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Abstract—Memory management is a significant aspect of
executing applications on GPUs even in the cloud environment.
With the advancements in GPU architecture, issues such as
data reuse, cache line eviction and data residency are to be
considered when optimal performance for concurrently running
applications. Frequency of data access from global memory has
significant impact on the performance of the application with
increased latencies when accesses result in cache misses. Through
static profiling, we identify the access patterns to the global
memory and investigate the relationship between frequent access
patterns and data residency in the cache. From our investigations,
we observed that each application frequently accesses a data
region in memory though the range of addresses accessed differ.
We evaluated our estimated set-aside area for LSTM and CSR
applications. Executions using our proposed estimations shows
a speed-up in the performance LSTM (1.004x) while CSR
experienced a slow-down (0.998x) when both were co-executed
with their respective estimated set-aside areas.

Index Terms—Static Profiling, Frequently Accessed Data, Data
Residency

I. INTRODUCTION

Graphics Processing Units (GPU) provide high computa-
tional capacity for compute intensive applications such as
High Performance Computing (HPC) applications. However,
there remains a bottleneck in performance mostly as a result
of misaligned memory accesses leading to high miss rates.
To mitigate this phenomenon, researchers [1] [2] [3] have
proposed the use of different approaches including the use
of FIFO buffers [4] for instance, to reorder memory requests
and as a result shorten the reuse distance of memory requests
before they are sent to L1 caches. Additionally, GPUs can
hide memory access latencies with computation as multiple
threads execute the same instruction in parallel however the
access patterns of applications are hardly leveraged to improve
performance.

NVIDIA, with it’s Ampere architecture for instance, offer
a new feature that allows the user to leverage data persistence
in a defined portion of the L2 cache for applications with high
frequent accesses [5]. This is an effort to reduce early eviction
of data thus ensuring that data that is frequently accessed is
available during the execution lifetime of the application hence
lowering access latencies.
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On the other hand, Recurrent Neural Network (RNN) like
Long Short-Term Memory (LSTM) use recurrent weights
between GEMM operations, and thus require frequent accesses
to global memory. The recurrent weights in these networks
can be made persistent in L2 and re-used between GEMM
operations [5].

This paper proposes the use of static profiling of PTX code
to determine the access frequencies of data read from the
global memory. By a static profile analysis of the application,
a memory access profile is created to show the memory region
that is accessed through out the application’s execution life-
cycle. From this, regions that are frequently accessed can
be identified and applications can be classified into either
streaming, normal or persistent categories based on the access
frequencies to the data regions. The range of frequently
accessed memory addresses can then be marked for persistent
data storage.

Our research provides a basic approach for application
classification to leverage the benefits of L2 data residency on
modern GPU architectures. Through this study,

• We determined the data access frequencies of applications
through static profiling and create data access profiles for
the applications

• We classified the applications into three groups; persis-
tent, normal and streaming based on a frequency score

• We investigated the size of persistent area required for
optimal performance for an application

• We evaluated the performance of selected applications
when co-scheduled with different applications

The rest of the paper is organized as follows: in Section
2, we briefly describe the background and motivation for this
study and give details of the proposed static profiling approach
in Section 3. In Section 4, we present the results of our study
and highlight some related works in Section 5. We conclude
the paper in Section 6.

II. BACKGROUND AND MOTIVATION
When threads in a warp access a contiguous data region

from the cache repeatedly, the number of cache lines required
for transactions from the global memory reduces thus maxi-
mizing the benefits of newly introduced features such as data
persistence or data residency. However, if such accesses are
not contiguous though repeated, the cache memory fills up
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quickly when the data requested from global memory is very
large. This exposes previously loaded data to early eviction
and warp stalls and eventually leads to higher latency during
execution.

We investigate the effect of data availability in the cache on
time and warp stalls, for an LSTM application [6] using the
Nsight Compute profiler [7]. We profile the LSTM application
for two cache control scenarios: flush all and flush none. The
flush all option for cache control in Nsight Compute clears
the cache of data previously loaded during profiling whilst the
flush none keeps the data in cache during profiling.

