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Abstract—Issues related to operating Graphic Processing Unit 
(GPU) applications efficiently and improving overall system 
throughput in a GPU cluster environment exist. The platform 
may not utilize resource of a GPU fully depending on 
application characteristics because a conventional cluster 
orchestration platform using GPUs only supports a single 
execution of an application on a GPU. However, co-execution 
of GPU applications causes interference coming from resource 
contention among the applications. If various resource usage of 
GPU applications is not reflected, it could lead to an 
unbalanced usage of computing resources and consequently 
reduce performance in a GPU cluster. This study proposes 
interference-aware architecture, Co-scheML and evaluates 
case studies with it for workload execution of GPU applications 
such as High Performance Computing (HPC), Deep Learning 
(DL) Training, and DL Inference. Diverse resource usage is
profiled to identify various degree of their interference of 
applications. Due to the difficulty of predicting the interference 
using these characteristics, interference model is generated by 
applying a Machine Learning (ML) model with defined GPU 
metrics. Proposed architecture predicts interference and 
deploys an application which is co-executed with a running 
application. Experimental results of case studies with Co-
ScheML show that average job completion time is improved by 
22%, and the makespan is shortened by 32% in average, as 
compared to baseline schedulers.

Keywords- GPU applications, interference, co-execution, Co-
scheML scheduler, resource contention, GPU utilization

I. INTRODUCTION 

New and emerging general-purpose graphics processing 
architectures, programming environment, and platforms have 
various issues related to their optimization, application 
performance, and system throughput as graphical processing 
unit(GPU) becomes popular in general. Traditional cluster 
schedulers of cluster orchestration platforms such as Yarn [1]  
and Kubernetes [2] might not fully utilize GPU computing 
resources when they execute an application alone on a GPU 
at a time. To overcome this limited use of  GPU resource,  it 
is possible to co-execute multiple and diverse applications, 
which have miscellaneous patterns of resource usage.

To achieve General Purpose GPU (GPGPU) sharing, 
NVIDIA has proposed multiple process service (MPS) to 
execute multiple kernel processes concurrently [3]. However, 
performance of this technique may degrade owing to 

interference from co-executed kernels accessing the same 
device at a time. Studies on GPU sharing include co-
deployment of applications with strategies coming from 
monitoring information, user requirements [9,10,11] or 
weights using GPU usage profiles [12]. However, these 
studies do not consider interference during co-execution of 
applications, which leads to performance degradation. 
Moreover, avoiding interference using resource usage 
records of diverse applications is challenging.

Recent studies have addressed interference issues caused 
by resource contention that occurs from its sharing [8,13,14]. 
A previous study defines some performance metrics of 
contended resources (SM, DRAM, cache, Interconnect) and 
applies accumulated profiling of metrics for interference 
avoidance scheduling based on the similarity of metrics[14]. 
However, it did not consider the fatalness of interference is 
diverse depending on resource characteristics. In addition, an 
execution failure such as out-of-memory (OOM) has not 
been fully discussed.  Studies applying machine 
learning(ML) to scheduling to predict interference using 
resource metrics [14]. [13] defines detailed resources of GPU 
(GPU, GPU memory, PCIe) for deep learning(DL) 
applications. [8] defines diverse factors that affect 
interference according to cluster and node levels, and then 
provides scheduling with various machine learning (ML) 
model to each level depending on the factors. However, 
those studies have experiments on only deep learning (DL) 
workloads, which have uniformed resource usage patterns. 

This paper introduces Co-scheML to improve 
performance and optimize resource usage for various 
applications running on GPUs. To solve interference 
problem that occurs during GPU sharing, it defines 
appropriate metrics for applications with various 
characteristics and proposes a scheduling method to avoid 
interference with ML on GPU.

Contributions of this study are as follows.
The interference model with ML predicts the degree 
of interference from accumulated profiling.

An architecture co-executes applications according 
to predicted interference value is proposed.

In experiments, interference-aware scheduler’s 
performance is compared to Binpack, Loadbalance, and
Mystics[14] methods.  An evaluation includes job
completion time (JCT), makespan depending on a variety of 
state-of-the-art scheduler.
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The rest of this paper is organized as follows. Section 2 
introduces motivation. Interference modeling is described in 
Section 3. A proposed architecture with interference aware 
scheduler is explained in Section 4 and its experiments are 
described in Section 5. The related studies are provided in 
Section 6 and concluding remarks are given in Section 7.

