
XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE

Data Provenance for Experiment Management of

Scientific Applications on GPU

Sejin Kim

The Department of Computer Science

Sookmyung Women’s University

Seoul, Korea

wonder960702@gmail.com

Jisun Oh

The Department of Computer Science

Sookmyung Women’s University

Seoul, Korea

jsoh8088@gmail.com

Yoonhee Kim

The Department of Computer Science

Sookmyung Women’s University

Seoul, Korea

yulan@sookmyung.ac.kr

Abstract— Graphics Processing Units (GPUs) are getting

popularly utilized for multi-purpose applications in order to

enhance highly performed parallelism of computation. As

memory virtualization methods in GPU nodes are not efficiently

provided to deal with diverse memory usage patterns for these

applications, the success of their execution depends on exclusive

and limited use of physical memory in GPU environments.

Therefore, it is important to predict a pattern change of GPU

memory usage during runtime execution of an application. Data

provenance extracted from application characteristics, GPU

runtime environments, input, and execution patterns from

runtime monitoring, is defined for supporting application

management to set runtime configuration and predict an

experimental result, and utilize resource with co-located

applications. In this paper, we define data provenance of an

application on GPUs and manage data by profiling the execution

of CUDA scientific applications. Data provenance management

helps to predict execution patterns of other similar experiments

and plan efficient resource configuration.

Keywords— data provenance, GPU, scientific workflow

I. INTRODUCTION

Graphics Processing Units(GPUs) are recently used for
multi-purpose applications due to their high computability
stems from enabling parallelism of computation and low
energy consumption. High-level language frameworks such as
Compute Unified Device Architecture(CUDA) and Open
Computing Language(Open CL) have improved GPU
programmability. These language frameworks provide
memory virtualization features such as Unified Memory and
virtual address spaces, which can overcome GPU memory
limitation issues while keeping applications maintaining high
performance. However, GPU memory virtualization solutions
often fail to show comparably better performance of
applications running on GPUs to CPUs. A number of
challenges exist on making a success of application’s
executions, which relies on scheduling schemes in GPU
environments [4]. Therefore, the prediction of applications’
execution patterns has been a key metric for an application
scheduling scheme. It helps to decide how long each process
should wait for a free resource. That means it provides insight
about resource availability [5].

There has been a lot of research focusing on discovering a
workflow pattern that frequently appears and predicting the
completion of a specific workflow by applying data mining
techniques on data provenance. The execution patterns
deriving from accumulated data provenance leads to good
utilization of resource [6]. A workload composed of many
applications of which have uniform execution patterns, results
in diverse and unexpected results depending on the condition
of input data and features of an execution environment.

Therefore, besides of data provenance, management such as
runtime monitoring and adjustment of an execution plan is
needed to deploy into a GPU execution environment. The
management resolves Out Of Memory(OOM) failure of a
workload, caused by the limit of GPU memory capacity. This
perspective shows a method of workflow scheduling and
optimization. In this paper, we define data provenance of an
application running on GPUs and collect its data by profiling
the execution of CUDA scientific applications such as
LAMMPS [7] and GROMACS [8]. Also we perform
experiments to show that management with data provenance
can resolve OOM failure and enhance overall workload
performance by utilizing GPU resource.

The organization of this paper is as follows. In Section II,
we discuss some related works. Section III defines data
provenance for experiments to predict execution patterns and
the succeeding section shows tracing provenance of scientific
applications from experiments. Section V shows experiments
that workload is optimized based on provenance information,
and we conclude the paper in Section VI.

II. RELATED WORKS

[5] presents their approach to predicting execution time of
programs running on Grid environments, where processing of
resources is complicated due to the distribution of resources,
by using data provenance. They recorded three types of data
provenance including pre-execution, execution, and
environment provenance feature set. The performance
prediction is implemented by training machine learning
models using this data. However, characteristics of GPU
applications and GPU resources are not included in the feature
set since they don’t consider GPU applications. Therefore, a
definition of provenance information is needed that reflects
characteristics of GPU applications and GPU resources for
predicting execution patterns accurately.

[13] proposes a provenance scheme for a cloud computing
environment, which is based on virtualization. They present
this provenance framework of the dynamic and abstract
environment. However, the impact on background running
workload is not considered in this work, since the execution
time of GPU workload is greatly affected by the execution of
other GPU workloads. Our approach to provenance
framework reflects the effect of background load and GPU
resources that are not addressed in this paper.

