execution features: Execution features contain 

runtime information about applications.  Allocated memory  

by each process and GPU utilization are recorded every 5 

seconds by using nvidia-smi. Host to Device memory copy 

throughput, Device to Host memory copy throughput, SM 

efficiency, which is the percentage of time at least one warp 

is active on a specific multiprocessor,  occupancy and ratio of 

the average active threads per warp to the maximum number 

of threads per warp supported on a multiprocessor(warp 

efficiency) are reported when an application completes its 

execution. Their mean value is used as the provenance data 

since the variance of them is small enough. We calculate the 

total runtime of a process by using the formula 

execution time = timestampfinish − timestampstart. 

Important features comprising execution features are 
shown in columns 1 and 2 of Table  I. 

2) Set 2: Pre-execution features: Pre-execution features 

are collected before the actual execution is started, which 

consists of input data onto process and its size. The 

denotation of input parameters varies depending on 

applications because the diversity of required information on 

each application, which contains input data, mesh size, etc. 

Considerable features involved in pre-execution features are 

shown in column 3 of Table  I. 

3) Set 3: Environment features: Environment features 

categorized into two types: static features and dynamic 

features. Static features refer to system hardware information. 

Dynamic features indicate data that changes over time of 

execution, and hence are recorded at intervals. Static features 

comprise total installed GPU memory, GPU speed, an 

architecture of GPU and PCI-e bandwidth that measures how 

fast the GPU connection is to the CPU's PCI-e controller, 

which controls the GPU's access to system memory or RAM. 

They also contain the maximum number of warps, thread 

blocks, threads and the maximum size of shared memory per 

SM that influence on concurrent application Execution. As an 

execution pattern of a process of an idle machine and a 

machine with background load differs considerably, we 

recorded background load on GPU in dynamic features. The 

background load includes the percentage of SM allocated by 

an active process and PCIe throughput between CPU and 

GPU. We recorded them every 5 seconds exploiting nvidia-

smi daemon. Columns 4,5 and of Table  I show a list of 

important static and dynamic environment features. 

TABLE I.  PROVENANCE DATA SET 

Environment features 

Static Dynamic 

GPU memory total Warps per SM Free GPU memory 

GPU speed 
Thread blocks 

per SM 
SM used 

GPU architecture 
Shared Memory 
per SM 

PCIe Rx throughput 

PCIe bandwidth Threads per SM PCIe Tx throughput 

Execution features 
Pre-execution 

features 

GPU memory used 
Device to Host 

Throughput 
Input size 

Execution time Occupancy Input parameters 

GPU utilization SM efficiency  

Host to Device 

Throughput 

Warp execution 

efficiency 
 

 

IV. TRACING PROVENACE OF SCIENTIFIC APPLICATIONS 

In this section CUDA scientific application LAMMPS and 
GROMACS are profiled to collect provenance information. 
To collect provenance information these applications are 
executed on configuration of Intel(R)Core(TM) i7-5820K and 
Nvidia Titan XP. 

A. LAMMPS 

LAMMPS is a classical molecular dynamics code based 
on material modeling. It’s an acronym for Large-scale 
Atomic/Molecular Massively Parallel Simulator. 

1) Execution provenance information: Execution 

provenance information that is recorded every 5 seconds is 

shown in Fig. 1. 

 

Fig. 1. Execution provenance features of LAMMPS 

LAMMPS uses 363MB~8.3GB of memory during its 
execution. GPU utilization of the application is about 25%, as 



data transfer between host and device appears frequently. 
1176 seconds after the start of the execution, it is presented as 
compute-intensive using 8.3GB of memory and showing 100% 
utilization of GPU. The total runtime of the process is 1196 
seconds, and the average memory throughput from Host to 
Device is 5.865GB/s, the average memory throughput from 
Device to Host is 8.561 GB/s. The average of SM efficiency 
is 82.12%, average warp efficiency is 90.10% and the average 
occupancy is 0.55. 

2) Pre-execution provenance information: Input 

parameters of LAMMPS consist of used package of 

LAMMPS, input file, binsize that affects the building 

pairwise neighbor lists, and variables x, y, z which indicate 

dimensionality of LJ system and the number of creating 

particles. In this experiment, we used kokkos package, an 

input file of Leonard Jones 3D melt example [11]. We set the 

binsize to 2.8 and variables x, y, z to 8. 

3) Environment provenance information: Static 

environment features of the experiment are shown as TABLE 

II. 

TABLE II.  STATIC ENVIRONMENT FEATURES 

Fig 2. is a graph of tracing total free memory, SM usage 

and PCIe bus throughput which is a background load that 

changes over time dynamically in execution. 

