
Toward Interference-aware GPU Container Co-scheduling Learning from
Application Profiles

Sejin Kim
Department of Computer Science
Sookmyung Women’s University

Seoul, Korea
wonder960702@gmail.com

Yoonhee Kim
Department of Computer Science
Sookmyung Women’s University

Seoul, Korea
yulan@sookmyung.ac.kr

Abstract—Issues related to operating Graphic Processing Unit
(GPU) applications efficiently and improving overall system
throughput in a GPU cluster environment exist. The platform
may not utilize resource of a GPU fully depending on
application characteristics because a conventional cluster
orchestration platform using GPUs only supports a single
execution of an application on a GPU. However, co-execution
of GPU applications causes interference coming from resource
contention among the applications. If various resource usage of
GPU applications is not reflected, it could lead to an
unbalanced usage of computing resources and consequently
reduce performance in a GPU cluster. This study proposes
interference-aware architecture, Co-scheML and evaluates
case studies with it for workload execution of GPU applications
such as High Performance Computing (HPC), Deep Learning
(DL) Training, and DL Inference. Diverse resource usage is
profiled to identify various degree of their interference of
applications. Due to the difficulty of predicting the interference
using these characteristics, interference model is generated by
applying a Machine Learning (ML) model with defined GPU
metrics. Proposed architecture predicts interference and
deploys an application which is co-executed with a running
application. Experimental results of case studies with Co-
ScheML show that average job completion time is improved by
22%, and the makespan is shortened by 32% in average, as
compared to baseline schedulers.

Keywords- GPU applications, interference, co-execution, Co-
scheML scheduler, resource contention, GPU utilization

I. INTRODUCTION

New and emerging general-purpose graphics processing
architectures, programming environment, and platforms have
various issues related to their optimization, application
performance, and system throughput as graphical processing
unit(GPU) becomes popular in general. Traditional cluster
schedulers of cluster orchestration platforms such as Yarn [1]
and Kubernetes [2] might not fully utilize GPU computing
resources when they execute an application alone on a GPU
at a time. To overcome this limited use of GPU resource, it
is possible to co-execute multiple and diverse applications,
which have miscellaneous patterns of resource usage.

To achieve General Purpose GPU (GPGPU) sharing,
NVIDIA has proposed multiple process service (MPS) to
execute multiple kernel processes concurrently [3]. However,
performance of this technique may degrade owing to

interference from co-executed kernels accessing the same
device at a time. Studies on GPU sharing include co-
deployment of applications with strategies coming from
monitoring information, user requirements [9,10,11] or
weights using GPU usage profiles [12]. However, these
studies do not consider interference during co-execution of
applications, which leads to performance degradation.
Moreover, avoiding interference using resource usage
records of diverse applications is challenging.

Recent studies have addressed interference issues caused
by resource contention that occurs from its sharing [8,13,14].
A previous study defines some performance metrics of
contended resources (SM, DRAM, cache, Interconnect) and
applies accumulated profiling of metrics for interference
avoidance scheduling based on the similarity of metrics[14].
However, it did not consider the fatalness of interference is
diverse depending on resource characteristics. In addition, an
execution failure such as out-of-memory (OOM) has not
been fully discussed. Studies applying machine
learning(ML) to scheduling to predict interference using
resource metrics [14]. [13] defines detailed resources of GPU
(GPU, GPU memory, PCIe) for deep learning(DL)
applications. [8] defines diverse factors that affect
interference according to cluster and node levels, and then
provides scheduling with various machine learning (ML)
model to each level depending on the factors. However,
those studies have experiments on only deep learning (DL)
workloads, which have uniformed resource usage patterns.

This paper introduces Co-scheML to improve
performance and optimize resource usage for various
applications running on GPUs. To solve interference
problem that occurs during GPU sharing, it defines
appropriate metrics for applications with various
characteristics and proposes a scheduling method to avoid
interference with ML on GPU.

Contributions of this study are as follows.
The interference model with ML predicts the degree
of interference from accumulated profiling.

An architecture co-executes applications according
to predicted interference value is proposed.

In experiments, interference-aware scheduler’s
performance is compared to Binpack, Loadbalance, and
Mystics[14] methods. An evaluation includes job
completion time (JCT), makespan depending on a variety of
state-of-the-art scheduler.