III. DEFINITION OF PROVENANCE INFORMATION FOR

EXPERIMENTS

We propose a method of collecting common/specific data
for defining provenance information of GPU applications and
classifying data provenance sets from collected data.

A. Collecting Data for Defining GPU Provenance

Information

Provenance information of applications is captured and
recorded. Meanwhile, Data that has an impact on an execution
pattern of applications is also collected. Data provenance
defined in this paper can be applied for every GPU’s
manufacturer. As the concept of warp is only limited to
CUDA programming model, data provenance about warp is
additional data for NVIDIA GPU.

 We use NVIDIA System Management Interface(nvidia-
smi)[9] and nvprof profiling tool[10] to collect related data.
Nvidia-smi is a utility to monitor and manage capabilities,
based on top of the NVIDIA Management Library(NVML)[9].
Nvidia-smi provides information on gpu utilization, which
shows the percentage of each kernel consumes that executing
on the GPU, utilization of Streaming Multiprocessor(SM) and
so forth. Nvprof is a profiling tool that can trace CUDA
activities. Nvprof is able to profile memory transfer
throughput, occupancy defined as the ratio of active warps on
an SM to the maximum number of active warps supported by
the SM and so forth.

B. Grouping Data provenance Sets from Collected Data

Data provenance is related to an execution pattern of
applications, input data, and execution environment. It can be
defined to predict execution pattern. To perform the collection
of provenance data, we employed monitoring tools, which
have been described in the section 3.A. We recorded runtime
processing data by using nvprof. To monitor GPU resource
usage, we utilized nvidia-smi. The data sets from collected
data are grouped into three sets : execution features, pre-
execution features, environment features.

1) Set 1: Execution features: Execution features contain

runtime information about applications. Allocated memory

by each process and GPU utilization are recorded every 5

seconds by using nvidia-smi. Host to Device memory copy

throughput, Device to Host memory copy throughput, SM

efficiency, which is the percentage of time at least one warp

is active on a specific multiprocessor, occupancy and ratio of

the average active threads per warp to the maximum number

of threads per warp supported on a multiprocessor(warp

efficiency) are reported when an application completes its

execution. Their mean value is used as the provenance data

since the variance of them is small enough. We calculate the

total runtime of a process by using the formula

execution time = timestampfinish − timestampstart.

Important features comprising execution features are
shown in columns 1 and 2 of Table I.

2) Set 2: Pre-execution features: Pre-execution features

are collected before the actual execution is started, which

consists of input data onto process and its size. The

denotation of input parameters varies depending on

applications because the diversity of required information on

each application, which contains input data, mesh size, etc.

Considerable features involved in pre-execution features are

shown in column 3 of Table I.

3) Set 3: Environment features: Environment features

categorized into two types: static features and dynamic

features. Static features refer to system hardware information.

Dynamic features indicate data that changes over time of

execution, and hence are recorded at intervals. Static features

comprise total installed GPU memory, GPU speed, an

architecture of GPU and PCI-e bandwidth that measures how

fast the GPU connection is to the CPU's PCI-e controller,

which controls the GPU's access to system memory or RAM.

They also contain the maximum number of warps, thread

blocks, threads and the maximum size of shared memory per

SM that influence on concurrent application Execution. As an

execution pattern of a process of an idle machine and a

machine with background load differs considerably, we

recorded background load on GPU in dynamic features. The

background load includes the percentage of SM allocated by

an active process and PCIe throughput between CPU and

GPU. We recorded them every 5 seconds exploiting nvidia-

smi daemon. Columns 4,5 and of Table I show a list of

important static and dynamic environment features.

TABLE I. PROVENANCE DATA SET

Environment features

Static Dynamic

GPU memory total Warps per SM Free GPU memory

GPU speed
Thread blocks

per SM
SM used

GPU architecture
Shared Memory
per SM

PCIe Rx throughput

PCIe bandwidth Threads per SM PCIe Tx throughput

Execution features
Pre-execution

features

GPU memory used
Device to Host

Throughput
Input size

Execution time Occupancy Input parameters

GPU utilization SM efficiency

Host to Device

Throughput

Warp execution

efficiency

IV. TRACING PROVENACE OF SCIENTIFIC APPLICATIONS

In this section CUDA scientific application LAMMPS and
GROMACS are profiled to collect provenance information.
To collect provenance information these applications are
executed on configuration of Intel(R)Core(TM) i7-5820K and
Nvidia Titan XP.