 

Fig. 2. Dynamic environment features of LAMMPS 

B. GROMACS 

1) Execution provenance information: Execution 

provenance information that is recorded every 5 seconds as 

shown in Fig. 3. In the case of GROMACS, its total runtime 

of the process is 636 seconds and it uses 171MB~537MB of 

memory. GROMACS is a compute-intensive application, as 

its average GPU utilization is 69% with frequent computation. 

The average memory throughput from Host to Device is 

11.75GB/s and the average memory throughput from Device 

to Host is 12.81GB/s. The average of SM efficiency is 

99.98%, average warp efficiency is 71.73% and the average 

occupancy is 0.49.  

 

Fig. 3. Execution provenance features of GROMACS 

2) Pre-execution provenance information: Required 

parameters are determined by which of the programs is 

performed. In this experiment, we performed mdrun engine 

that simulates Molecular Dynamics and set the number of 

steps to conduct 10000 steps. We used water GMX50 bare 

benchmark data [12] as input data and its size is 72.017KB. 

3) Environment provenance information: Since the 

execution environment of GROMACS and LAMMPS are the 

same, static environment features are as shown in TABLE II. 

Fig 4. is a graph of tracing total free memory, SM usage and 

PCIe bus throughput which is a background load that changes 

over time dynamically in execution. 

 

Fig. 4. Dynamic environment features of GROMACS 

V. EXPERIMENT 

We perform experiments by predicting execution patterns 
through provenance information traced in section IV. We 
compared GPU resource utilization and execution time of 
identical workload based on the presence or absence of 
provenance information. 

Experiment environment, applications, provenance 
information for this experiments are explained in prior section. 
Workloads using for experiments are 1) consisted of two 
LAMMPS applications and 2) consisted of a LAMMPS 
application and two GROMACS applications. As a baseline 
of application deployment, we choose random deployment of 
applications.  

A. Consisted of two LAMMPS applications 

Fig. 5. shows result of deploying applications randomly 

without provenance information. As memory usage of 

applications is unknown, two LAMMPS applications are 

launched concurrently. It can be seen that only one task 

terminates normally with Out Of Memory(OOM) occurring 

approximately 1625 seconds after the start of the experiment 

since LAMMPS uses 8.3GB memory 1176 seconds after its 

launch and GPU total memory of experiment environment is 

11.91GB. 

 

Fig. 5. Random application deployment of first workload 

Through provenance information, OOM was predicted in 

advance and executed by giving a time difference between 

Static Environment features 

GPU memory total 11.91 GB Warps per SM 64 

GPU speed 1582 MHz 
Thread blocks 
per SM 

32 

GPU architecture TITAN Xp 
Shared Memory 

per SM 
96KB 

PCIe bandwidth 32GB/s Threads per SM 2048 



launch of two tasks. Figure 6 shows that both tasks are 

successfully terminated. A time difference of 60 seconds 

between the two tasks was given, and after 1690 seconds of 

experimentation, both tasks are finished normally. 

 

Fig. 6. Application deployment of first workload with provenance 

information 

B. Consisted of a LAMMPS application and two 

GROMACS applications 

Figure 7 shows the result of a random placement for three 
tasks of the second workload. The sequence of tasks through 
the random placement is that two GROMACS launch 
simultaneously, and LAMMPS is subsequently executed. The 
two GROMACS jobs executed simultaneously end in 1380 
seconds. Simultaneous launch of two GROMACS jobs takes 
longer than two jobs performed sequentially. This is because 
it was executed without considering compute-intensive 
characteristic of GROMACS. The LAMMPS application is 
dispatched after the end of the two GROMACS applications. 
The entire workload took 2576 seconds to run. 

 

Fig. 7. Random application deployment of second workload 

On the other hand, Figure 8 shows the results of 
experimenting with the simultaneous placement of LAMMPS 
application, which is the focus of memory operations, and 
GROMACS application, which is compute-intensive. The 
result shows that all three tasks took a total of 1,855 seconds 
to complete, a reduction of approximately 38% compared to a 
random application deployment. This shows that the two tasks 
of central use of different resources could be arranged together 
to reduce time by increasing the efficiency of resource use. 

 

Fig. 8. Application deployment of second workload with provenance 

information 

VI. CONCLUSION 

In this paper, we defined data provenance for experiments 
with GPU applications and managed data by profiling the 
execution of CUDA scientific applications LAMMPS and 
GROMACS. 

By defining provenance information, data from past 
experiments can be accumulated and managed systematically. 
Based on data provenance management, execution 
management allows us to minimize unnecessary experiments. 
In addition, it can be used for applications scheduling and 
planning efficient resource configuration [5,13]. In this paper, 
we show that management with data provenance can resolve 
OOM failure and enhance overall workload performance by 
utilizing GPU resource through experiments. 

We are planning to collect provenance information about 

GPU CUDA scientific applications. In addition, we are going 

to propose a scheduling strategy including memory usage hint 

by predicting execution time based on provenance 

information. 
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