2020 IEEE International Conference on Cluster Computing (CLUSTER)

Co-scheML:

Interference-aware Container Co-scheduling
Scheme using Machine Learning Application
Profiles for GPU Clusters

Sejin Kim
Department of Computer Science
Sookmyung Women’s University

Seoul, Korea
wonder960702@gmail.com

Abstract—Recently, efficient execution of applications on
Graphic Processing Unit(GPU) has emerged as a research topic
to increase overall system throughput in cluster environment.
As a current cluster orchestration platform using GPUs only
supports an exclusive execution of an application on a GPU, the
platform may not utilize resource of GPUs fully relying on
application characteristics. Nonetheless, co-execution of GPU
applications leads to interference coming from resource
contention among applications. If diverse resource usage
characteristics of GPU applications are not deliberated,
unbalanced usage of computing resources and performance
degradation could be induced in a GPU cluster. This study
introduces Co-scheML for co-execution of various GPU
applications such as High Performance Computing (HPC), Deep
Learning (DL) Training, and DL Inference. Interference model
is constructed by applying Machine Learning (ML) model with
GPU metrics since predicting interference has a difficulty.
Predicted interference is utilized and deployment of an
application is determined by Co-scheML scheduler.
Experimental results of the Co-ScheML strategy show that
average job completion time is improved by 23%, and the
makespan is shortened by 22% in average, as compared to
baseline schedulers.

Keywords— GPU applications, interference, co-execution,
Co-scheML scheduler, resource contention, GPU utilization (key
words)

1. INTRODUCTION

Issues related to optimization, application performance,
and system throughput of new and emerging general-purpose
graphics processing architectures, programming environment,
and platforms are varied as graphical processing unit(GPU)
becomes popular in general. Current cluster schedulers of
cluster orchestration platforms such as Yarn [1] and
Kubernetes [2] might not fully exploit GPU computing
resources because they execute an application exclusively on
a GPU at a time. To overcome this bounded use of GPU
resource, co-executing multiple and diverse applications,
which have miscellaneous patterns of resource usage is
suggested.

For General Purpose GPU (GPGPU) sharing, NVIDIA has
introduced multiple process service (MPS) to execute multiple
kernels in parallel [3]. However, performance of this
technique may degrade due to interference from co-executed
kernels accessing the same device at a time. Studies on GPU

978-1-7281-6677-3/20/$31.00 ©2020 IEEE
DOI 10.1109/CLUSTER49012.2020.00020

104

Yoonhee Kim
Department of Computer Science
Sookmyung Women’s University

Seoul, Korea

yulan@sookmyung.ac.kr

sharing cover co-deployment of applications with strategies
coming from monitoring information, user requirements
[9,10,11] or weights using GPU usage profiles [12].
Nevertheless, interference occurred at the time of co-
execution, which leads to performance degradation is not
considered in these studies. Furthermore, avoiding
interference using resource usage records of various
applications is challenging.

Recent studies have discussed interference issues caused
by resource contention that occurs from its sharing [8,13,14].
Some performance metrics of resources related to
interference are defined and accumulated profiling of the
metrics are applied for interference avoidance scheduling by a
previous study [14]. However, an execution failure such as
out-of-memory (OOM) may occur because its profiling
metrics are too limited to avoid the failure. Machine learning
(ML) is applied to scheduling for predicting interference using
resource metrics [13].It defines features of vGPU resources
(GPU, GPU memory, PCle, vCPU) for deep learning(DL)
applications. [8] identifies various factors which affect
interference according to node and cluster levels, and then
implements scheduling with diverse ML model to each level
relying on the factors. However, those studies analyze only
DL workloads, which have static resource usage patterns.

This paper introduces Co-ScheML to improve
performance and optimize resource usage for wvarious
applications running on GPUs. To solve the interference
problem that occurs during GPU sharing, it proposes a
scheduling method to avoid interference with ML on GPU
using appropriate metrics for applications with various
characteristics. Depending on the degree of interference, it
decides whether a GPU application is possibly co-located with
a currently running application. Execution results are profiled
to improve the model accuracy for future experiments.