Fig. 1. LSTM behaviour in two cache control scenarios

Figure 1 shows a 2x speed-up in the execution time of
the LSTM kernel when data loads are allowed to persist in
the cache memory using the flush none option for the cache
controls in Nsight compute profiler. This also translates in
significant reduction (2x) in the warp stalls observed during
the execution of the kernel.

From these experiments, we observed that applying data
residency to applications such as LSTM could result in signif-
icant improvements in latency and may also mitigate over-all
performance slow-downs for concurrently running applications
scenarios. Following this observation, we investigated the re-
lationship between frequent access patterns and data residency
in the cache using a static data access profiling approach.

III. DATA ACCESS PROFILES BASED ON STATIC PROFILING

Fig. 2. Data Access Profiling Process

Figure 2 describes a method of obtaining the data access
patterns of the application through static profiling from the
global memory. We begin the process by assembling a PTX
code from the application’s executable and use a modified

PTX parser obtained from [8] to obtain information for the
data access profile. Using the parser, the thread-to-memory
relationship in terms of thread ID, block ID, memory addresses
accessed and other kernel parameters are obtained using the
ld.global command. This information can be used to capture
inter-thread, inter-warp, inter-TB locality within the same
kernel as well as across multiple kernels [9] .

A. Data Access Granularity

Blocks are divided into warps of 32 threads with every
thread in the warp executing the same instruction in lock-
step manner but on different data. When a warp executes an
instruction that accesses memory, the requests are processed
together for all the threads within the warp. Thus we extract
the access frequencies at the warp granularity.

We obtain the number of memory access by threads in a
warp for a given address range synonymous to a cache line.
An address range of 128 Bytes per cache is selected since it
is synonymous to a contiguous data region for a cache line
of size 128 Bytes in the Ampere architecture we use for our
experiments. For each data region, the range is defined as 128
Bytes from the start position of the sector first accessed by
a thread within the warp [8]. We record the access frequency
per cache line accessed by each warp.

B. Data Access Profile

Using the information obtained, we create a data access pro-
file for each application. The data access profile is expressed
both graphically and in tabular form (Figure 2). The data
access graph shows only the application’s access patterns and
frequencies. However, the data access profile table contains
additional information derived from further analysis. This
includes the Frequently Accessed Address Range (FAAR), the
Sum of regions within FAAR, the total memory regions, the
Frequency Score (FS) and the class of the application.

The Frequently Accessed Address Range (FAAR), is the
memory address region frequently accessed by the application
during the application’s life-cycle, in bytes. This can be seen
as the dense parts of the data access graph. The number of
accessed regions within this repeatedly accessed data region
during the execution of the application is known as the Sum
of Accesses in FAAR. This metric is particularly useful in
determining the class of the application as well as the Total
Data Accesses accessed by the application.

C. Application classification Approach

For quantitative analysis and application classification, we
calculate a Frequency Score (FS), which is the ratio of all
memory regions accessed in the Frequently Accessed Address
Range (FAAR) to the Total Data Accesses by the application
as shown in equation 1.

FrequencyScore, FS =

∑
AccessinFAAR

TotalDataAccess
(1)

Based on the Frequency Score (high or low), applications
can be classified into one of three classes: streaming(S),
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Fig. 3. Data access profiles for selected applications

normal (N) and persistent (P). Our classification is highly
dependent on the frequency of data access throughout the
application’s execution life-cycle which serves as a reliable
measure. We acknowledge that, there could be multiple con-
tiguous accesses by different threads to the same memory
address which could affect the distribution of accesses to
the addresses regions. With our static profiling approach,
we consider each entry and exit of threads to a given data
region in the global memory as an access order and do not
consider multiple contiguous loads from the same data region
separately.

IV. EXPERIMENTS AND RESULTS

A. Application Classification and Persistent Area

We statically profile four applications: Long Short Time
Memory (LSTM), Compressed Sparse Row (CSR), General
Matrix Multiplication (GEMM) and BiConjugate Gradients
(BICG) from the Tango Benchmarks [6], [10] and Polybench-
mark [11] respectively on one (1) NVIDIA A30 (Ampere
architecture) GPU. We compiled each application with CUDA
version 12.0 before generating the PTX code. Table I shows
the grid/block dimensions of the workloads used during the
static profiling analysis.

