
Dyna-P: placement-aware dynamic partitioning for lightweight
applications with modern GPUs

Theodora Adufu1 • Yoonhee Kim1

Received: 6 January 2025 / Revised: 10 March 2025 / Accepted: 5 April 2025
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract
Efficient GPU resource sharing is critical in dynamic cloud-based environments, particularly for lightweight HPC appli-

cations and Small Language Models, which demand partial GPU resources for execution. However, traditional scheduling

frameworks fail to address intra-GPU and inter-node resource fragmentation and dynamic placement challenges arising

from the heterogeneity in each application’s resource demand and job completion times. This leads to resource under-

utilization and scheduling delays in GPU clusters. This paper introduces Dyna-P, a novel scheduling framework designed

to dynamically adjust GPU partitions to minimize resource fragmentation while improving system throughput and

Makespan. Dyna-P proposes a Reconfiguration Last Placement policy which recognizes that workloads consisting of

lightweight applications can benefit more from uninterrupted execution. Experimental results demonstrate that Dyna-P

improves average throughput by up to 14.7% and reduces Makespan by 39% compared to state-of-the-art methods. These

findings underscore Dyna-P’s potential to improve resource allocation rates in multi-tenant GPU environments.

Keywords Dynamic partitioning � Spatial sharing � GPU utilization � Placement � Fragmentation

1 Introduction

Modern Graphics Processing Units (GPUs) are pivotal in

accelerating workloads across diverse fields, including

Artificial Intelligence (AI), High-Performance Computing

(HPC), and scientific research. The increasing prevalence

of cloud-based GPU environments [1–4] and the recent

introduction of local inference serving platforms like

Ollama [5] have driven the need for efficient resource

management, particularly as workload diversity continues

to expand. Container orchestrators like Kubernetes and

KubeEdge [6, 7] play a vital role in workload scheduling

within resource-constrained GPU cloud environments, such

as AI research institutes and edge servers. However, these

systems face significant challenges in efficiently managing

GPU resources, particularly for lightweight applications.

These challenges are intensified by the rapid adoption of

Small Language Models (SLMs), which introduce diverse

and unpredictable resource demands, and by the irregular

arrival of jobs, which complicates scheduling and alloca-

tion strategies.

Similar to some HPC applications [8, 9], SLMs, with

their lightweight architecture and high efficiency, often

require partial GPU resources, creating a complex multi-

dimensional bin-packing problem [10, 11] with placement

constraints; a challenge yet to be fully addressed by

existing schedulers.

Existing GPU sharing methodologies can be broadly

classified into temporal and spatial sharing techniques.

Temporal sharing, which involves alternating GPU access

across time partitions, often leads to performance degra-

dation as a result of frequent context switching. In contrast,

spatial sharing, enabled by technologies such as NVIDIA’s

Multi-Instance GPU (MIG), partitions GPU resources into

isolated partitions to support concurrent execution. How-

ever, these approaches are limited by static configurations,

resource fragmentation, and inefficiencies in addressing

dynamic job requirements.

& Yoonhee Kim

yulan@sookmyung.ac.kr

Theodora Adufu

theoadufu@sookmyung.ac.kr

1 Department of Computer Science, Sookmyung Women’s

University, 100 Cheongpa-ro 47-gil, Seoul 04310, South

Korea

123

Cluster Computing (2025) 28:608
https://doi.org/10.1007/s10586-025-05284-2(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-025-05284-2&domain=pdf
https://doi.org/10.1007/s10586-025-05284-2

This paper proposes Dyna-P, a dynamic partitioning

framework designed to improve GPU resource allocation

rates for lightweight applications. Using inherent merge

and split functionalities, Dyna-P dynamically reconfig-

ures partial GPU partitions to minimize fragmentation and

maximize resource utilization. Dyna-P also proposes a

Reconfiguration Last Placement policy to ensure uninter-

rupted execution of workloads. Experimental evaluations

highlight the following key contributions:

• Analysis of lightweight applications on GPU partitions

to estimate required resources and address over-provi-

sioning (Sect. 2).

• Innovative use of NVIDIA’s merge and split features

for flexible GPU configurations and minimization of

intra-GPU fragmentation (Sect. 3).

• A joint resource selection, placement, and scheduling

algorithm designed to enhance throughput and mini-

mize makespan by leveraging spatio-temporal workload

characteristics and placement awareness (Sect. 3).