A. LAMMPS

LAMMPS is a classical molecular dynamics code based
on material modeling. It’s an acronym for Large-scale
Atomic/Molecular Massively Parallel Simulator.

1) Execution provenance information: Execution

provenance information that is recorded every 5 seconds is

shown in Fig. 1.

Fig. 1. Execution provenance features of LAMMPS

LAMMPS uses 363MB~8.3GB of memory during its
execution. GPU utilization of the application is about 25%, as

data transfer between host and device appears frequently.
1176 seconds after the start of the execution, it is presented as
compute-intensive using 8.3GB of memory and showing 100%
utilization of GPU. The total runtime of the process is 1196
seconds, and the average memory throughput from Host to
Device is 5.865GB/s, the average memory throughput from
Device to Host is 8.561 GB/s. The average of SM efficiency
is 82.12%, average warp efficiency is 90.10% and the average
occupancy is 0.55.

2) Pre-execution provenance information: Input

parameters of LAMMPS consist of used package of

LAMMPS, input file, binsize that affects the building

pairwise neighbor lists, and variables x, y, z which indicate

dimensionality of LJ system and the number of creating

particles. In this experiment, we used kokkos package, an

input file of Leonard Jones 3D melt example [11]. We set the

binsize to 2.8 and variables x, y, z to 8.

3) Environment provenance information: Static

environment features of the experiment are shown as TABLE

II.

TABLE II. STATIC ENVIRONMENT FEATURES

Fig 2. is a graph of tracing total free memory, SM usage

and PCIe bus throughput which is a background load that

changes over time dynamically in execution.

Fig. 2. Dynamic environment features of LAMMPS

B. GROMACS

1) Execution provenance information: Execution

provenance information that is recorded every 5 seconds as

shown in Fig. 3. In the case of GROMACS, its total runtime

of the process is 636 seconds and it uses 171MB~537MB of

memory. GROMACS is a compute-intensive application, as

its average GPU utilization is 69% with frequent computation.

The average memory throughput from Host to Device is

11.75GB/s and the average memory throughput from Device

to Host is 12.81GB/s. The average of SM efficiency is

99.98%, average warp efficiency is 71.73% and the average

occupancy is 0.49.

Fig. 3. Execution provenance features of GROMACS

2) Pre-execution provenance information: Required

parameters are determined by which of the programs is

performed. In this experiment, we performed mdrun engine

that simulates Molecular Dynamics and set the number of

steps to conduct 10000 steps. We used water GMX50 bare

benchmark data [12] as input data and its size is 72.017KB.

3) Environment provenance information: Since the

execution environment of GROMACS and LAMMPS are the

same, static environment features are as shown in TABLE II.

Fig 4. is a graph of tracing total free memory, SM usage and

PCIe bus throughput which is a background load that changes

over time dynamically in execution.

Fig. 4. Dynamic environment features of GROMACS

V. EXPERIMENT

We perform experiments by predicting execution patterns
through provenance information traced in section IV. We
compared GPU resource utilization and execution time of
identical workload based on the presence or absence of
provenance information.

Experiment environment, applications, provenance
information for this experiments are explained in prior section.
Workloads using for experiments are 1) consisted of two
LAMMPS applications and 2) consisted of a LAMMPS
application and two GROMACS applications. As a baseline
of application deployment, we choose random deployment of
applications.

A. Consisted of two LAMMPS applications

Fig. 5. shows result of deploying applications randomly

without provenance information. As memory usage of

applications is unknown, two LAMMPS applications are

launched concurrently. It can be seen that only one task

terminates normally with Out Of Memory(OOM) occurring

approximately 1625 seconds after the start of the experiment

since LAMMPS uses 8.3GB memory 1176 seconds after its

launch and GPU total memory of experiment environment is

11.91GB.

Fig. 5. Random application deployment of first workload

Through provenance information, OOM was predicted in

advance and executed by giving a time difference between

Static Environment features

GPU memory total 11.91 GB Warps per SM 64

GPU speed 1582 MHz
Thread blocks
per SM

32

GPU architecture TITAN Xp
Shared Memory

per SM
96KB

PCIe bandwidth 32GB/s Threads per SM 2048

launch of two tasks. Figure 6 shows that both tasks are

successfully terminated. A time difference of 60 seconds

between the two tasks was given, and after 1690 seconds of

experimentation, both tasks are finished normally.