19

2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)

978-1-7281-8414-2/20/$31.00 ©2020 IEEE
DOI 10.1109/ACSOS-C51401.2020.00023

Authorized licensed use limited to: Sookmyung Womens University. Downloaded on November 18,2020 at 06:47:49 UTC from IEEE Xplore. Restrictions apply.

The rest of this paper is organized as follows. Section 2
introduces motivation. Interference modeling is described in
Section 3. A proposed architecture with interference aware
scheduler is explained in Section 4 and its experiments are
described in Section 5. The related studies are provided in
Section 6 and concluding remarks are given in Section 7.

II. MOTIVATION

Fig. 1 shows GPU resource utilization patterns of
applications over NVIDIA TITAN XP GPU and i7-5820K
CPU. Two HPC applications (LAMMPS[32],
QMCPACK[33]) and three CNN models (mnist, alexnet,
vgg11) are executed with standard input sets from NVIDIA
GPU Cloud (NGC) [6] and Tensorflow CNN benchmark
[15]. GPU memory is over-committed by approximately
54% in average. GPU utilization gap is by approximately
51% from average to maximum. The result drives to
overstated resource requirement for a job scheduler as having
relatively large deviation from mean values for the HPC
applications compared to one for the deep learning (DL)
applications. If a scheduler sticks to allocate average number
of resources for HPC applications, an OOM failure and
performance degradation may occur by overlapping peak
times of resources usage at which a GPU application uses
most resources. This experimental result indicates that it is
necessary to prevent a resource over-commitment by
utilizing profiling and predicting interference for avoiding
from OOM failure or severe performance degradation.

III. INTERFERENCE MODELING

We define interference value as co-executed time of an
application normalized by solo-run time. If interference
values are obtained directly after executing all application
pairs, the most accurate and optimal results can be achieved.
However, it is not realistic to calculate interference values
with all pairs with large number of applications with long
execution time. For N applications, interference values of
(N*(N-1))/2 pairs are needed. Interference is predicted
through offline profiling information without executing all
application pairs for this reason. Profiling information
includes hardware characteristics, which affect the co-

execution of applications on a GPU, and metrics deriving
from the prior observation.

TABLE . RESOURCE METRICS FOR INTERFERENCE MODELING

A. Metrics used for profiling resource usage
We define resource metrics that influence performance at

the time of actual co-execution of applications referred to the
metrics in [14]. Each metric was collected using the NVIDIA
profiler tool, nvprof, for predicting interference prevention
during the co-execution. Table 1 shows detailed information
regarding the metrics obtained during the profiling of each
related resource.

GPU utilization average is the average execution time of
one or more kernels on the GPU. SM efficiency average is
the average time at which one or more warps are active in a
particular multiprocessor on the GPU in percentage. Warp
efficiency average is the average number of active threads
for each warp in the SM. IPC is the number of commands
executed per cycle. Occupancy average is the average
number of active wraps per active cycle supported to the SM.
GPU memory used max is the maximum amount of GPU
memory used during the application program execution.
GPU memory used average is the average GPU memory
used during the application program execution. GPU
memory utilization average is the average time for reading or
writing GPU memory over a specific period of time during
the application execution in percentage. Device to host
throughput is the data throughput moving from global
memory to CPU memory. Host to device throughput is the
data throughput from CPU memory to GPU memory. The
Cache: GLD (Global memory Load) throughput metric

includes transactions served by the L1 and L2 caches.
This metric is the amount of cache hit when loading into
global memory. The GST (global memory store) throughput
is also related to the L1 and L2 cache, but indicates a cache
hit when storing in global memory. The execution time of
each application and input during an application execution
are recorded because the profiling information can vary
depending on the input and parameters used even with the

same applications. If an application with the same
configuration is submitted, previously collected profiling
information can be used.

B. Model construction
For interference modeling, we established three machine

learning models- linear regression, random forest regression
referred to [13], and decision tree regression[34]. We used
total of 12 applications, described in Section 3. To establish
the models, a total of 144 datasets were used as their pairs

Metric
GPU utilization average GPU memory utilization average
SM efficiency average Device to host throughput
Warp efficiency average Host to Device throughput
IPC GLD throughput
Occupancy average GST throughput
GPU memory used max Execution time
GPU memory used average

20

Authorized licensed use limited to: Sookmyung Womens University. Downloaded on November 18,2020 at 06:47:49 UTC from IEEE Xplore. Restrictions apply.

were modeled. We used a combination of metrics for each
application as an input of the model. Metric values were
normalized because the units and scales used for each metric
differ. The model output is interference value, which is
represented as a ratio between the time of co-execution and
the time when the application is executed alone. We
executed all application pairs and obtained the execution
time to calculate the interference for constructing the model.
The interference value applied the average value from three
experimental results for accurate measurements. In addition,
5-fold validation was used to improve the model accuracy
and reliability of the performance evaluation. The entire
dataset is divided into five subsets, four of which are
designated as the training data, with the remainder
designated as the validation data. This process is repeated
five times.

