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Abstract— The advent of GPGPU (General-Purpose
Graphic Processing Unit) containers enlarges opportunities of
acceleration and easy-to-use in clouds. However, there is still
lack of research on utilizing efficiently GPU resource and
managing multiple applications at the same time. Co-execution
of applications without understanding applications’ execution
characteristics may result in low performance caused by their
interference problems. To solve the problem, this paper defines
resource metrics that causes performance degradation when
sharing resource. We calculate the degree of interference during
concurrent execution of multi applications using a ML (Machine
Learning) method with the metrics. The experiments show that
the execution of interference aware groups improves 7% in
execution time compared to non-interference aware group in
overall. For a workload consisting of several applications, the

overall performance was improved by 18% and 25%,
respectively, when compared to SJF and random.
Keywords— Interference, Resource Metrics, Profiling,

Machine Learning, Interference-aware Scheduling, GPU

Virtualization, Container

L.

General Purpose Graphics Processing Unit (GPGPU)
recently plays an essential role in high-performance
computing to achieving high parallelism. The concept of
Container as a Service (CaaS) [1] has appeared due to its easy-
to-use packaging, scalability, and probability in cloud. The
advent of GPU containers emphasizes importance of GPU
resource management in clouds.

INTRODUCTION

Co-execution of applications helps to make full advantage
of GPU resource. For GPU sharing, NVIDIA recently
provides MPS (Multi-Process Service) [2], which runs kernels
of multiple applications as a single process. However, MPS
technique helps to improve performance only if applications’
kernel patterns are known in advance. There are existing
studies of scheduling methods for co-execution of
applications in GPU resources. The prior works either focus
on the methods of co-locating applications based on [3-5], a
method of deploying according to GPU usage profiling
information in applications [6], or methods of predicting
interference among DL (Deep Learning) applications with
resource contention features [7, 8]. Interference prediction for
various applications has not been studied yet.

Applications co-located on servers cause contentions
when they require same resources at the same time and their
interference results in performance unpredictable. It comes
from that an application shares basic resources such as cache,
streaming multi-processor (SM), and 1/O, as well as resources
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Fig. 1. The co-execution of application pairs

(CPU, GPU, memory) generally considered by the scheduler
[8]. A method of co-execution with low levels of interference
increases performance and resource utilization. However, it is
difficult to predict their interference of diverse applications
with a variety of resource usage characteristics.

This paper proposes a method to avoid from execution
interference using ML techniques. For the prediction of
interference, we define resource metrics shared during co-
execution of applications. Metrics are gathered from ML
benchmarks in Tensorflow [9] and HPC applications provided
in NGC (NVIDIA GPU Cloud) [10]. Profiling metrics are
utilized in measuring effect of interference with a LR (Linear
Regression) method. The contribution of this paper is as
follows:

e  We evaluate performance degradation coming from
co-execution of applications. Detailed resource
metrics affected by co-executions are identified from

application execution profiling.

We propose prevention scheme using a ML method
for concurrent execution based on the metrics. We
confirm that overall performance is improved by 7%
with LR.

The rest of the paper is organized as follows. Section II
describes a motivation of the paper. Section III described the
related work. Section IV describes the metric definitions and
a ML method and describes overall interference-aware
architecture. Section V presents the results of the experiment
and evaluation. The conclusion and future work is followed in
Section VI.

II. MOTIVATION

Interference, which comes from resource contention, is
decided by co-locating applications sharing GPU concurrently.
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(b) utilization of GPU memory and OOM



The typical image processing applications on GPU such as
DL(Deep Learning) tasks (CNN, alexnet, googlenet, vggl6,
vggl 1) that train ML models on a Tensorflow benchmark are
chosen to identify application-specific interference in a pair of
co-execution. The applications that execute are image
classification using imagenet [9] as dataset. Figure 1 shows
difference levels of interference when different tasks are
placed together. The degree of interference and GPU memory
usage expressed in dark colors.