The rest of the paper is organized as follows: Sect. 2

highlights the motivations for this investigation. Section 3

describes the proposed Dyna-P framework. Section 4,

presents an evaluation of Dyna-P through extensive

experiments. Section 5 reviews related work, while Sect. 6

discusses potential applications. Finally, Sect. 7 concludes

the paper.

2 Background and motivation

In this section, scheduling in GPU cluster environments

is analyzed using Alibaba’s GPU cluster trace from 2023

[12] to highlight the scheduling challenges yet to be

addressed by existing schedulers.

As observed in Fig. 1, consistent scheduling delays are

not only linked to irregular job arrival patterns but also to

the high variability in job resource requirements. Work-

loads requiring small GPU partitions often experience

delays (Fig. 1) as traditional GPU runtime environments

assign full GPU resources to jobs which fail to fully utilize

them. This observation has led to a surge in research

focused on improving GPU utilization [13–16]. However,

these do not consider placement sensitivity and strategies

to harvest resource fragments to improve resource alloca-

tion rates and hence job queuing times. Research into GPU

sharing methodologies has focused on temporal and spatial

sharing(fine-grained and coarse-grained), with the latter

showing promise in improving GPU utilization.

Fine-grained GPU sharing [17–19] enhances hardware

utilization at the SM or Compute Unit (CU) level, thereby

improving overall system throughput. For instance,

NVIDIA’s Multi-Process Service (MPS) [17] allows mul-

tiple kernels to share GPU resources. However, fine-

grained sharing introduces challenges, including interfer-

ence among concurrently running workloads, where ker-

nels may modify overlapping memory locations.

Additionally, the lack of strict performance isolation makes

MPS unsuitable for multi-tenancy in GPU clusters.

Coarse-grained approaches, such as NVIDIA’s Multi-

Instance GPU (MIG) [20] and AMD’s Compute Unit

Masking [21], enable resource partitioning into isolated

partitions to support concurrent execution. For NVIDIA’s

MIG, resource partitions are denoted by profiles like

4 g.24gb, where 4 g represents the compute capacity and

24gb refers to the associated memory allocation. MIG

supports limited levels of concurrency, allowing up to

seven workloads to run concurrently on architectures like

A100 or H100. However, these configurations are static

and changing them to accommodate new jobs requires

stopping all active jobs, leading to inefficiencies and delays

[11]. NVIDIA’s merge and split features address some

limitations by enabling the creation of new partitions from

existing ones without requiring full reconfiguration. How-

ever, these operations are constrained by the physical

locations of available partitions and the placement of active

jobs, making dynamic scheduling in online environments

particularly challenging.

In multi-tenant GPU clouds, coarse-grained spatial-

sharing approaches like NVIDIA’s MIG are often preferred

due to resource isolation. However, determining suit-

able partitioning and resource allocation for inference jobs

remains a challenge; workloads are heterogeneous in their

resource demands.

In the remainder of this section, analysis on resource

sharing, utilization, and throughput for lightweight appli-

cations is conducted to address the following research

questions.

• How can GPU partitions be effectively allocated to

workloads? (Sect. 2)

• What configurations and placements best enhance

performance for diverse workloads? (Sect. 3)

• Which scheduling strategies improve resource utiliza-

tion and reduce fragmentation?(Sect. 3)

2.1 Resource density, scalability
and performance

In this section, the performance of a specific group of

lightweight applications known as SLMs is evaluated for

performance on different resource partitions.

According to [22], SLMs with parameters between 0.1

Billion and 3 Billion require between 275 MB and 2456

MB of memory. Their modest resource needs and

 608 Page 2 of 19 Cluster Computing (2025) 28:608

123

efficiency in handling tasks such as code generation,

summarization, and text classification have driven their

adoption in modern GPU clouds. The allocation of

Streaming Multiprocessors (SMs), memory bandwidth, and

cache memory is thus critical to improving delays and

throughput [23] especially for batch inference requests.

Figure 2 illustrates the execution of two representative

inference jobs, DistilGPT [24] and Phi-1 [25], to evaluate

how resource density (allocated GPU resources) impacts

Fig. 1 Relationship between

requested resources and

scheduling delays using

Alibaba’s GPU cluster trace

2023 [12]

Fig. 2 Performance comparison SLM workloads for different GPU configurations

Cluster Computing (2025) 28:608 Page 3 of 19 608

123

SLM performance and GPU resource utilization. Using

NVIDIA’s MIG, isolated partitions of 1 g.6gb, 2 g.12gb,

and 4 g.24gb on the NVIDIA A30 GPU were provisioned

for this investigation. Performance metrics, including

model throughput and P98th latency, were measured for

each workload across batch sizes (1, 2, 4, 8, 16, 32, 64).

