
VM Auto-Scaling for Workflows in Hybrid Cloud Computing

Younsun Ahn
Dept. of Computer Science

Sookmyung Women’s University
Seoul, Korea

ahnysun@sookmyung.ac.kr

Yoonhee Kim
Dept. of Computer Science

Sookmyung Women’s University
Seoul, Korea

yulan@sookmyung.ac.kr

Abstract— Appearance of Science Clouds enables scientists
to facilitate large-scale scientific computational experiments
over cloud environment. Many task computing (MTC) in
computational science needs to certificate stable executions of
applications even in rapid changes of vital status of physical
resources and supports high performance resources in a long
period. Auto-scaling approach on virtual machines (VM)
increases efficient cloud resources management for the
computational problem solving environment. Diverse auto-
scaling methods which provide useful resource management
presently are being debated and studied. However, most of the
auto-scaling methods are just easily considered in performance
metrics or execution deadline in specific workloads but not in
various patterns of workflow. We propose an auto-scaling
method, guaranteeing the execution of various patterns of
workflow within deadline time in hybrid cloud environment.
The experimental results show the method works dynamically
and acceptably on hybrid cloud resources for various workflow
patterns having random workload dependency.

Keywords— auto-scaling; hybrid cloud computing;
workflow; workflow dependency;

I. INTRODUCTION

Cloud computing provides on-demand and scalable
resources dynamically in order to support application
execution. Appearance of Science Clouds enables scientists
to facilitate large-scale scientific computational experiments
over cloud environment. Many task computing (MTC) needs
to certificate stable executions of applications even in rapid
changes of vital status of physical resources and support high
performance resources in a long time. Therefore, studying
computational problem solving environment has been getting
more important as it supports the management of task
executions or resources in large-scale computation. Auto-
scaling approach on virtual machines (VM) increases
efficient cloud resources management for the computational
problem solving environment. Our previous paper [1]
proposed an auto-scaling method to provide efficient
resource utilization in a hybrid cloud computing environment.
Tasks in Bag-of-Tasks (BoT) [2] can run in parallel while
tasks in workflow can be executed in the order of
dependency. However, the proposed auto-scaling algorithm
limited to specific Bag-of-Tasks in aerodynamics and
workflows in protein annotation workflow. We need an auto-

scaling method in order to perform applications in a general
form of workflows.

This paper proposes an extended version of the auto-
scaling method, reflecting in various workflow patterns of
tasks based on cloud computing environment. Especially, it
dynamically allocates virtual resources depending on tasks in
workflow on hybrid cloud environment. We propose an auto-
scaling method that can meet a deadline in various workflow
patterns. We focus on dynamically allocating VMs in order
to maximize resource utilization within a deadline and
dealing with task dependency in workflow application. We
have evaluated the auto-scaling method with various
workflow patterns which have a large number of tasks in
hybrid cloud resources. The results of a simulation show the
method performs automatically resource allocation satisfying
deadline constraints.

The rest of the paper is organized with the sections as
follows; we introduce an overview of related works in
Section 2. Section 3 explains an auto-scaling algorithm and
Section 4 contains contents about a workflow generation.
Section 5 explains experiment results. Finally, we conclude
the paper and discuss future work in final section.

II. RELATED WORK

Auto-scaling approaches which provide useful resource
management presently are being debated and studied. Auto-
scaling issues are divided into two sides. First one is rule-
based auto-scaling methods such as "Auto-scaling" of AWS
[3], Paraleap [4] for Windows Azure [5], and Scalr [6]. This
method changes the number of resources by user-defined
metrics. However, rule-based auto-scaling methods could
lead to execution failure of an individual application in short
of consideration on its characteristics such as execution
deadline.

In the other side, [7], [8], [9], [10], and [11] are the
studies of auto-scaling in consideration of constraints such as
a deadline of applications or cost for resource usage. [7]
proposes an auto-scaling method minimizing resource usage
cost. Horizontal scaling and vertical scaling are used.
Horizontal scaling adds or removes the number of VMs and
vertical scaling controls the size of a VM. However, this
paper only provides resource allocation for Bag-of-Tasks [2]
jobs and also dissatisfied resource usage during execution of
an application.