Figure 1 (a) shows the evaluation of interference, which
comes from the execution slowdown, generated from the
execution combination of applications. For example, in the
case of the CNN-vggl1 and vggl1-CNN pairs, darkness of
colors is different. It can be seen that the degree of interference
between CNN and vggl1 is different from that of vggll to
CNN. Figure 1 (b) shows the utilization of GPU memory
usage. The application pair in memory contention in (b) does
not match to the one in execution slowdown in (a). That
means that some interference caused not only by GPU
memory but also by multiple shared resources.

According to the paper [7], the interference among
applications may be affected by kernel length, memory, data
transfer, and so on, but it may not be sufficient to predict
interference. The actual resource usage patterns of various
applications are different from the ML applications used in the
above experiments. For example, ML applications utilize
GPU and GPU memory consistently during their execution as
shown in the resource usage patterns in Figure2 (a) CNN and
(b) vggl6. However, Lammps, an HPC application in Figure
2 (c), shows dynamic usage of memory and GPU, especially,
the increase of the usage just before the end of the execution.
Qmcpack, a HPC application, has a significant increase in
memory usage and GPU utilization, approximately 95
seconds after application is initiated (shown in Figure (d)).
Due to these different resource usage patterns, it is difficult to
predict application-specific interference for various ML and
HPC applications.

I1I.

Related work on GPU resource sharing in container-based
framework and GPU resource management scheduler is
following.

REALATED WORKS

A. GPU resource sharing scheduling
A lot of GPU sharing technologies are being introduced to

increase resource utilization of GPU clusters and cloud servers.

For Diab [11], several users share GPU resource and propose
a system that can co-execute tasks. It intercepts the CUDA
API and provides two kernels for execution. However, this
scheduling method is only possible for application targets with
repetitive or distinct resource usage characteristics. [4, 5]

e

(@ CNN (b) vgglé

Fig. 2. Resource usage pattern in ML and HPC applications
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share GPU resource in a manner that is divided into a certain
size and allocated to containers that run through a cost tree to
place and assign GPUs. Nevertheless, these only take into
account minimum resource requirements of running jobs
which lead to performance degradation when co-execute.
Targets of co-execution applications should share GPUs,
including not only ML applications, but also HPC applications
with inconsistent resource usage patterns. We avoid resource
contention by collecting and using detailed resource usage
information of various application.

B. GPU interference-aware scheduling with ML

With the emergence of technologies that implement
multiple applications on GPUs, many scheduling techniques
have been introduced to avoid resource contention that occurs
in co-execution. Xu [7] implemented ML-based interference-
aware scheduler by defining features of applications running
on GPUs. In simple applications, performance is greatly
affected by kernel length, but interference may vary for ML
applications. However, further feature definitions of affected
resources are needed because actual evaluation was performed
with resource usage patterns as a repeated ML application.
The paper of [12] proposes a work placement framework
using the DRL model in a cluster environment with GPU
servers. The training conducts and arranges tasks with low
level of interference when multiple applications coexist by
inputting worker id, CPU, and GPU. To reduce the impact of
interference with the usage value of CPU and GPU, further
details of resources to be considered are needed.

Iv.

Interference prediction process includes identifying
resources, which affects performance during their sharing,
collecting their metrics, and then applying the metrics to linear
regression model for the prediction.

INTERFERENCE PREDICTION

A. Metrics used for profiling resource usage

Co-execution of applications causes interference due to
contention between resources in GPUs, leading to
performance degradation problems. Applications compete in
resources such as SM (Stream Multi-processors), GPU
memory, DRAM and cache [8, 13, and 14]. However, A GPU
architecture has been recently integrated into the L1 cache
with SHEM (Shared Memory) and texture cache [15]. L1 and
texture cache throughput defined in the above papers are also
integrated or divided, so correct information on correct
metrics are required.