II. MOTIVATION

Fig. 1 shows GPU resource utilization patterns of
applications over NVIDIA TITAN XP GPU and i7-5820K
CPU. Two HPC applications (LAMMPS[32], 
QMCPACK[33]) and three CNN models (mnist, alexnet, 
vgg11) are executed with standard input sets from NVIDIA 
GPU Cloud (NGC) [6] and Tensorflow CNN benchmark 
[15]. GPU memory is over-committed by approximately 
54% in average. GPU utilization gap is by approximately 
51% from average to maximum. The result drives to 
overstated resource requirement for a job scheduler as having 
relatively large deviation from mean values for the HPC 
applications compared to one for the deep learning (DL) 
applications. If a scheduler sticks to allocate average number 
of resources for HPC applications, an OOM failure and 
performance degradation may occur by overlapping peak 
times of resources usage at which a GPU application uses 
most resources. This experimental result indicates that it is 
necessary to prevent a resource over-commitment by 
utilizing profiling and predicting interference for avoiding 
from OOM failure or severe performance degradation.

III. INTERFERENCE MODELING

We define interference value as co-executed time of an 
application normalized by solo-run time. If interference 
values are obtained directly after executing all application 
pairs, the most accurate and optimal results can be achieved. 
However, it is not realistic to calculate interference values 
with all pairs with large number of applications with long 
execution time. For N applications, interference values of 
(N*(N-1))/2 pairs are needed. Interference is predicted 
through offline profiling information without executing all 
application pairs for this reason. Profiling information 
includes hardware characteristics, which affect the co-

execution of applications on a GPU, and metrics deriving 
from the prior observation.

TABLE . RESOURCE METRICS FOR INTERFERENCE MODELING

A. Metrics used for profiling resource usage
We define resource metrics that influence performance at 

the time of actual co-execution of applications referred to the 
metrics in [14]. Each metric was collected using the NVIDIA 
profiler tool, nvprof, for predicting interference prevention 
during the co-execution. Table 1 shows detailed information 
regarding the metrics obtained during the profiling of each 
related resource.

GPU utilization average is the average execution time of 
one or more kernels on the GPU. SM efficiency average is 
the average time at which one or more warps are active in a 
particular multiprocessor on the GPU in percentage. Warp 
efficiency average is the average number of active threads 
for each warp in the SM. IPC is the number of commands 
executed per cycle. Occupancy average is the average 
number of active wraps per active cycle supported to the SM. 
GPU memory used max is the maximum amount of GPU 
memory used during the application program execution. 
GPU memory used average is the average GPU memory 
used during the application program execution. GPU 
memory utilization average is the average time for reading or 
writing GPU memory over a specific period of time during 
the application execution in percentage. Device to host 
throughput is the data throughput moving from global 
memory to CPU memory. Host to device throughput is the 
data throughput from CPU memory to GPU memory. The 
Cache: GLD (Global memory Load) throughput metric 

includes transactions served by the L1 and L2 caches. 
This metric is the amount of cache hit when loading into 
global memory. The GST (global memory store) throughput 
is also related to the L1 and L2 cache, but indicates a cache 
hit when storing in global memory. The execution time of 
each application and input during an application execution 
are recorded because the profiling information can vary 
depending on the input and parameters used even with the 

same applications. If an application with the same 
configuration is submitted, previously collected profiling 
information can be used.

B. Model construction
For interference modeling, we established three machine 

learning models- linear regression, random forest regression 
referred to [13], and decision tree regression[34]. We used 
total of 12 applications, described in Section 3. To establish 
the models, a total of 144 datasets were used as their pairs 

Metric
GPU utilization average GPU memory utilization average
SM efficiency average Device to host throughput
Warp efficiency average Host to Device throughput
IPC GLD throughput
Occupancy average GST throughput
GPU memory used max Execution time
GPU memory used average
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were modeled. We used a combination of metrics for each 
application as an input of the model. Metric values were 
normalized because the units and scales used for each metric 
differ. The model output is interference value, which is 
represented as a ratio between the time of co-execution and 
the time when the application is executed alone. We 
executed all application pairs and obtained the execution
time to calculate the interference for constructing the model. 
The interference value applied the average value from three 
experimental results for accurate measurements. In addition, 
5-fold validation was used to improve the model accuracy 
and reliability of the performance evaluation. The entire 
dataset is divided into five subsets, four of which are 
designated as the training data, with the remainder 
designated as the validation data. This process is repeated 
five times.