This research was supported by Basic Science Research Program through the Natio
nal Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT
and Future Planning (NRF-2013R1A1A3007866)

2014 IEEE International Conference on Cloud and Autonomic Computing

978-1-4799-5841-2/14 315.00 © 2014 IEEE

DOI 10.1109/ICCAC.2014.34

237

However, [9] does not consider various types of
workload patterns. [9] lacks considering a mixture of
workload patterns. It just performs three special types of
workload patterns. It is necessary for our proposed auto-
scaling method to consider different workflow patterns to
perform automatically. Therefore, we generate various
workflow patterns and apply it to our proposed auto-scaling
method.

[10] and [11] propose their auto-scaling methods for the
execution of workflow applications on Grids. [10] minimizes
cost by using sub-deadline and also can reduce execution
time for the entire workflow. [11] schedules dependent jobs
efficiently. Reference [10]'s and [11]'s workflows are just too
simple to evaluate their auto-scaling method. Various
patterns of workflows exist in applications. Workflow
patterns affect auto-scaling method by the number of tasks
and dependency. It may not be possible to schedule an
amount of workflow tasks actually needed. We propose an
algorithm for workflow referring to [10] and [11].

In this paper, we propose an extended version of an auto-
scaling method based on our previous research [1] which can
support efficient resource utilization considering the types of
jobs in Bag-of-Tasks [2] as well as workflows. Proposed
auto-scaling method reflects complex structures of workflow
by increasing the number of tasks and dependency. Auto-
scaling method can automatically allocate cloud resources by
task dependency in a various workflow patterns within
deadline.

III. AUTO-SCALING ALGORITHM

We extend [1]’s auto-scaling algorithm which consider
only tasks in Bag-of-Task, to support workflow as well.
Initial scheduling schedules tasks to prevent waste of VMs
within a deadline. Auto-scaling method can perceive delay
and deadline violation to comparing actual start time and
estimated start time of running tasks during monitoring
interval. Algorithm’s assumption and notation are referred to
[1].

Algorithm 1 – Run-time Scaling
Input – An application,

SLA={a policy P, a deadline D [, minimum performance requirement
minPM]}

Output – Scaling decision S = { toStartUp, toShutDown }
Scheduling decision S = { tasks → VMs}

1: If SCALING is TRUE
2: If Job pattern is bag-of-tasks job
3: Sort waiting tasks in decreasing order of execution length;
4: S ← Cost-aware Scheduling(sortedTasks, D, minPM);
5: If Job pattern is workflow.
6: Sort waiting tasks in sequential order;
7: S ← WorkflowScheduling(sortedTasks, D);
8: each vm where status is running
9: if no running/waiting tasks on vm then

10: destroy the vm
11: send scaling decisions to DRMS
12: send scheduling decisions to JES
13: waitForNextInterval();
14: SCALING ← SLAMonitoring(runningTasks, D);
15:

Algorithm 1, Run-time Scaling is extended based on [1].
We newly propose algorithm 2, Workflow Scheduling
algorithm to perform tasks in workflow. In the reference [1],
Run-time Scaling algorithm can choose an appropriate policy
by a pattern of tasks.

Additionally, we extend policies in order to perform
workflow as well as Bag-of-Tasks [2] patterns of tasks.
Tasks are scheduled with applying one of the two policies
such as Cost-aware Scheduling (line 2) and Workflow
Scheduling (line 5) of SLA (Service Level Agreements).
Cost-aware Scheduling is suitable for a type of tasks in Bag-
of-Tasks [2], but Workflow Scheduling is proper to
workflow patterns. Cost-aware Scheduling chooses VMs
which considered billing time unit to save the cost and user
specific minimal performance. Tasks in Bag-of-Tasks [2] are
sorted as descending order based on their execution time,
while tasks in workflow are performed sequential order.