Table 1 shows the detailed metrics of resources that affect
performance in co-execution, obtained during profiling of
each related resource. Each metric is collected using NVIDIA
profiled tools nvprof, nsight and nvidia-smi.

(d) Qmepack [22]
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TABLEIIL.  RESURCE METRICS collection x; of p. Expression y=XB+¢€ is a vector
v Resonrce v Resonrce representation of the predictor y; modelling.
GPU GPU memory Global Here 3 is a parameter vector and it is interpreted as a
utilization SM utilization Meronjry partial derivative of predictor variable. E includes all error
average average factors for predictor y. In addition, MSE (Mean Square Error)
SM efficiency Device to host was used to minimize the sum of squares of errors for
average SM throughput DRAM parameter (B). Therefore, the prediction of interference y is
7 obtained from X which is a set of resource metrics by
arp . .. . . . . . .
efficiency SM Zost z; Dtewce DRAM applications to 1de?nt1fy possible interference in co-execution.
average roughpu For example, the interference was calculated by applying LR
. using metrics collected from the five tensorflow benchmark
IPC SM throughput Cache applications used above. Table 2 below shows the interference
result of the application pair. The results of interference is
Occupancy M GST Cach based on 1 gnd normalized by each application based on the
average throughput ache overall metric value of resources.
GPU  memory Global Execution time . TABLE IV. INTERFERENCE VALUES
used max Memory
GPU  memory Global - — Interference values
d M oregoun
used average emory background CNN googlenet | alexnet Vggl6 Vggll
Resource metrics are following: CNN 1.25 1.140 0.936 -1 1.047
SM: Performance metrics for SM include GPU utilization googlenet 1.326 1.219 1.014 | 1.184 1.123
average, SM efficiency average, Warp efficiency average, IPC, alexnet 1.285 1.176 0.973 1.145 1.084
and Occupancy average. GPU utilization average is the — " =) o1 101 1
average of the times one or more kernels of an application £8 - 223 018 19 -
have been running on the GPU. SM efficiency average Veggll 1.299 1.188 0.984 -1 1.096

represents an average of the time that one or more warp is
enabled on a particular multiprocessor in the GPU as a
percentage. Warp efficiency average means the average
number of active threads per warp in a multiprocessor. IPC is
the number of instructions executed per cycle. Occupancy
average refers to the average number of active warps per
active cycle supported by multi processors.

Global Memory: Global memory means GPU memory.
GPU memory used max is a metric that represents the
maximum amount of GPU memory that an application uses
when running. GPU memory used average represents the
average value of GPU memory used during application
execution. GPU memory utilization average is the average of
the percentage of time that the GPU memory is read or written
over period during the application execute.

DRAM: Device to host throughput represents the
throughput of data moving from global memory to CPU
memory. Host to device throughput represents the throughput
of data moving from CPU memory to GPU memory.

Cache: GLD (Global memory Load) throughput metric
includes transactions served by L1 and L2 caches. This metric
represents the amount of cache hit when loading into global
memory. GST (Global memory Store) throughput is also
related to L1 and L2 caches, and conversely, cache hits when
storing to global memory. And the execution time of each
application was collected.

B. Linear regression modeling

To predict potential interferences in HPC and DL
applications, the metrics defined above are collected by each
application and used in the LR to infer the interference values
between applications.

From given dataset {y;, X;1, ..., Xip }j=1, @ LR is modeled
between the predictable (dependent) variable y; and the
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The results show that CNN and alexnet (0.936), alexnet
and alexnet (0.973) have interference values lower than 1.
These results can be inferred as low interferences when the
alexnet application characteristics are low metric values
associated with SM resources, and only relatively high GPU
utilization average metric values are implemented with CNN.
For Vggl6, vggll, the memory-related metric value is very
high, requiring more than the physical GPU memory resulting
in OOM. In such a case, the interference value is marked as -
1. More applications are investigated and applied to the LR
model to predict the interference value.