   Table 2 shows the mean squared error (MSE) values 
and R2 scores for three types of machine learning models. 
The MSE represents the difference between the predicted 
and actual values, and the closer it is to zero the higher the 
accuracy. R-Square is a validation measure of a regression
model, the explanatory power of which is higher as it reaches 
closer to 1. The random forest regression model showed the 
best performance in a container environment. The random 
forest model was used in this experiment for this reason.

TABLE . MEAN SQUARED ERROR AND R-SQUARE OF
REGRESSION MODELS

IV. IMPLEMENTATION DETAILS

Kubernetes manages containers with modified device-
plugin for sharing of GPUs. If an application is first 
submitted, it is executed alone and profiled to collect metrics. 
Its profiling information is labeled as application name and 
input data and stored in the Profile repository. Metrics are 
stored in a time-series-based database, influxDB[5] and a 
profiling step is carried out offline. Co-scheML requests 
interference value from the Profile repository and Model and 
selects pairs with minimum interference value. The decision 
of Co-scheML is sent to each worker node’s Kubelet. 
Kubelet launches applications using the modified GPU 
Device Plugin for sharing resources. While the application is 
being executed, the progress of the application is 
continuously monitored and the profiling information is 
updated to improve the accuracy in Monitor.

V. EVALUATION

A. Evaluation methodology
1) Experiment environment: The Kubernetes-based 

private GPU cluster is used for the evaluation. The cluster is 
comprised of one master node and three computing nodes: 
the GPU node, the work node as shown in Table 3.

2) Workload: The workload is consisted of twelve real-
world applications. Four HPC applications (LAMMPS, 
GROMACS, QMCPACK, HOOMD) from NVIDIA GPU
Cloud (NGC) [6], five DL training jobs (mnist, googlenet,
alexnet, vgg16, vgg11) [15], and three DL inference jobs, 
classification, regression, and multiout of DJINN workload 
suite [7] were used for experiments. All DL tasks used 
Tensorflow, executed in the GPU and containerized as a 
Docker container.

3) Evaluation metrics: 
The average job completion time (JCT) is the average 
completion time from when each job is submitted.
Makespan is the time when all jobs in the workload 
are completed.

4) Baseline schedulers: A max-memory-based Binpack 
scheduler and interference aware schedulers, such as the 
Loadbalance and Mystic [14] schedulers, are used. The 
Loadbalance scheduler is based on the average GPU 
utilization and selects the pairs to co-execute such that it has 
the minimum GPU utilization. The Mystic scheduler 
calculates the similarity among the application metrics and 
schedules in order of low similarity.

B. Case studies with Co-scheML
Fig. 2 shows the average JCT of a workload. At this time, 

the arrival interval was arbitrarily designated as 15s. The 
overall applications of the workload were sorted by the JCT. 

Linear 
Regression

Decision Tree
Regression

Random
Forest   

Regression

MSE 0.0546 0.0269 0.0222

R-Square 0.6946 0.8500 0.8758

Figure 2. Performance of Co-scheML and others in Average JCT

TABLE . EXPERIMENTAL SETTING
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The average JCT of Co-scheML was lower than that of 
Loadbalance and Mystic by 32% and 12%.

Fig. 3 shows the makespan of a workload. The interval 
was selected as 15s. Co-scheML showed a 1.53-, 1.32-, and 
1.12-fold better makespan than that of Binpack, Loadbalance, 
and Mystic, respectively. It was confirmed that Co-scheML 
achieved the best average JCT and makespan. Loadbalance 
shows better performance than the simplest scheduler, 
binpack scheduler, it has limitation of scheduling only 
considering average gpu utilization. Mystic scheduler is the 
best scheduler among baseline schedulers. However, it still 
has a chance to improve performance, as the scheduler 
doesn’t deal with the degree of influence on interference for 
each metrics. Co-scheML allows each application to use 
complementary resources by considering interference, 
resulting in improved not only average JCT but also 
makespan.