In experiments, Co-ScheML’s performance is compared
to Binpack, Loadbalance, and Mystics[14] methods. An
evaluation includes job completion time (JCT), makespan,
speedup, and GPU utilization depending on a variety of
workload task density. Overall results show improving GPU
utilization rate by 24% in average, and shortening average job
completion time rate by 23% and makespan by 22% in
average, respectively.

o x; (oo x2 [N x2 G x

() BINPACKING

— Class : 1731

2000

1000 1500 2000

(€) Interference-aware

1000 1500

Time(sec)
Lt LAMMES, G :GROMACS, Class : Classification, N : Node

Figure 1. Job placement according to different scheduling policies

The rest of this paper is organized as follows. Section 2
introduces motivation. The architecture of Co-ScheML and an
interference-aware scheduling algorithm are explained in
Section 3. Its experiments are described in Section 4. The
related studies are provided in Section 5 and concluding
remarks are given in Section 6.

2000

II. MOTIVATION

A. Necessity of scheduling considering interference

Fig. 1 shows a sample experiment that compares
scheduling according to three policies, assuming that there
are two of each LAMMPS, GROMACS, Mnist, and
Classification applications in the pool. Fig. 1-(a) illustrates a
binpacking policy scheduling layout considering the max
memory. This is a policy that minimizes the number of nodes
by placing tasks on the node with sufficient available
resources, but with the highest resource usage. Fig. 1-(b)
shows a method that distributes the load by simply
considering the average GPU utilization. It co-locates the
application with the maximum average GPU utilization and
the application with the minimum average GPU utilization.
The bottom of the figure is a scheduling layout that considers
interference. To calculate interference values, each
application pair is co-executed and compared with the time
which running them individually. The pair with the minimum
interference value based on the obtained interference values
is selected and executed.

When comparing the scheduling considering interference
with the binpacking policy and the loadbalancing policy,

makespan was decreased by 2.38- and 1.23-fold, respectively.

When each application performance was compared, the
LAMMPS, GROMACS, Mnist, and Classification
performances were improved by up to 38%, 138%, 123%,
and 419%, respectively; however, LAMMPS was
approximately 0.6% worse than the binpacking policy, and
Mnist was approximately 36% worse than the loadbalancing
policy. As a result, when the interference aware policy was

105

workioad AMBOENA@@OM
—

Monitor
Kubelet
— ‘A\-; i

A® mE om

Worker NODES

Co-scheML

i |
E

ST I [und.«rn-.ammgl
y

Scheduler

Application Profiler

GPU Device Plugin

‘ AO
Figure 2. Architecture of Co-scheML

applied, the average job completion time of the application
was improved by 74% and 22% compared to the binpacking
policy and the loadbalancing policy (670.25 s versus 1168.75
and 821.75 s, respectively). This result shows that the
binpacking method recognizing only the max memory does
not use all of the available resources. Furthermore, it does not
reflect interference that may be appeared among the
applications, thereby leading to performance degradation.
Although the method used to reduce the interference by
naively balancing the loads among nodes with the average
GPU utilization shows a better performance compared to the
binpacking method, there is a limitation in the improvement
achieved. Our motivation is to design a scheduler that
minimizes interference while maximizing the use of available
resources from these results.

TII. Co—SCHEML DESIGN

This section describes the overall architecture design of
Co-scheML and scheduling method for dynamically arrived
applications of each node in a GPU cluster.

A. Architecture

The overall system design is shown in Fig. 2. Kubernetes
manages containers with modified device-plugin for sharing
of GPUs. If an application is first submitted, it is executed
alone and profiled to collect metrics. Its profiling information
is labeled as the application name and input data and stored
in the Profile repository. Metrics affecting co-execution of
applications are stored in a time-series-based database,
influxDB[5] and a profiling step is carried out offline.
Scheduler requests interference value from the Profile
repository and Model, and schedules accordingly. Model
construct random forest regression model [17] to predict
interference with offline profiling information. The model
output is interference value, which is represented as a ratio
between the time of co-execution and the time when the
application is executed alone. The decision of Scheduler is
sent to each worker node’s Kubelet. Kubelet launches
applications using the modified GPU Device Plugin for
sharing resources. While the application is being executed,
the progress of the application is continuously monitored and
the profiling information is updated to improve the accuracy
in Monitor.