The result of the interference would be used to schedule
the application execution order of the application workload.
Since the degree of influence of the applications is different
from each other, the smaller the deviation of interference
value of the same application pair, the smaller the influence of
each other. Therefore, when several applications exist, the
execution order can be determined by arranging application
pairs having a small deviation value at the same time
according to the range of interference values. For example,
googlenet — CNN should be executed first because deviation
of interference value is 0.039.

V.  EXPERIMENT

A. Experiment setup

In the experimental environment of Kubernetes based
private GPU cluster, the performance and resource usage
efficiency were evaluated by applying the interference
prediction method. The cluster system consists of a master
node with two 1 GPUs and a computing node with two GPUs.
Details of the cluster configuration are shown in Table III.
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TABLE IIL EXPERIMENTAL SETTINGS
CPU GPU

Architecture  Intel(R) Core(TM) i7- 5820K  Nvidia GeForce Titan Xp D5x

Core clock 3.30GHz 1.58GHz

Num of Cores 6 cores 3840 cores

Memory size  32GB 12GB

Threading API Nvidia CUDA 10.1

Compiler Gee5.4.0 Nvidia C Compiler
(NVCC8.0)

0s Ubuntu 16.04.3 LTS Ubuntu 16.04.3 LTS

Scheduling on Kubernetes: The kubernetes device plug-
in was modified so that two applications could be performed
simultaneously on single GPU card. In addition, the scheduler
of the kubernetes was revised to ensure that applications are
paired according to each deployment strategy. After the two
applications were paired in the order resulting from each
arrangement strategy, the next pair of applications was
allowed to be launched at the same time after the execution of
both applications. OOM failure occurs if the sum of the
application's maximum memory usage is greater than the
amount of memory in this experimental environment.
Interference results using LR predicted OOM failure with
collected metric and excluded pairs of OOM in preprocessing
stage. However, other deployment strategies did not have a
pre-processing process, so users were required to specify the
maximum memory usage for each application. If the sum of
the maximum memory usage of the two applications exceeds
the memory of the experimental environment, one application
is placed in a pending state. Our method was to run when other
applications were finished.

Workload: Workload is configured using 5 Tensoflow
benchmark applications and 4 HPC applications (Lammps,
Gromacs, Qmepack, Hoomd). The profiling data of the
applications was collected using NVIDA profiler according to
defined metrics.

Interference values: After calculating the interference of
a total of nine application pairs with LR, MSE is 0.168. The
value of MSE is lower than that of minimum 0.207 and
maximum 0.355 compared to the [7] paper. This shows that
the metrics of this paper are more meaningful than the paper
[7]. Application pairs with an interface value below Criterion
1 include Gromacs-Lammps (0.964), CNN-Lammps (0.926),
and Gromacs-alexnet (0.979). Except in the case of OOM,
applications with more than 2 value of interference have the
most interference with the Qmcpack-Hoomd pair at
approximately 2.160.

B. Comparison of performance using interference

Interference-aware  experiments confirm that the
performance of the overall work and the utilization of each
resource are improved. The experiment evaluates the
performance compared to the random placement without
information on the interference. In this experiment, the two
applications with the lower 10% interference value are
composed of a pair of workloads of a total of six tasks,
depending on the outcome of the interference prediction.

Execution time: The execution time of the entire
application is improved by up to 7% when running with a low
interference pair. For the Lammps application and CNN
application, it appears that the performance time is the shortest
compared to the random. The GPU utilization average metric,
which affects performance time is the least likely for CNN at
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about 25, resulting in less resource competition. Moreover, it
is expected that there would have been fewer GPU memory
content with CNN because of the GPU memory utilization
level of about 2% for the Lammps application. The overall
performance of the five application pairs has improved, but
for the CNN-alexnet application pair, the performance is
similar to that of the random. This is because alexnet has a
shorter execution time than CNN, which did not affect
resource contention.

