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Abstract— Appearance of Science Clouds enables scientists 
to facilitate large-scale scientific computational experiments 
over cloud environment. Many task computing (MTC) in 
computational science needs to certificate stable executions of 
applications even in rapid changes of vital status of physical 
resources and supports high performance resources in a long 
period. Auto-scaling approach on virtual machines (VM) 
increases efficient cloud resources management for the 
computational problem solving environment. Diverse auto-
scaling methods which provide useful resource management 
presently are being debated and studied. However, most of the 
auto-scaling methods are just easily considered in performance 
metrics or execution deadline in specific workloads but not in 
various patterns of workflow. We propose an auto-scaling 
method, guaranteeing the execution of various patterns of 
workflow within deadline time in hybrid cloud environment. 
The experimental results show the method works dynamically 
and acceptably on hybrid cloud resources for various workflow 
patterns having random workload dependency. 
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I. INTRODUCTION 

Cloud computing provides on-demand and scalable 
resources dynamically in order to support application 
execution. Appearance of Science Clouds enables scientists 
to facilitate large-scale scientific computational experiments 
over cloud environment. Many task computing (MTC) needs 
to certificate stable executions of applications even in rapid 
changes of vital status of physical resources and support high 
performance resources in a long time. Therefore, studying 
computational problem solving environment has been getting 
more important as it supports the management of task 
executions or resources in large-scale computation. Auto-
scaling approach on virtual machines (VM) increases 
efficient cloud resources management for the computational 
problem solving environment. Our previous paper [1] 
proposed an auto-scaling method to provide efficient 
resource utilization in a hybrid cloud computing environment. 
Tasks in Bag-of-Tasks (BoT) [2] can run in parallel while 
tasks in workflow can be executed in the order of 
dependency. However, the proposed auto-scaling algorithm 
limited to specific Bag-of-Tasks in aerodynamics and 
workflows in protein annotation workflow. We need an auto- 

scaling method in order to perform applications in a general 
form of workflows.  

This paper proposes an extended version of the auto-
scaling method, reflecting in various workflow patterns of 
tasks based on cloud computing environment. Especially, it 
dynamically allocates virtual resources depending on tasks in 
workflow on hybrid cloud environment. We propose an auto-
scaling method that can meet a deadline in various workflow 
patterns. We focus on dynamically allocating VMs in order 
to maximize resource utilization within a deadline and 
dealing with task dependency in workflow application. We 
have evaluated the auto-scaling method with various 
workflow patterns which have a large number of tasks in 
hybrid cloud resources. The results of a simulation show the 
method performs automatically resource allocation satisfying 
deadline constraints.  

The rest of the paper is organized with the sections as 
follows; we introduce an overview of related works in 
Section 2. Section 3 explains an auto-scaling algorithm and 
Section 4 contains contents about a workflow generation. 
Section 5 explains experiment results. Finally, we conclude 
the paper and discuss future work in final section. 

II. RELATED WORK 

Auto-scaling approaches which provide useful resource 
management presently are being debated and studied. Auto-
scaling issues are divided into two sides. First one is rule-
based auto-scaling methods such as "Auto-scaling" of AWS 
[3], Paraleap [4] for Windows Azure [5], and Scalr [6]. This 
method changes the number of resources by user-defined 
metrics. However, rule-based auto-scaling methods could 
lead to execution failure of an individual application in short 
of consideration on its characteristics such as execution 
deadline. 

In the other side, [7], [8], [9], [10], and [11] are the 
studies of auto-scaling in consideration of constraints such as 
a deadline of applications or cost for resource usage. [7] 
proposes an auto-scaling method minimizing resource usage 
cost. Horizontal scaling and vertical scaling are used. 
Horizontal scaling adds or removes the number of VMs and 
vertical scaling controls the size of a VM. However, this 
paper only provides resource allocation for Bag-of-Tasks [2] 
jobs and also dissatisfied resource usage during execution of 
an application.  
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However, [9] does not consider various types of 
workload patterns. [9] lacks considering a mixture of 
workload patterns. It just performs three special types of 
workload patterns. It is necessary for our proposed auto-
scaling method to consider different workflow patterns to 
perform automatically. Therefore, we generate various 
workflow patterns and apply it to our proposed auto-scaling 
method. 

[10] and [11] propose their auto-scaling methods for the 
execution of workflow applications on Grids. [10] minimizes 
cost by using sub-deadline and also can reduce execution 
time for the entire workflow. [11] schedules dependent jobs 
efficiently. Reference [10]'s and [11]'s workflows are just too 
simple to evaluate their auto-scaling method. Various 
patterns of workflows exist in applications. Workflow 
patterns affect auto-scaling method by the number of tasks 
and dependency. It may not be possible to schedule an 
amount of workflow tasks actually needed. We propose an 
algorithm for workflow referring to [10] and [11].  