TABLE I
APPLICATION GRID-BLOCK DIMENSIONS

WORKLOAD GRID X GRID Y THREAD X THREAD Y
LSTM [6] 1 1 100 1
CSR [10] 8 1 512 1
GEMM [11] 2 8 32 8
BICG [11] 256 16 16 8

Since we do not consider multiple contiguous memory re-
quests to the same memory address separately in this research,

we assume that the accesses to memory follows a normal dis-
tribution throughout the application’s execution life-cycle. We
define three classes according to NVIDIA’s caching policies
[12] and apportion an FS score range to each class. For a score
within the range, 0<FS<0.33, the application is classified as
Streaming(S). For a score within the range 0.33<FS<0.66, the
application is classified as Normal(N). When data is accessed
frequently giving an FS score within the range 0.66<FS<1,
the application is classified as Persistent(P).

TABLE II
DATA ACCESS PROFILE TABLE

Application FAAR, B Total
Data
Access

Sum of
access in
FAAR

FS Class

LSTM [6] 4197496 2406 2005 0.83 P
CSR [10] 20000 1882 1795 0.95 P
GEMM [11] 10364 2416 292 0.12 S
BICG [11] 51324 276 264 0.96 P

Observation 1: Frequently Accessed Address Region
(Persistent Area)

From Table II we observed that, all applications frequently
accessed data within a given range. The range however var-
ied for each application. LSTM application for instance had
a uniformly repeated access pattern to data regions up to
4197496B (4MB) though it accessed data over a 7.6 MB range.
GEMM on the other hand accessed a range of 10364B (10KB)
repeatedly at the beginning of the execution and later streamed
data from different memory locations up to 127KB.

The identified range for repeated accesses over an applica-
tion’s execution life-cycle can serve as the size of memory
reserved for persistence.
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Observation 2: Frequency Score (FS) and Classification
of Applications

The Frequency Score (FS) for each application was cal-
culated relative to the range of data regions accessed by the
application. From Table II, we observed that BICG application
had the highest FS of 0.96. This shows that most of the data
it accessed was within the range identified as the frequently
accessed region. It was therefore classified under applications
with persistent accesses. CSR and LSTM were next with FS of
0.95 and 0.83 respectively which corresponded to the access
patterns depicted in the graph. GEMM on the other hand could
be classified as a streaming application as shown in Figure 3
and from the FS score of 0.12 in Table II.

Observation 3: Data Access Characteristics
We also observed from Table II that, applications running

on the GPU frequently accessed data within a relatively small
range compared to the size of the L2 cache memory. For
instance, the sizes of the frequently accessed memory regions
for CSR (19KB) and BICG (50KB) were very small compared
to that of LSTM (4MB). The range of persistent accesses
varied for each application suggesting that even though some
applications may have high FS, they may not require the L2
cache residency feature.

B. Evaluating Performance For Different Sizes of Persistent
Area

In this research, we evaluated the residency control feature
for concurrently running applications as well. Compared to
other applications, LSTM had the widest range of repeated
data accesses which can affect cache performance. Thus, we
investigated the effect of allocating different sizes of persistent
area to the LSTM application when executed alone.

Fig. 4. Performance for various allocations of L2 Persistent area

From Figure 4 we observed that, while the LSTM appli-
cation was being executed alone, allocating different sizes of
the L2 cache set-aside area affected the performance of the
application differently. For instance, when 12% of the cache
memory was set-aside, it resulted in the worst performance.
We attributed this to the fact that not all the data required
during the execution process was kept in the set-aside area. In

such a case, increased cache misses to the set-aside area would
require additional accesses to the global memory leading to
higher latencies.

We also observed that, by assigning a set-aside area of
17%(4MB) using the estimation obtained from our proposed
approach, LSTM application experienced the best performance
with the highest speed-up. This re-emphasized the need to
accurately estimate the set-aside area of the L2 cache based on
the application’s characteristics. We assumed that A30 allows
L2 cache to be set-aside for persistent accesses in 1/16th
increments (1.5 MB) as it is for the A100 [5]. Consequently, by
comparing the performance of the estimated set-aside area to
other sizes (+/- 1.5MB), we observed that allocating additional
set-aside area than required by the application may result in
slowdowns instead of the intended speedup.