B. Scheduler

The Scheduler does not waste resources from an idle GPU
and execute an application exclusively when no task is in a
waiting queue. It distributes tasks to as many nodes as
possible to maximize its performance. When an application
is in the queue, the application is the queue, the application

Algorithm 1 Co-scheML Scheduler

Input : App, gpu_n, pending_app

1: selected n«— @

2: idle n « find idle nodes(g pu n)

3: ifidle n# @ then

4: selected n «idle n[0]

5: else

6: single apps « find_exclusive app(gpu n)

7. if single apps # @ then

8: app_p « cal_interf(single_app, pending_app)

9: sorted_p « sort_by interf val(app_p)

10: selected p « find_pairs(sorted p)

11: if App € selected p then

12 selected n « find_n(App, selected_p)

13: return selected_n

14: procedure calculate_interf(single_app, pending_app)
15: for s_app in single_app

16: for p_app in pending_apps

17: s_metrics < Q profile reposit(s_app)

18: p_metrics « Q_profile reposit(p_app)

19: interf val «— Q ML model(s_metrics, p_metrics)
20: app_p<— append(s_app, p_app, interf val)

21: return app_ps

22: procedure find pairs(app_pairs)

23: for p in app_pairs

24: if sel(p.s_app) # true and sel(pair.p_app) # true then
25: if can_co-sched(p.s_app, p.p_app) then

26: selected pairs «— append(p)

27: return selected pairs

is executed as a pair to utilize the resources that are wasted
when an application exclusively uses the GPU. Scheduler
considers different interference values that are generated
from each pair of applications. We

choose the pair with the minimum interference value
according to the greedy algorithm.

Kubernetes default scheduler requests Co-scheML to filter
out nodes of the application in the queue to be scheduled
either when the user submits an application that arrives in the
queue or when the running application is terminated.
Therefore, our scheduling algorithm is called when a new
application is submitted or when a running application is
terminated. The scheduling operation of Co-scheML is the
same as in Algorithm 1.

When Co-scheML scheduler receives an application to be
scheduled, a list of GPU nodes present in a cluster, and a list
of applications in a waiting queue from the Kubernetes
default scheduler, it returns a node allocation result. The
find_idle_nodes function returns nodes without any running
applications in gpu_n (line 2). If there is no idle node, the
find_exclusive_app function is called to find an application
that is being executed exclusively in gpu n. If such
application presents, interference values of all application
pairs between single app and pending app are calculated
through the cal interf function. To obtain the interference
value, metrics of each application are queried from the Profile
repository (lines 17 and 18). The interference values are
returned from the interference model by inputting metrics
obtained through the query, as described in Section 4 (line
19). The returned values are sorted in ascending order and the
find_pairs function is called to select the pairs to be co-
executed according to the greedy algorithm (lines 9 and 10).
The find pairs function confirms whether co-scheduling is

106

possible if the applications of the pair are not yet selected.
This leads to the prediction of OOM with the profiling and
monitoring information (lines 25-26). The target application
is subject to verification regarding whether it is included in
the list of pairs selected from the minimum interference
values and can also be co-located (line 11). If it is included,
the node that s_app of the pair is executing is found and
returned as a selected n through the find n function (lines
12).

IV. EVALUATION

A. Evaluation methodology

Experiment environment: The Kubernetes-based
private GPU cluster is used for the evaluation. The cluster is
comprised of one master node with Intel® Core™ 17-5820K,
32GB RAM and three computing nodes with Nvidia
GeForce Titan Xp D5x GPU which has 12GB memory and
CUDA 10.0 API. The Monitor is an NVML-based resource
monitoring component and records the metrics in the influx
DB every 5 s. In the master node, the Kubernetes default
scheduler, Co-scheML, and Model are used. The Co-scheML
Scheduler uses the scheduler extension mechanism of
Kubernetes.

TABLE I . CHARACTERISTICS OF EACH WORKLOAD SEQEUNCE
Workload Characteristics of workload
sequence
0 High GPU utilization(HOOMD, Mnist, Googlenet,
VGG11, VGG16, GROMACS)
1 High memory utilization(Mnist, Googlenet, VGG16,
VGG11)
2 Hight PCle bandwidth(LAMMPS, GROMACS,
HOOMD, QMCPACK, Mnist, Googlenet)
3 DL Training applications
4 DL Training applications
5 HPC applications
6 DL applications
7,8,9 Random applications

Workloads: Twelve real-world applications were selected.
Four HPC applications (LAMMPS, GROMACS, QMCPACK,
HOOMD) [6], five DL training jobs (mnist, googlenet, alexnet,
vggl6, wvggll) [15], and three DL inference jobs
(classifiaciton, regression, multiout) were used [7]. All DL
tasks used Tensorflow, executed in the GPU and containerized
as a Docker container. A total of ten workloads were selected,
seven distinctive workloads and three random workloads. The
characteristics of the workloads applied are shown in Table 5.
The sensitivity of the scheduler is evaluated by varying the
arrival interval [14,16]. At this time, the arrival interval was
arbitrarily designated as 15, 30, and 60 s each for light,
medium, and heavy loads, respectively. The default task
density was a medium load.