In this paper, we propose an extended version of an auto-
scaling method based on our previous research [1] which can 
support efficient resource utilization considering the types of 
jobs in Bag-of-Tasks [2] as well as workflows. Proposed 
auto-scaling method reflects complex structures of workflow 
by increasing the number of tasks and dependency. Auto-
scaling method can automatically allocate cloud resources by 
task dependency in a various workflow patterns within 
deadline. 

III. AUTO-SCALING ALGORITHM

We extend [1]’s auto-scaling algorithm which consider 
only tasks in Bag-of-Task, to support workflow as well. 
Initial scheduling schedules tasks to prevent waste of VMs 
within a deadline. Auto-scaling method can perceive delay 
and deadline violation to comparing actual start time and 
estimated start time of running tasks during monitoring 
interval. Algorithm’s assumption and notation are referred to 
[1].  

Algorithm 1 – Run-time Scaling
Input – An application, 

SLA={a policy P, a deadline D [, minimum performance requirement 
minPM ]}

Output – Scaling decision S = { toStartUp, toShutDown }
Scheduling decision S = { tasks → VMs}

1: If SCALING is TRUE
2: If Job pattern is bag-of-tasks job 
3: Sort waiting tasks in decreasing order of execution length;
4: S ← Cost-aware Scheduling(sortedTasks, D, minPM); 
5: If Job pattern is workflow.
6: Sort waiting tasks in sequential order;
7: S ← WorkflowScheduling(sortedTasks, D);
8: each vm where status is running
9: if no running/waiting tasks on vm then

10: destroy the vm
11: send scaling decisions to DRMS
12: send scheduling decisions to JES
13: waitForNextInterval();
14: SCALING ← SLAMonitoring(runningTasks, D);
15:

Algorithm 1, Run-time Scaling is extended based on [1]. 
We newly propose algorithm 2, Workflow Scheduling 
algorithm to perform tasks in workflow. In the reference [1], 
Run-time Scaling algorithm can choose an appropriate policy 
by a pattern of tasks.  

Additionally, we extend policies in order to perform 
workflow as well as Bag-of-Tasks [2] patterns of tasks. 
Tasks are scheduled with applying one of the two policies 
such as Cost-aware Scheduling (line 2) and Workflow 
Scheduling (line 5) of SLA (Service Level Agreements). 
Cost-aware Scheduling is suitable for a type of tasks in Bag-
of-Tasks [2], but Workflow Scheduling is proper to 
workflow patterns. Cost-aware Scheduling chooses VMs 
which considered billing time unit to save the cost and user 
specific minimal performance. Tasks in Bag-of-Tasks [2] are 
sorted as descending order based on their execution time, 
while tasks in workflow are performed sequential order. 

Algorithm 2 describes our Workflow Scheduling 
algorithm. The algorithm discovers appropriate a critical 
path for processing the workflow tasks and schedules the 
tasks. Proposed Workflow Scheduling algorithm is based on 
a PCH algorithm [11]. When our auto-scaling method tries 
to schedule VMs, our method has to adopt a private cloud 
resource first. When our algorithm tries to allocate public 
cloud resources for tasks, it considers VMs in the order of 
running ones, one having the fastest start time, and ones 
within application deadline. First of all, we find a critical 
path by using PCH algorithm [11]. Tasks on a critical path 
are scheduled in a private cloud resource in order to reduce 
a cost of resource usage (line 3). The total execution time of 
the critical path is decided by a deadline and additional 
margin value. It is important to consider task dependency in 
workflow. Each task could get an EFT (Estimated Finish 
Time) of a parent task and set an EST (Earliest Start Time) 
value to EFT of a parent task in order to reflect the order of 
tasks (line 5). When tasks that are not on a critical path are 
allocated to VMs, tasks are checked whether their parent 
tasks have been performed or not. If parent tasks are not 
allocated in cloud resources, child tasks must wait to be 
scheduled. The algorithm could calculate an EST of a child 
task considering EFT of its parent tasks (line 10 (private), 
line 12 (public)). The algorithm can perform tasks using the 
appropriate number of VMs. The algorithm can perform 
tasks using the appropriate number of VMs. Workflow 
Scheduling algorithm can execute tasks considering task 
dependency and meeting deadline in a various workflow 
patterns. 

Algorithm 2– Workflow Scheduling 
Input –Waiting tasks of the application, 
Output –Scheduling decision S = { tasks → VMs}, VM list toStartUp.for the VMs 

to be newly created
1: All tasks are scheduled in sequential order
2: Task in Critical path is allocated VM

3: If There is no running VM, Find a vm on which all task in Critical path can run 
within the D; 

4: EST VM  is related previous task’s EFT VM 

5: Calculate EFT VM by adding EST VM and ET(Execution Time) VM;
6: Task which has allocated related previous tasks on vm
7: If There is no running private VM, find a private vm 
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(PMvm >= minPM) on which task can start the fastest within the D;
8: EST VM is related previous task’s EFT VM 

9: Calculate EFT VM by adding EST VM and ET VM;
10: If There is running private VM, schedule task to vm;
11: Continue with the next task;
12: If There is no running public VM, find a public vm 