 Table 2 shows the mean squared error (MSE) values
and R2 scores for three types of machine learning models.
The MSE represents the difference between the predicted
and actual values, and the closer it is to zero the higher the
accuracy. R-Square is a validation measure of a regression
model, the explanatory power of which is higher as it reaches
closer to 1. The random forest regression model showed the
best performance in a container environment. The random
forest model was used in this experiment for this reason.

TABLE . MEAN SQUARED ERROR AND R-SQUARE OF
REGRESSION MODELS

IV. IMPLEMENTATION DETAILS

Kubernetes manages containers with modified device-
plugin for sharing of GPUs. If an application is first
submitted, it is executed alone and profiled to collect metrics.
Its profiling information is labeled as application name and
input data and stored in the Profile repository. Metrics are
stored in a time-series-based database, influxDB[5] and a
profiling step is carried out offline. Co-scheML requests
interference value from the Profile repository and Model and
selects pairs with minimum interference value. The decision
of Co-scheML is sent to each worker node’s Kubelet.
Kubelet launches applications using the modified GPU
Device Plugin for sharing resources. While the application is
being executed, the progress of the application is
continuously monitored and the profiling information is
updated to improve the accuracy in Monitor.

V. EVALUATION

A. Evaluation methodology
1) Experiment environment: The Kubernetes-based

private GPU cluster is used for the evaluation. The cluster is
comprised of one master node and three computing nodes:
the GPU node, the work node as shown in Table 3.

2) Workload: The workload is consisted of twelve real-
world applications. Four HPC applications (LAMMPS,
GROMACS, QMCPACK, HOOMD) from NVIDIA GPU
Cloud (NGC) [6], five DL training jobs (mnist, googlenet,
alexnet, vgg16, vgg11) [15], and three DL inference jobs,
classification, regression, and multiout of DJINN workload
suite [7] were used for experiments. All DL tasks used
Tensorflow, executed in the GPU and containerized as a
Docker container.

3) Evaluation metrics:
The average job completion time (JCT) is the average
completion time from when each job is submitted.
Makespan is the time when all jobs in the workload
are completed.

4) Baseline schedulers: A max-memory-based Binpack
scheduler and interference aware schedulers, such as the
Loadbalance and Mystic [14] schedulers, are used. The
Loadbalance scheduler is based on the average GPU
utilization and selects the pairs to co-execute such that it has
the minimum GPU utilization. The Mystic scheduler
calculates the similarity among the application metrics and
schedules in order of low similarity.

B. Case studies with Co-scheML
Fig. 2 shows the average JCT of a workload. At this time,

the arrival interval was arbitrarily designated as 15s. The
overall applications of the workload were sorted by the JCT.

Linear
Regression

Decision Tree
Regression

Random
Forest

Regression

MSE 0.0546 0.0269 0.0222

R-Square 0.6946 0.8500 0.8758

Figure 2. Performance of Co-scheML and others in Average JCT

TABLE . EXPERIMENTAL SETTING

21

Authorized licensed use limited to: Sookmyung Womens University. Downloaded on November 18,2020 at 06:47:49 UTC from IEEE Xplore. Restrictions apply.

The average JCT of Co-scheML was lower than that of
Loadbalance and Mystic by 32% and 12%.

Fig. 3 shows the makespan of a workload. The interval
was selected as 15s. Co-scheML showed a 1.53-, 1.32-, and
1.12-fold better makespan than that of Binpack, Loadbalance,
and Mystic, respectively. It was confirmed that Co-scheML
achieved the best average JCT and makespan. Loadbalance
shows better performance than the simplest scheduler,
binpack scheduler, it has limitation of scheduling only
considering average gpu utilization. Mystic scheduler is the
best scheduler among baseline schedulers. However, it still
has a chance to improve performance, as the scheduler
doesn’t deal with the degree of influence on interference for
each metrics. Co-scheML allows each application to use
complementary resources by considering interference,
resulting in improved not only average JCT but also
makespan.