Evaluation Metrics:

® The average job completion time (JCT) is the average
completion time from when each job is submitted.

® Makespan is the time when all jobs in the workload are
completed.

® Speedup is the value of the execution time when the

application is co-scheduled normalized to the time
when the application is executed alone.

Baseline schedulers: A max-memory-based Binpack
scheduler and interference aware schedulers, such as the
Loadbalance and Mystic [14] schedulers, are used. The
Loadbalance scheduler is based on the average GPU
utilization and selects the pairs to co-execute such that it has
the minimum GPU utilization. The Mystic scheduler
calculates the similarity among the application metrics and
schedules in order of low similarity.

B. Scheduling Performance

The effects of various workloads on the performance of
each scheduling method are analyzed. The task density was
designated as the medium. Fig. 7-(a) shows the average JCT
for a total of ten workloads. In all workloads except for three,
Co-scheML shows the shortest JCT, and the average JCT for
all workloads was 844.09 s for Co-scheML, 1089.32 s for
Binpack, 943.05 s for Loadbalance, and 967.94 s for Mystic.
This results showing the performance of Co-scheML
improved approximately 30%, 11%, and 15%, respectively.
The makespan for all workloads is shown in Fig. 7-(b). In the
makespan aspect, Co-scheML showed the best performance
for all workloads except for three, and the average makespan
for all workloads for Co-scheML, Binpack, Loadbalance, and
Mystic were 1705.1 s, 2156.1 s, 2027.3 s, and 2031.8 s,
respectively. It shows a decreased makespan in comparison to
Co-scheML of 26%, 18%, and 19%. For workloads 1, 3, 5,
and 7, there was a trade-off between the makespan and
average JCT. For example, for workload 7, the average JCT
of Co-scheML was 1,060 s, a performance decrease of
approximately 9% compared to Mystic (970 s), which showed
the best performance. However, makespan showed a
performance of 2,411 and 2,931 s, an improvement over Co-
scheML of approximately 18%. Workload 4 is only composed
of a DL inference task, which showed a decreased
performance in the average JCT and makespan of 2% and 7%,
respectively. The DL inference task is an application that uses
fewer resources, which is advantageous in a co-execution
owing to less interference. Workloads 2, 8, and 9, in which
Co-scheML showed a good performance had an average
improvement in the JCT of approximately 22%, 69%, and
12%, and an improved makespan of approximately 24%, 44%
and 48% on average, respectively. As the workloads are
comprised of resource-consuming applications, which often
result in interference between them, Co-scheML showed the
greatest advantage in terms of their scheduling. The
performance of Co-scheML was also improved by avoiding
from OOM using profiling information, compared to one of
Loadbalance and Mystic without predicting OOM were.

Fig. 8 shows a comparison of the speedup for each
workload. Co-scheML, Binpack, Loadbalance, Mystic
demonstrated a speedup of 78%, 56%, 67%, and 75%,
respectively. Although the Loadbalance scheduler displayed
a good speedup because it shares computing resources fairly
well considering the average GPU utilization, it did not show
a sufficient performance regarding the makespan and average
JCT by not considering the overall resource usage. In
particular, it showed poor performance in workload 5, which
consists only of HPC applications. Average GPU utilization
is not sufficient to characterize HPC applications which have
dynamic GPU utilization. Workload 3 suffered the highest
performance degradation, which was most affected by
interference. It consists of DL training applications with high
GPU utilization among workloads. Although applications are
scheduled by interference-aware policy, there is relatively

107

(b) Makespan
Figure 3. Performance of Co-scheML and others in (a) Average JCT, and
(b) Makespan for workload launch sequences

_ 12
: Baseline (Exclusive Execution)

4] 1 2 3 4 5 6 7 8 9

Workload Launch Sequences

E 1
£ o8
3 06
o

=

0

L] cheMlL ®Binpack mLoadbalance Myst

Figure 4. Speed up of schedulers

high performance decline for applications with high GPU
utilization. Binpack was the most affected scheduler. As
Mystic didn’t count on the weight of metrics enforcing
performance and calculate the interference of co-execution
based on the similarity of metrics, its speedup is low
compared to Co-scheML’s. Its average JCT and makespan
are poor as it is not able to detect OOM.