In Eq. 1, model throughput (MT) measures the total

number of input and output tokens processed per second.

P98th latency represents the time required to complete 98%

of inference requests for a given batch size. In these

benchmark experiments, inference requests with the same

input token length were executed 10 times for each batch

size and MIG partition.

MT ¼ Total tokens (Input + Output)

Inference time
ð1Þ

From Fig. 2, it is observed that the performance of both

applications deteriorates sharply beyond a trade-off point

(TP) on each partition. Figure 2 shows that P98th latency

increases significantly for smaller partitions (1 g.6gb)

compared to the full GPU (4 g.24gb). This is due to

resource constraints in smaller partitions, which increase

kernel launch times, computation delays, and data fetching

overheads, especially for larger batch sizes.

In particular, DistilGPT shows higher throughput than

Phi-1 and less latency sensitivity between batch sizes. In

contrast, Phi-1 experiences a steep increase in latency and a

fall in model throughput between batch sizes 32 and 64 on

the 1 g.6gb partition, highlighting its higher demand for

compute resources and the limitation posed by slower

memory operations. Furthermore, Phi-1’s failure to execute

on the 1 g.6gb partition underscores the challenges of

resource constraints, while DistilGPT’s low resource uti-

lization on 2 g.12gb highlights the challenge of balancing

under-provisioning and over-provisioning during schedul-

ing. Additionally, peak power utilization increases with

batch size and partition sizes for both applications how-

ever, the higher power usage for DistilGPT on 2 g.12gb

shows that selecting the right resource partition ultimately

affects the energy efficiency and carbon footprints when

serving inference.

Takeaway: Dynamic input parameters such as batch

sizes, affect the throughput and latency of SLM inference

across different partitions. Executing applications with

larger batch sizes on any partition is less beneficial beyond

a trade-off point.

2.2 Placement sensitivity and system
throughput

The effect of job placement preferences in improving

performance has been studied for scheduling scenarios

[26–28] with heterogeneous resources.

From previous work [8] and as depicted in (Fig. 3),

certain valid GPU configurations may not be suitable for a

given workload, despite the logical availability of resources

within a given scheduling period. This phenomenon or

undesired placement is usually observed as systems adapt

to fluctuating incoming inference requests when resources

are scaled dynamically. This usually leads to resource

fragmentation [12] and idle GPU time.

NVIDIA’s MIG sharing provides merge and split fea-

tures, which allow the dynamic creation of new resource

profiles to meet user QoS requirements without preempting

all active jobs. While these features can reduce the total

time required to complete all jobs (makespan) and improve

system throughput, their effectiveness is limited by archi-

tectural constraints (Fig. 3). When leveraged appropriately,

they can improve resource allocation and significantly

enhance performance.

In multi-GPU cluster environments, inference work-

loads are diverse in their QoS requirements, arrival rates,

model throughput (Sect. 2.1), and utilization across dif-

ferent GPU resources. This analysis explores the impact of

placement strategies on system throughput during the

concurrent execution of inference jobs across various MIG

configurations. By understanding how placement sensitiv-

ity affects resource utilization, this work aims to inform

strategies for balancing workload demands and maximiz-

ing system performance.

In Fig. 4, an NVIDIA A30 GPU is statically partitioned

into six configurations: (1 g-only: 1 g.1g.1g.1g, Mixed-1:

1 g.1g.2g, Mixed-2: 1 g.2g.1g, Mixed-3: 2 g.1g.1g, 2 g-

only: 2 g.2g, and 4 g-full: 4 g). These configurations

consist of both homogeneous and heterogeneous (mixed)

partitions, with jobs assigned to GPU partitions using a

first-fit placement strategy. The inference workloads of

four SLM models-DistilGPT [24], Phi-1 [25], CodeGen

[29] and Flan-T5-Large [24]-arrive in a First-Come-First-

Served (FCFS) order for execution.

Sequel to prior studies [9, 30, 31], the system throughput

(Eq. 5 in Sect. 3.1.2) is calculated as the weighted sum of

the relative performance of each GPU partition compared

to a full GPU resource. From Fig. 4b, it is observed that

without GPU reconfiguration, the placement of jobs for

varying inference workloads leads to different system

throughput and job completion times across configurations.