VI. RELATED WORKS

A. GPU resource sharing scheduling
Many GPU sharing technologies have been introduced in

an effort to improve the resource utilization of GPU clusters
and cloud servers. Diab [17] proposed a system in which
many users can share GPU resources while co-executing
tasks by intercepting a CUDA API to enable the execution of
two kernels. However, this scheduling method can only be
used for applications that have repetitive or distinct forms of
resource usage. In [10] and [11], the GPU resources are
classified into a certain size and allocated to a container that
executes a cost tree to allocate and provide the resources to
the GPU. However, this only considers the minimum
resource requirement of the running task, which can result in
a degraded performance during a co-execution. There are
cluster schedulers for DL workload [19-22]. [20] predicts the
GPU utilization, PCIe bandwidth, and memory to guarantee
the QoS, and minimize the energy efficiency. Although the
DL workload is static and predictable, dynamic applications
such as HPC applications are difficult to predict. Therefore,
we conducted resource provisioning through profiling and
monitoring in this study. In addition, the purpose of this
study is to improve performance rather than achieve energy

efficiency. Using GPU utilization, the PCIe bandwidth and
memory usage alone are insufficient to improve the
performance.

B. Interference-aware scheduling on GPU
With the introduction of technologies that can co-execute

numerous applications on the GPU, scheduling methods to
avoid resource contention that may occur during the co-
execution in this environment have been proposed. [14]
suggests a collaborate filtering (CF) based interference
recognition scheduler for the co-execution of applications. It
profiles interference metrics, and if a new application is
applied, CF is used for prediction after lightweight profiling.
The method used to obtain the interference values of each
application pairs is based on the similarities in the vector of
metrics, in which the lower the similarity, the lower the
interference. Although the degree of influence of the
interference for each metric is different and leads to different
weights, this is not reflected. Rather, similarities are simply
obtained, and the OOM failure issue that can occur during
the co-execution of the GPU applications is not considered.
[16] analyzes the characteristics of the DL and carries out a
performance prediction modeling based on the results as a
suggestion to the QoS-aware scheduler. This requires
domain-specific knowledge of the DL, and thus cannot be
applied to all applications, such as HPC applications. [13]
defined features of the application characteristics executed
on a GPU to implement an ML-based interference
recognition scheduler. Although the performance of a simple
application is significantly affected by the kernel length, a
difference in interference for ML applications is shown.
However, because the actual evaluation was conducted on
ML applications that have repetitive resource usage patterns,
additional feature definitions of the affected resources and
other metric definitions for the container environment
targeted to the VM are required. Moreover, a method for
applying interference values to the cluster scheduling method
is necessary because a simple round-robin scheduler was
implemented. In [18], a learning placement framework using
a DRL model in the cluster environment with GPU servers is
proposed. The authors explained that learning is carried out
by inputting the worker id, CPU, and GPU, and tasks are
placed by a low level of interference when multiple
applications coexist. However, detailed information on the
resources is necessary to decrease the interference effect with
the CPU and GPU usage values. [19] considers interference
values and uses max-pair algorithms to decrease the overall
workload execution time. However, the lengthy time
required to execute all pairs each time a new application
enters can be a disadvantage. In this study, we demonstrated
that a prediction of interference is possible with existing
profiling information without executing all pairs, which is
not applied to dynamic scheduling.

VII. CONCLUSION

This paper proposes an architecture with an interference-
aware scheduler, which provides a ML model that predicts
interference values using application profiling information
and minimizes interference among GPU applications in a

Figure 3. Performance of Co-scheML and others in Makespan

22

Authorized licensed use limited to: Sookmyung Womens University. Downloaded on November 18,2020 at 06:47:49 UTC from IEEE Xplore. Restrictions apply.

GPU cluster. The experiments with Co-scheML as a proof-
of-concept show that Co-scheML reduce potential
interference during co-execution of applications and improve
the completion of workload execution.

Future studies include refinement and generalization of
interference-aware co-scheduling for diverse workloads.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea
government(MSIT) (No. NRF-2015M3C4A7065646,
No. 2020R1H1A2011685).