Fig. 9 shows a graph representing the GPU utilization based
on the scheduler for each node. The 12 applications used in
this experiment were each executed twice, and the workload
consisted of a total of 24 jobs whose launch sequence was
randomly generated. During the execution of all workloads,
the average GPU utilization was 78% for Co-scheML, 59%
for Loadbalance, and 67% for Mystic, showing a higher GPU
utilization for Co-scheML by 32% and 16%, respectively.
Co-scheML allows each application to use complementary
resources by considering interference, resulting in improved
GPU utilization.

V. CONCLUSION

This paper proposes Co-scheML, an interference-aware
scheduler, which provides a ML model that predicts the
interference values using application profiling data and
minimizes interference among GPU applications in a GPU
cluster. The experiment showed that the average JCT was
improved by up to 30% and that makespan was by 26% for
various workloads as compared to conventional schedulers.
The resource utilization of the cluster was enhanced by 24%
and the performance under various task densities was
achieved 23% for JCT and 22% for makespan in average.
Future studies include identifying characteristics in various
GPU execution environments and an extension of the
scheduling method on multiple GPUs.

[1]
[2]

[3]

[4]

[5]
[6]
[7]
[8]

[9]

[10]

REFERENCES

Yarn, https://hadoop.apache.org/docs/r3.1.0/hadoop-yarn/hadoop-
yarn-site/UsingGpus.html

Kubernetes, https://kubernetes.io/docs/tasks/manage-gpus/scheduling-
gpus/

NVIDIA Multi Process Service,
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service O
verview.pdf

Carvalho P, Cruz R, Drummond LM, Bentes C, Clua E, Cataldo E,
Marzulo LA. Kernel concurrency opportunities based on GPU
benchmarks characterization. Cluster Computing. 2020 Mar
1;23(1):177-88.

InfuxDB, https://www.influxdata.com/

NGC, https://ngc.nvidia.com/

DJINN, https://github.com/LLNL/DJINN

Geng X, Zhang H, Zhao Z, Ma H. Interference-aware parallelization
for deep learning workload in GPU cluster. Cluster Computing. 2020
Jan 2:1-4.

Chang CC, Yang SR, Yeh EH, Lin P, Jeng JY. A kubernetes-based
monitoring platform for dynamic cloud resource provisioning. in
GLOBECOM 2017-2017 IEEE Global Communications Conference
2017 Dec 4 (pp. 1-6). IEEE.

Gu, Jing, et al. "GaiaGPU: Sharing GPUs in Container Clouds." 2018
IEEE Intl Conf on Parallel & Distributed Processing with Applications,
Ubiquitous Computing & Communications, Big Data & Cloud
Computing, Social Computing & Networking, Sustainable Computing
& Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom).
IEEE, 2018.

108

[11]

[12]

[13]

(14

[15]

[16]

[17]

Song, Shengbo, et al. "Gaia Scheduler: A Kubernetes-Based Scheduler
Framework." 2018 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, ~ Ubiquitous Computing &
Communications, Big Data & Cloud Computing, Social Computing &
Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/Social Com/SustainCom). IEEE, 2018.

Hong, Cheol-Ho, Ivor Spence, and Dimitrios S. Nikolopoulos.
"FairGV: fair and fast GPU virtualization." IEEE Transactions on
Parallel and Distributed Systems 28.12 (2017): 3472-3485.

Xu, Xin, et al. "Characterization and prediction of performance
interference on mediated passthrough GPUs for interference-aware
scheduler." 11th {USENIX} Workshop on Hot Topics in Cloud
Computing (HotCloud 19). 2019.

Ukidave, Yash, Xiangyu Li, and David Kaeli. "Mystic: Predictive
scheduling for gpu based cloud servers using machine learning." 2016
IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2016.

Tensorflow CNN benchmarks,
https://github.com/tensorflow/benchmarks/tree/master/scripts/tf cnn_
benchmarks

Chen Z, Quan W, Wen M, Fang J, Yu J, Zhang C, Luo L. Deep
Learning Research and Development Platform: Characterizing and
Scheduling with QoS Guarantees on GPU Clusters. IEEE Transactions
on Parallel and Distributed Systems. 2019 Jul 29;31(1):34-50.
Random forest regression, https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestR
egressor.html