VI. RELATED WORKS

A. GPU resource sharing scheduling
Many GPU sharing technologies have been introduced in 

an effort to improve the resource utilization of GPU clusters 
and cloud servers. Diab [17] proposed a system in which 
many users can share GPU resources while co-executing 
tasks by intercepting a CUDA API to enable the execution of 
two kernels. However, this scheduling method can only be 
used for applications that have repetitive or distinct forms of 
resource usage. In [10] and [11], the GPU resources are 
classified into a certain size and allocated to a container that 
executes a cost tree to allocate and provide the resources to 
the GPU. However, this only considers the minimum 
resource requirement of the running task, which can result in 
a degraded performance during a co-execution. There are 
cluster schedulers for DL workload [19-22]. [20] predicts the 
GPU utilization, PCIe bandwidth, and memory to guarantee 
the QoS, and minimize the energy efficiency. Although the 
DL workload is static and predictable, dynamic applications 
such as HPC applications are difficult to predict. Therefore, 
we conducted resource provisioning through profiling and 
monitoring in this study. In addition, the purpose of this 
study is to improve performance rather than achieve energy 

efficiency. Using GPU utilization, the PCIe bandwidth and 
memory usage alone are insufficient to improve the 
performance.

B. Interference-aware scheduling on GPU
With the introduction of technologies that can co-execute 

numerous applications on the GPU, scheduling methods to 
avoid resource contention that may occur during the co-
execution in this environment have been proposed. [14] 
suggests a collaborate filtering (CF) based interference 
recognition scheduler for the co-execution of applications. It 
profiles interference metrics, and if a new application is
applied, CF is used for prediction after lightweight profiling. 
The method used to obtain the interference values of each 
application pairs is based on the similarities in the vector of 
metrics, in which the lower the similarity, the lower the 
interference. Although the degree of influence of the 
interference for each metric is different and leads to different 
weights, this is not reflected. Rather, similarities are simply 
obtained, and the OOM failure issue that can occur during 
the co-execution of the GPU applications is not considered. 
[16] analyzes the characteristics of the DL and carries out a 
performance prediction modeling based on the results as a 
suggestion to the QoS-aware scheduler. This requires 
domain-specific knowledge of the DL, and thus cannot be 
applied to all applications, such as HPC applications. [13] 
defined features of the application characteristics executed 
on a GPU to implement an ML-based interference 
recognition scheduler. Although the performance of a simple 
application is significantly affected by the kernel length, a 
difference in interference for ML applications is shown. 
However, because the actual evaluation was conducted on 
ML applications that have repetitive resource usage patterns, 
additional feature definitions of the affected resources and 
other metric definitions for the container environment 
targeted to the VM are required. Moreover, a method for 
applying interference values to the cluster scheduling method 
is necessary because a simple round-robin scheduler was 
implemented. In [18], a learning placement framework using 
a DRL model in the cluster environment with GPU servers is 
proposed. The authors explained that learning is carried out 
by inputting the worker id, CPU, and GPU, and tasks are 
placed by a low level of interference when multiple 
applications coexist. However, detailed information on the 
resources is necessary to decrease the interference effect with 
the CPU and GPU usage values. [19] considers interference 
values and uses max-pair algorithms to decrease the overall 
workload execution time. However, the lengthy time 
required to execute all pairs each time a new application 
enters can be a disadvantage. In this study, we demonstrated 
that a prediction of interference is possible with existing 
profiling information without executing all pairs, which is 
not applied to dynamic scheduling.

VII. CONCLUSION

This paper proposes an architecture with an interference-
aware scheduler, which provides a ML model that predicts 
interference values using application profiling information 
and minimizes interference among GPU applications in a 

Figure 3. Performance of Co-scheML and others in Makespan
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GPU cluster. The experiments with Co-scheML as a proof-
of-concept show that Co-scheML reduce potential 
interference during co-execution of applications and improve 
the completion of workload execution.

Future studies include refinement and generalization of 
interference-aware co-scheduling for diverse workloads.
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