REFERENCES

[1] Yarn, https://hadoop.apache.org/docs/r3.1.0/hadoop-yarn/hadoop-
yarn-site/UsingGpus.html

[2] Kubernetes, https://kubernetes.io/docs/tasks/manage-
gpus/scheduling-gpus/

[3] NVIDIA Multi Process Service,
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_O
verview.pdf

[4] InfuxDB, https://www.influxdata.com/
[5] NGC, https://ngc.nvidia.com/
[6] DJINN, https://github.com/LLNL/DJINN
[7] Geng X, Zhang H, Zhao Z, Ma H. Interference-aware parallelization

for deep learning workload in GPU cluster. Cluster Computing. 2020
Jan 2:1-4.

[8] Chang CC, Yang SR, Yeh EH, Lin P, Jeng JY. A kubernetes-based
monitoring platform for dynamic cloud resource provisioning. in
GLOBECOM 2017-2017 IEEE Global Communications Conference
2017 Dec 4 (pp. 1-6). IEEE.

[9] Gu, Jing, et al. "GaiaGPU: Sharing GPUs in Container Clouds." 2018
IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Ubiquitous Computing & Communications, Big Data &
Cloud Computing, Social Computing & Networking, Sustainable
Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom). IEEE, 2018.

[10] Song, Shengbo, et al. "Gaia Scheduler: A Kubernetes-Based
Scheduler Framework." 2018 IEEE Intl Conf on Parallel &
Distributed Processing with Applications, Ubiquitous Computing &
Communications, Big Data & Cloud Computing, Social Computing
& Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom). IEEE, 2018.

[11] Hong, Cheol-Ho, Ivor Spence, and Dimitrios S. Nikolopoulos.
"FairGV: fair and fast GPU virtualization." IEEE Transactions on
Parallel and Distributed Systems 28.12 (2017): 3472-3485.

[12] Xu, Xin, et al. "Characterization and prediction of performance
interference on mediated passthrough GPUs for interference-aware
scheduler." 11th {USENIX} Workshop on Hot Topics in Cloud
Computing (HotCloud 19). 2019.

[13] Ukidave, Yash, Xiangyu Li, and David Kaeli. "Mystic: Predictive
scheduling for gpu based cloud servers using machine learning." 2016
IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2016.

[14] Tensorflow CNN benchmarks,
https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_
benchmarks

[15] Chen Z, Quan W, Wen M, Fang J, Yu J, Zhang C, Luo L. Deep
Learning Research and Development Platform: Characterizing and
Scheduling with QoS Guarantees on GPU Clusters. IEEE
Transactions on Parallel and Distributed Systems. 2019 Jul
29;31(1):34-50.

[16] Diab, Khaled M., M. Mustafa Rafique, and Mohamed Hefeeda.
"Dynamic sharing of GPUs in cloud systems." 2013 IEEE
International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum. IEEE, 2013.

[17] Bao, Yixin, Yanghua Peng, and Chuan Wu. "Deep Learning-based
Job Placement in Distributed Machine Learning Clusters." IEEE
INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 2019.

[18] Wen Y, O'Boyle MF, Fensch C. MaxPair: enhance OpenCL
concurrent kernel execution by weighted maximum matching.
InProceedings of the 11th Workshop on General Purpose GPUs 2018
Feb 24 (pp. 40-49).

[19] Thinakaran P, Gunasekaran JR, Sharma B, Kandemir MT, Das CR.
Kube-Knots: Resource Harvesting through Dynamic Container
Orchestration in GPU-based Datacenters. In2019 IEEE International
Conference on Cluster Computing (CLUSTER) 2019 Sep 23 (pp. 1-
13). IEEE.

[20] Gu J, Chowdhury M, Shin KG, Zhu Y, Jeon M, Qian J, Liu H, Guo C.
Tiresias: A {GPU} cluster manager for distributed deep learning.
In16th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 19) 2019 (pp. 485-500).

[21] Peng Y, Bao Y, Chen Y, Wu C, Guo C. Optimus: an efficient
dynamic resource scheduler for deep learning clusters. InProceedings
of the Thirteenth EuroSys Conference 2018 Apr 23 (pp. 1-14).

[22] Xiao W, Bhardwaj R, Ramjee R, Sivathanu M, Kwatra N, Han Z,
Patel P, Peng X, Zhao H, Zhang Q, Yang F. Gandiva: Introspective
cluster scheduling for deep learning. In13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18) 2018
(pp. 595-610).

23

Authorized licensed use limited to: Sookmyung Womens University. Downloaded on November 18,2020 at 06:47:49 UTC from IEEE Xplore. Restrictions apply.