(PMvm >= minPM) on which task can start the fastest within the D;
13: EST VM is related previous task’s EFT VM ;
14: Calculate EFT VM by adding EST VM and ET VM;

15: If There is running public VM, Choose Cheaper VM either 
running VM or chosen VM 

16: Schedule task to chosen vm;
17: Continue with the next task;

IV. WORKFLOW GENERATION

A workflow is commonly represented by a directed 
acyclic graph (DAG). In a workflow, tasks have their own 
order, that is child tasks, can execute when parent tasks are 
finished. Tasks which have a workflow pattern are important 
to consider dependency and their order during the auto-
scaling method. We experiment our auto-scaling method to 
prove our Workflow Scheduling can allocate VM to various 
kinds of workflow patterns. We develop random workflow 
generation in order to apply a various workflow patterns. We 
generate various patterns of workflow by using the random 
number of depth and the random number of parent tasks 
which represent dependency. And we also make the random 
number of tasks at each level. 

Figure 1. The example of a workflow 

V. EXPRIMENTS

We use CloudSim [12] to simulate various workflows.
We simulate our proposed auto-scaling algorithm in hybrid 
cloud environment. In this experiment, we use four private 
clouds (600 MIPS) and public clouds (Amazon EC2) and 
the values of MIPS for public cloud resources range from 
200 to 2000. We use a fixed length of tasks in order to 
analysis the effects of workflow depth and workflow 
dependency.  

Figure 2. The result of auto-scaling method comparing with various 
workflows  

Fig. 2 shows the performance of the proposed auto-
scaling method comparing with two different workflow 
patterns. Monitoring interval is 800 seconds. We compare 
two specific workflow patterns among a various workflow 
patterns to prove that our proposed auto-scaling method 
automatically allocate tasks to VMs. Workflow A and B 
have same number of tasks, but they have different 
workflow patterns. Workflow A and B have 1000 tasks and 
25 depths. Workflow A has 47208 dependency edges, while 
Workflow B has 53661 dependency edges. Workflow A has 
the number of tasks at each level, 139, 50, 240, 80, 150, 130, 
110, 55, 45, and 1. The number of tasks has at a level, 121, 
40, 100, 172, 200, 153, 14, 132, 65, and 3 in workflow B. 
Each workflow finishes and meets the deadline which is 
8600 seconds.  Initially, Workflow A uses 139 VMs, but 
Workflow B allocates 121 VMs to perform tasks which can 
execute in parallel. In 4800 seconds, Workflow A allocates 
cloud resources less than workflow B, because workflow A 
has tasks which wait for VM more than workflow B has. 
Workflow A and B allocate cloud resources dynamically 
considering dependency within deadline. The Fig. 2 shows 
our proposed auto-scaling method, allocates resources 
dynamically actually needed. The key factors for the 
number change of VM are dependency and the number of 
each level's tasks. The proposed auto-scaling algorithm 
successfully performs automatically allocating tasks with 
dependency in workflows.  

Figure 3. The number of VM by changing the number of dependency 
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Fig. 3 shows the number of VM and the execution time 
by changing the number of dependency. 

In this experiment, we fix the number of depth in order 
not to be affected by depth and use 1000 tasks. The Fig. 3
shows the number of VMs have come down during the 
increasing number of dependency. In all cases, Tasks are 
finished within deadline, 8600 seconds. A workflow has 
5000 dependency edges, it uses 48 VMs. In a case of 35000 
dependency edges, it uses the least the number of VMs to 
complete executions because they have a large number of 
waiting task.  

If a task has many parent tasks, it would wait until all of 
parent tasks are finished. So, dependency prevents tasks 
from allocating cloud resources independently. 

Figure 4. The number of VM by changing the number of depth 

In Fig. 4, each the number of depth represents the number 
of VM and execution time. 1000 tasks are generated for the 
experiment. The Figure shows the number of VM is affected 
by the number of depth. It generally decreases the number 
of VMs when the number of depth increases. The execution 
time extends by increasing the number of depth. In case of a 
workflow having 5 depths, it uses 198 VMs in order to 
finish all tasks within deadline. In a case of one with 17
depths, it allocates 62 VMs. When a workflow has 37 
depths, it uses the least amount of VMs. The Figure shows 
that it reduces the number of the VMs up to 23. It is 
necessary to consider the number of depth in a workflow.
The number influences task’s waiting time according to the 
auto-scaling method. 

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an auto-scaling method that 
allocated effective resource utilization for workflow in 
hybrid cloud computing. We conducted experiments with 
various types of workflow to cover diverse types of 
applications.

The proposed auto-scaling method performs dynamic 
resource allocation for diverse workflows within a deadline. 
Scale-in and scale-out were automatically made within a 
workflow deadline by considering task dependency in 
various patterns of workflow.

For the future, we plan to add diverse policies such as 
semantic policy considering characteristics of an application. 
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