Algorithm 2 describes our Workflow Scheduling
algorithm. The algorithm discovers appropriate a critical
path for processing the workflow tasks and schedules the
tasks. Proposed Workflow Scheduling algorithm is based on
a PCH algorithm [11]. When our auto-scaling method tries
to schedule VMs, our method has to adopt a private cloud
resource first. When our algorithm tries to allocate public
cloud resources for tasks, it considers VMs in the order of
running ones, one having the fastest start time, and ones
within application deadline. First of all, we find a critical
path by using PCH algorithm [11]. Tasks on a critical path
are scheduled in a private cloud resource in order to reduce
a cost of resource usage (line 3). The total execution time of
the critical path is decided by a deadline and additional
margin value. It is important to consider task dependency in
workflow. Each task could get an EFT (Estimated Finish
Time) of a parent task and set an EST (Earliest Start Time)
value to EFT of a parent task in order to reflect the order of
tasks (line 5). When tasks that are not on a critical path are
allocated to VMs, tasks are checked whether their parent
tasks have been performed or not. If parent tasks are not
allocated in cloud resources, child tasks must wait to be
scheduled. The algorithm could calculate an EST of a child
task considering EFT of its parent tasks (line 10 (private),
line 12 (public)). The algorithm can perform tasks using the
appropriate number of VMs. The algorithm can perform
tasks using the appropriate number of VMs. Workflow
Scheduling algorithm can execute tasks considering task
dependency and meeting deadline in a various workflow
patterns.

Algorithm 2– Workflow Scheduling
Input –Waiting tasks of the application,
Output –Scheduling decision S = { tasks → VMs}, VM list toStartUp.for the VMs

to be newly created
1: All tasks are scheduled in sequential order
2: Task in Critical path is allocated VM

3: If There is no running VM, Find a vm on which all task in Critical path can run
within the D;

4: EST VM is related previous task’s EFT VM

5: Calculate EFT VM by adding EST VM and ET(Execution Time) VM;
6: Task which has allocated related previous tasks on vm
7: If There is no running private VM, find a private vm

238

(PMvm >= minPM) on which task can start the fastest within the D;
8: EST VM is related previous task’s EFT VM

9: Calculate EFT VM by adding EST VM and ET VM;
10: If There is running private VM, schedule task to vm;
11: Continue with the next task;
12: If There is no running public VM, find a public vm

(PMvm >= minPM) on which task can start the fastest within the D;
13: EST VM is related previous task’s EFT VM ;
14: Calculate EFT VM by adding EST VM and ET VM;

15: If There is running public VM, Choose Cheaper VM either
running VM or chosen VM

16: Schedule task to chosen vm;
17: Continue with the next task;

IV. WORKFLOW GENERATION

A workflow is commonly represented by a directed
acyclic graph (DAG). In a workflow, tasks have their own
order, that is child tasks, can execute when parent tasks are
finished. Tasks which have a workflow pattern are important
to consider dependency and their order during the auto-
scaling method. We experiment our auto-scaling method to
prove our Workflow Scheduling can allocate VM to various
kinds of workflow patterns. We develop random workflow
generation in order to apply a various workflow patterns. We
generate various patterns of workflow by using the random
number of depth and the random number of parent tasks
which represent dependency. And we also make the random
number of tasks at each level.

Figure 1. The example of a workflow

V. EXPRIMENTS

We use CloudSim [12] to simulate various workflows.
We simulate our proposed auto-scaling algorithm in hybrid
cloud environment. In this experiment, we use four private
clouds (600 MIPS) and public clouds (Amazon EC2) and
the values of MIPS for public cloud resources range from
200 to 2000. We use a fixed length of tasks in order to
analysis the effects of workflow depth and workflow
dependency.

Figure 2. The result of auto-scaling method comparing with various
workflows

Fig. 2 shows the performance of the proposed auto-
scaling method comparing with two different workflow
patterns. Monitoring interval is 800 seconds. We compare
two specific workflow patterns among a various workflow
patterns to prove that our proposed auto-scaling method
automatically allocate tasks to VMs. Workflow A and B
have same number of tasks, but they have different
workflow patterns. Workflow A and B have 1000 tasks and
25 depths. Workflow A has 47208 dependency edges, while
Workflow B has 53661 dependency edges. Workflow A has
the number of tasks at each level, 139, 50, 240, 80, 150, 130,
110, 55, 45, and 1. The number of tasks has at a level, 121,
40, 100, 172, 200, 153, 14, 132, 65, and 3 in workflow B.
Each workflow finishes and meets the deadline which is
8600 seconds. Initially, Workflow A uses 139 VMs, but
Workflow B allocates 121 VMs to perform tasks which can
execute in parallel. In 4800 seconds, Workflow A allocates
cloud resources less than workflow B, because workflow A
has tasks which wait for VM more than workflow B has.
Workflow A and B allocate cloud resources dynamically
considering dependency within deadline. The Fig. 2 shows
our proposed auto-scaling method, allocates resources
dynamically actually needed. The key factors for the
number change of VM are dependency and the number of
each level's tasks. The proposed auto-scaling algorithm
successfully performs automatically allocating tasks with
dependency in workflows.