Fig. 6. Application deployment of first workload with provenance

information

B. Consisted of a LAMMPS application and two

GROMACS applications

Figure 7 shows the result of a random placement for three
tasks of the second workload. The sequence of tasks through
the random placement is that two GROMACS launch
simultaneously, and LAMMPS is subsequently executed. The
two GROMACS jobs executed simultaneously end in 1380
seconds. Simultaneous launch of two GROMACS jobs takes
longer than two jobs performed sequentially. This is because
it was executed without considering compute-intensive
characteristic of GROMACS. The LAMMPS application is
dispatched after the end of the two GROMACS applications.
The entire workload took 2576 seconds to run.

Fig. 7. Random application deployment of second workload

On the other hand, Figure 8 shows the results of
experimenting with the simultaneous placement of LAMMPS
application, which is the focus of memory operations, and
GROMACS application, which is compute-intensive. The
result shows that all three tasks took a total of 1,855 seconds
to complete, a reduction of approximately 38% compared to a
random application deployment. This shows that the two tasks
of central use of different resources could be arranged together
to reduce time by increasing the efficiency of resource use.

Fig. 8. Application deployment of second workload with provenance

information

VI. CONCLUSION

In this paper, we defined data provenance for experiments
with GPU applications and managed data by profiling the
execution of CUDA scientific applications LAMMPS and
GROMACS.

By defining provenance information, data from past
experiments can be accumulated and managed systematically.
Based on data provenance management, execution
management allows us to minimize unnecessary experiments.
In addition, it can be used for applications scheduling and
planning efficient resource configuration [5,13]. In this paper,
we show that management with data provenance can resolve
OOM failure and enhance overall workload performance by
utilizing GPU resource through experiments.

We are planning to collect provenance information about

GPU CUDA scientific applications. In addition, we are going

to propose a scheduling strategy including memory usage hint

by predicting execution time based on provenance

information.

ACKNOWLEDGMENT (Heading 5)

This research was supported by Next-Generation
Information Computing Development Program through the
National Research Foundation of Korea (NRF) funded by the
Ministry of Science, ICT and Future Planning
(2015M3C4A7065646) and This work has supported by the
National Research Foundation of Korea(NRF) grant funded
by the Korea government(MSIT)(No. NRF-
2017R1A2B4005681).

REFERENCES

[1] CUDA Toolkit, https://developer.nvidia.com/cuda-toolkit

[2] Open CL Overview, https://www.khronos.org/opencl/

[3] Beyond GPU Memory Limits with Unified Memory on Pascal,
https://devblogs.nvidia.com/beyond-gpu-memory-limits-unified-
memory-pascal/

[4] Ausavarungnirun, Rachata, et al. "Mosaic: a GPU memory manager
with application-transparent support for multiple page sizes."
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, 2017.

[5] Malik, Muhammad Junaid, Thomas Fahringer, and Radu Prodan.
"Execution time prediction for grid infrastructures based on runtime
provenance data." Proceedings of the 8th Workshop on Workflows in
Support of Large-Scale Science. ACM, 2013.

[6] Suh, Young-Kyoon, and Ki Yong Lee. "A survey of simulation
provenance systems: modeling, capturing, querying, visualization, and
advanced utilization." Human-centric Computing and Information
Sciences 8.1 (2018): 27.

[7] LAMMPS, https://lammps.sandia.gov/

[8] GROMACS, http://www.gromacs.org/

[9] NVIDIA System Management Interface, https://developer.nvidia.com/
nvidia-system-management-interface

[10] nvprof, https://docs.nvidia.com/cuda/profiler-users-guide/index.html#
nvprof-overview

[11] Leonard Jones 3D melt example, https://lammps.sandia.gov/inputs/in.
lj.txt

[12] water GMX50 bare, ftp://ftp.gromacs.org/pub/benchmarks/water_GM
X50_bare.tar.gz

[13] Imran, Muhammad, and Helmut Hlavacs. "Provenance in the cloud: W
hy and how?." CLOUD COMPUTING (2012): 106-112.