GPU contention: As GPU computing resource is not
sufficiently utilized by GPU contention, GPU utilization
which represents to percent of time over the sample period
during which kernels were executing on GPU is decreased. As
GPU contention via average GPU utilization is measured, it is
less competitive than the random deployment for the rest of
the application pair except for Gromacs-alexnet and CNN-
alexnet applications has. This is because GPU resource usage
in applications such as GPU utilization and SM utilization
among input metric of LR was reflected. In the case of
Gromacs-alexnet, Gromacs' SM efficiency is about 99.93,
affected by high active warps. For CNN-alexnet, GPU content
was generated by many active threads because CNN
applications had the highest warp efficiency of 55.21 out of 9
applications.

GPU memory: Compared to randomly deployed non-
aware execution, it has similar GPU memory usage (in Figure
7). However, a total of 5 OOMs occurred in the not
interference-aware group. LAMMPS requires approximately
8.3GB of GPU memory and vggl1 requires approximately
8.745GB of GPU memory. In the case of workloads that
include LAMMPS and vggl11 applications, the OOM occurred
when the random physical execution exceeded the actual
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physical memory. Therefore, it is important to implement
multi-application by considering GPU memory metric to
maximize GPU memory that can be shared while preventing
OOM from occurring.

C. Workload execution sequence placement using
interference deviations

The performance in execution time of the overall tasks is
various according to deployment strategies. The
deployment strategies used in this experiment are as
follows.

e Interference-aware greedy: Select a pair with the
smallest interference value and its variation in the
current stage based on results of interference

prediction using LR.

Shortest Job Frist (SJF): Select applications with the
shortest execution time.

Random: Select a pair of applications in a random
manner.

Mystic[8]: Select a pair with the least similarity value
generated by calculating similarity between pairs of
applications

SJF and Random policy are default scheduler that schedule
without profile information. Interference-aware greedy
proposed in this paper and mystic policy are scheduler based
on profile information.

Comparing policies that are not based on profiling to
interference-aware greedy policy, the results show that
performance improvement of interference-aware greedy
strategy (3520s) is about 18% for SJF (4260s) and 25% for
Random strategy (4646s) (shown in Figure 8). Applications in
the same pair of interference-aware greedy strategy were less
affected by each other because the pair was selected for small
interference value and its variation, so its performance is
better than the other strategies.

When comparing Mystic policy with interference-aware
greedy, Mystic takes 4229 seconds and interference-aware
greedy takes 3520 seconds. Interference-aware greedy
reduced time by about 17% compared to Mystic. Mystic
shows better performance than default scheduler by
scheduling based on profiling. However, since it simply
calculate similarities of metric values between pairs of
application, it doesn’t consider weight values for each
resource. Our policy of modeling interference value to take
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Fig. 6. Comparison of execution time with default policy and profile based
policy

into account weight values shows better performance for this
reason.

With LR modeling, it is possible to predict interference
value without having to perform all pairs of applications. It
leads to better performance than the other strategies.
Arranging an order of execution using prediction of
interference values helps improve overall performance. Based
on each applications’ resource metrics usage profiles, it
performs (1) calculating interference values to reduce
contention, (2) collocating the jobs’ pair to improve utilization
of resources and to conserve the performance.

VI

The advent of GPU containers emphasizes importance of
GPU resource management in clouds. This paper identifies the
interference that occurs when GPU resources are shared,
based on the resource usage metrics of applications. The
resource usage information of running applications defines
metrics that affect performance during co-execution. The
collected information is applied to LR model to calculate
interference values for a pair of applications. The experiment
results showed improvement by up to 7% in GPU utilization.
In case of workload composed several applications, overall
performance was about 18% better than SJF and 25% better
than random deployment when arranged tasks using
interference values.

CONCLUSION

In future work, we plan to extend this interference-aware
scheduler on multi-node cluster server for co-locating several
applications simultaneously.
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