Figure 3. The number of VM by changing the number of dependency

239

Fig. 3 shows the number of VM and the execution time
by changing the number of dependency.

In this experiment, we fix the number of depth in order
not to be affected by depth and use 1000 tasks. The Fig. 3
shows the number of VMs have come down during the
increasing number of dependency. In all cases, Tasks are
finished within deadline, 8600 seconds. A workflow has
5000 dependency edges, it uses 48 VMs. In a case of 35000
dependency edges, it uses the least the number of VMs to
complete executions because they have a large number of
waiting task.

If a task has many parent tasks, it would wait until all of
parent tasks are finished. So, dependency prevents tasks
from allocating cloud resources independently.

Figure 4. The number of VM by changing the number of depth

In Fig. 4, each the number of depth represents the number
of VM and execution time. 1000 tasks are generated for the
experiment. The Figure shows the number of VM is affected
by the number of depth. It generally decreases the number
of VMs when the number of depth increases. The execution
time extends by increasing the number of depth. In case of a
workflow having 5 depths, it uses 198 VMs in order to
finish all tasks within deadline. In a case of one with 17
depths, it allocates 62 VMs. When a workflow has 37
depths, it uses the least amount of VMs. The Figure shows
that it reduces the number of the VMs up to 23. It is
necessary to consider the number of depth in a workflow.
The number influences task’s waiting time according to the
auto-scaling method.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an auto-scaling method that
allocated effective resource utilization for workflow in
hybrid cloud computing. We conducted experiments with
various types of workflow to cover diverse types of
applications.

The proposed auto-scaling method performs dynamic
resource allocation for diverse workflows within a deadline.
Scale-in and scale-out were automatically made within a
workflow deadline by considering task dependency in
various patterns of workflow.

For the future, we plan to add diverse policies such as
semantic policy considering characteristics of an application.

REFERENCES

[1] Hyejeong Kang, Jung-in Koh, Yoonhee Kim, A SLA driven VM Auto-
Scaling Method in Hybrid Cloud Environment. APNOMS 2013,
Hiroshima, Japan, September 25-28 2013.

[2] W. Cirne, F. Brasileiro, J. Sauvé, Na. Andrade, D. Paranhos, E.
Santos-Neto, R. Medeiros, Grid Computing for Bag of Jobs
Applications. Proceedings of the 3rd IFIP Conference on E-
Commerce, E-Business and E-Government, September 21-23 2003.

[3] Amazon Web Service, http://aws.amazon.com/
[4] Paraleap, https://www.paraleap.com/
[5] Windows Azure, http://www.windowsazure.com/
[6] Scalr, http://scalr.com/
[7] S. Dutta, S. Gera, A. Vermam, and B. Viswanathan, Smartscale:

Automatic application scaling in enterprise clouds. in 5th IEEE
International Conference on Cloud Computing (CLOUD), pp. 221-
228, June 2012.

[8] L. Bittencourt, and E. Maderia, HCOC: A Cost Optimization
Algorithm For Workflow Scheduling in Hybrid clouds. Journal of
Internet Services and Applications, Vol.2, Springer-Verlag, pp. 207-
227, December 2011.

[9] M. Mao, and M. Humphrey. Auto-scaling to minimize cost and meet
application deadlines in cloud workflows. in 2011 International
Conference for High Performance Computing, Networking, Storage
and Analysis, November 12-18 2011.

[10] J. Yu, R. Buyya, and C. K. Tham, Cost-based scheduling of scientific
workflow applications on utility grids. in 1st IEEE International
Conference on e-Science and Grid Computing, Melbourne, Australia,
December 5-8 2005.

[11] L. F. Bittencourt, and E. R. Madeira, A performance oriented
adaptive scheduler for dependent tasks on grids. Concurrency and
Computation: Practice and Experience, Vol. 20 Issue. 9, pp. 1029-
1049, 2008.

[12] Rodrigo N, Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose,
and R. Buyya. Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource
provisioning algorithms. Software: Practice and Experience,
41(1):23–50, 2011.

240