Due to the variation in minimum resource requirements,

partition allocations for certain jobs, such as Phi-1, result in

job failures in some configurations. This is evident in the

1 g-only configuration, where the 1 g.6gb partition cannot

satisfy Phi-1’s QoS requirements, leading to execution

failures.

Takeaway: Minimizing the trade-off between system

performance degradation and resource utilization requires a

 608 Page 4 of 19 Cluster Computing (2025) 28:608

123

scheduler that anticipates job placement outcomes across

diverse use-case scenarios in multi-tenant GPU clouds.

3 Placement-aware GPU partitioning: Dyna-
P

Dyna-P is a workload and placement aware spatial sharing

system designed to enhance GPU resource utilization and

reduce scheduling delays caused by resource fragmenta-

tion. To achieve these objectives, the scheduling frame-

work must account for both spatial and temporal

requirements of workloads. Spatial requirements involve

allocating appropriate GPU partition sizes and ensuring

efficient utilization, while temporal requirements address

the dynamic nature of workloads, including job arrivals,

completions, and GPU resource availability over time.

Dyna-P comprises two main components: Capacity

Evaluator and Scheduling Unit, and operates as described

in the example scenario below (Fig. 5). The architecture is

designed to dynamically adapt GPU partitions and sched-

ule inference workloads in multi-tenant environments so as

to maximize system throughput while minimizing resource

fragmentation and scheduling delays.

In a multi-GPU environment, multiple tenants submit

jobs, with varying characteristics to a shared queue,

Q ¼ ða bj; . . .; a bmÞ. During workload submissions, users

specify batch size b and QoS requirements such as deadline

(Da bj), while also indicating that resources can be shared

among workloads. Users sometimes submit the same jobs

with different batch sizes; this variance in batch sizes is

represented by b in our nomenclature. For this scenario, the

main procedure of Dyna-P is summarized as follows:

1. In an offline process, each submitted inference job is

profiled in a FCFS manner. The profiling process

records important characteristics of the job, which are

stored in a profile repository, Pðpa bj ; :::; pa bmÞ.
2. Using the workload profiles, the Batch-aware Partition

Predictor, considers the batch size, b, of the inference

job and addresses the issue of resource over-provi-

sioning by ensuring that jobs receive resources which

improve throughput at low latencies. The Job Com-

pletion Time of each job, JCTa bj;gi , is then estimated

using the performance counters in the profiles.

Fig. 3 Desired spatio-temporal

placement scenarios with merge
and split

Fig. 4 Performance comparison of workloads for different GPU configurations

Cluster Computing (2025) 28:608 Page 5 of 19 608

123

3. Jobs are prioritized based on their QoS requirements

(Da bj) and the branch-and-bound algorithm is called

to determine the most suitable placement on each local

GPU subject to users’ deadline constraints.

4. During assignment, Dyna-P continuously monitors the

workload queue and GPU states. and evaluates the

GPU for potential resource merges or splits when the

physical partitions differ from the partition required for

each placement. This step accounts for job arrival

patterns and anticipates upcoming workload require-

ments by leveraging workload profiles.This process

repeats until the workload queue is empty.

By proactively reallocating resources based on estimated

needs, Dyna-P minimizes delays and improves scheduling

efficiency.

3.1 Capacity evaluator

Analyzing and allocating GPU resources to inference jobs

is critical, as performance outcomes heavily depend on the

behavior of each workload. However, users often over-

subscribe to GPU clusters [32] in an attempt to improve

execution outcomes, which paradoxically leads to resource

under-utilization. Dyna-P leverages NVIDIA’s Data Center

GPU Manager (DCGM) profiling tool [33] to collect job

execution and utilization metrics for batch inference jobs.

With job profiles, the capacity evaluator predicts the most

suitable resource partition and the expected job completion

times for each job, as described below.

3.1.1 Batch-aware partition predictor

Dyna-P supports multi-GPU environments with MIG-en-

abled GPUs, G ¼ ðG1; . . .;GkÞ, allowing for both homo-

geneous and heterogeneous partitioning. Each partition gi
represents a fraction of a GPU’s resources. It is assumed

that inference jobs require either partial or full GPU

resources, with gi satisfying 0\gi �Gk where

Gk ¼ ðg1; . . .; gjGjÞ, the set of valid GPU partitions. The

maximum number of valid partitions vary per GPU archi-

tecture; for instance on the A30 GPU, |G|= 4 whilst |G|= 7

for A100 and H100 GPUs.