C. Evaluating Performance For Concurrent Executions in
Different Scheduling Scenarios

We investigated the performance of residency controls when
executing two applications concurrently for different scenarios.

Scenario 1: Set-Aside (SA) for LSTM only
We investigated the effect of data residency on performance

when co-running LSTM with CSR application which does
not have any persistent area allocated to it. We compared the
results with the performance of LSTM when running alone
(No Set-Aside, NSA) in Figure 5.

Fig. 5. Performance for concurrent executions

From Figure 5 we compared co-executing LSTM (17% SA)
with CSR (NSA) to co-executing LSTM (NSA) with CSR
(NSA) and compare the results. From the experiments, we
observed that when LSTM was co-executed with CRS, there
was a degradation in performance. This however improved
when a set-aside area of 17% was allocated to LSTM. We
allude the improved performance to the allocation of the set-
aside area in LSTM which facilitates faster access to data in
the L2 cache.

Scenario 2: Set-Aside (SA) for both LSTM and CSR
We also investigated the effect of set-aside areas on per-

formance when both co-running applications have different
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set-aside areas allocated to them. We compared the results for
set-aside values allocated using our proposed estimations and
otherwise to the performance of each application when run
alone. The results are presented in Figure 6.

Fig. 6. Performance for concurrent executions(Both set-aside)

From Figure 6 it was observed that, when co-executed with
set-aside areas allocated according to our estimations, while
LSTM experienced a speed-up of 1.004x, CSR experienced a
slow-down of 0.998x when both were co-executed with their
respective estimated set-aside areas. We observed also that
when 75% of the set-aside area is allocated to CSR, and 17% is
allocated to LSTM, LSTM(17% SA) experiences performance
degradation as the performance was 0.994x compared to the
performance when LSTM (17% SA) was executed alone. On
the other hand, CSR (0.993x) also experiences performance
degradation when 75% of the set-aside is allocated to it and
run concurrently with LSTM(17% SA). This suggests that,
when the total allocation for persistent area for all concurrently
running applications exceed the maximum 75% set-aside, there
would be performance degradation of all the applications
concurrently running on the GPU.

We also observed that, applications whose frequent data
access range is less than 1.5MB such as CSR experienced
were more prone to performance degradation thus, we do not
recommend the use of the L2 cache residency control feature
for such applications.

V. RELATED WORKS

The design of modern GPU architectures reveal an attempt
to maximize memory bandwidth by using as much fast mem-
ory and as little slow-access memory as possible hence im-
proving over-all performance. Prior research works [9], [13]–
[15] have attempted to identify access patterns and analyze
data reusability between thread blocks to maximize the gains
from data locality among threads. Also according to Walden
et al. [2], the data layout of applications influence the effective
utilization of memory bandwidth in GPU architectures.

Research works [3], [16]–[19], having discovered that cache
lines are sometimes evicted before they are accessed by
the threads that need the data, have suggested different ap-
proaches to improve cache management. Some works focused
on determining the reuse of data stored in memory, seek to

protect frequently accessed data from early eviction and hence
improve performance. However, these works do not classify
applications based on the frequency of data access.

In order to maximize the benefits of new features introduced
in modern GPU architectures such as the L2 cache residency
control feature, it is imperative to quantitatively determine the
amount of frequent accesses by the application and identify
the access patterns to the global memory. Degioanni’s StAMP
[20], propose a memory access profile which can be used
by off-line scheduling strategies to minimize interference
overhead. However, they did not consider the frequency of
access to data regions.

In our research, creating a data access profile serves as a
basis for classifying an application. From the data access pro-
files, data regions with continuous access frequencies can be
identified and explored to influence data residency decisions.

CONCLUSION AND FUTURE WORK

This paper implements a static profiling analysis to identify
the access patterns of selected applications to global memory
when executed on NVIDIA’s A30 GPU. From our investi-
gations, we observed that each application accesses a given
memory region repeatedly. We classify the applications into
three groups based on the frequency of access throughout
the life-cycle of the application. We also estimated the op-
timum set-aside area for the LSTM application and evaluated
the performance of the application for various co-scheduling
scenarios. We ascertained that accurately estimating the set-
aside areas is directly correlated to the performance of the
application applying the data residency feature.
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