As illustrated in Fig. 2, each inference job shows a

latency (Lat) and model throughput (MT) trade-off for each

combination of batch sizes and resource partitions. This

shows that latency and model throughput must both be

considered simultaneously in order to select suitable re-

sources and ensure that user’s QoS (deadline) are satisfied.

It is desirable that latency be at its minimum while model

throughput improves.

The Batch-aware Partition Predictor adapts Li et al.

[34]’s use of directed bipartite graphs to match inference

jobs of varying batch sizes a bj to suitable GPU partitions

gi, where a bj denotes job a bj executed with user-speci-

fied batch size b. Dyna-P’s graph-based approach effi-

ciently models the trade-offs between latency, model

throughput, and resource partitions. In the graph, one set of

nodes represents batch size variants a bj, and the other set

represents available GPU partitions gi. A weighted edge,

Fða bj; giÞ, between a bj and gi represents the suitability

of that partition for executing the job with weights calcu-

lated using Eq. 2.

Fig. 5 System design of Dyna-P

 608 Page 6 of 19 Cluster Computing (2025) 28:608

123

Fða bj; giÞ ¼ k � DLata bj;gi þ ð1� kÞ � DMTa bj;gi ð2Þ

s:t: Latða bj; giÞ þ margin�Da bj 8gi; a bj
The weights balance latency minimization (DLata bj;gi)

and model throughput maximization (DMTa bj;gi) based on

the parameter k where 0� k� 1 is a configurable param-

eter that can be tuned for different scenarios. The baseline

metrics Lbasegi and MTbasegi in Eqs. 3 and 4 are measured

for the maximum batch size (e.g. b ¼ 64) that the partition

gi can accommodate. This represents the most resource-

intensive scenario and ensures that weights are normalized

for consistent comparisons.

DLata bj;gi ¼
Lbasegi � Lða bj; giÞ

Lbasegi
ð3Þ

DMTa bj;gi ¼
MTða bj; giÞ �MTbasegi

MTbasegi
ð4Þ

Using this representation, BPP (Algorithm 1) performs

matching by identifying (a bj; gi) pairings that maximize

edge weights, prioritizing partitions that reduce latency and

maximize model throughput, while ensuring that QoS

deadlines Da bj are met. During the graph construction

phase, edges are created only if the memory and compute

requirements of a bj do not exceed the capacities of gi. If

the memory requirements of the job do not exceed the

partition capacity (Mema bj �Capgi), an edge is created,

with its weight Fða bj; giÞ calculated based on Eq. 2.

Invalid pairs are excluded at this stage to ensure that only

feasible assignments are considered.

Algorithm 1 Edge creation with BPP

Suppose there are two inference jobs, a b1 and a b2, with

batch sizes b ¼ 16 and b ¼ 32, respectively. The available

GPU partitions are 1 g.6gb, 2 g.12gb and 4 g.24gb and

they all satisfy the OOM requirements of a 161, but

1 g.6gb does not meet the requirements of a 322. Then

using Eq. 2, weights Fða bj; giÞ are calculated for each

valid pairing as illustrated in Fig. 6.

Edges are created in the bipartite graph for these pairs,

ensuring that 2 g.12gb and 4 g.24gb are prioritized for

a 322, while 1 g.6gb, 2 g.12gb and 4 g.24gb remain fea-

sible for a 161. The weighted edge with the highest

Fða bj; giÞ value is considered the most suitable partition

for the job. If multiple partitions yield the same Fða bj; giÞ,
the smallest slice is selected as the tie-breaker to maximize

resource efficiency.

3.1.2 Performance estimator: system throughput

The temporal aspect of scheduling is crucial for improving

system throughput in multi-tenant environments. In Dyna-

P, the performance estimator determines the system

throughput of workloads submitted by multi-tenants. With

performance counters collected for the application during

profiling, Dyna-P uses XGBoost regression model [35] to

estimate the job completion time for each inference job on

its predicted partition (JCTa bj;gi).

System throughput, TGk
, quantifies the efficiency of

allocated GPU partitions, gi in processing inference jobs,

a bj, while meeting user-defined QoS constraints. Fol-

lowing prior work [9, 31, 36], TGk
is calculated as the

weighted sum of the relative throughput of the inference

workloads, RTa bj;gi , on each partition. Formally:

TGk
¼ mGk

�
Xi\W

i¼1

RTa bj;gi ð5Þ

where RTa bj;gi is the speed-up of inference job (a bj)

executed on a full GPU relative to its performance on a

partition gi. To account for idle GPU partitions and ensure

that the system throughput reflects the actual utilization of

the GPU for any combination of concurrently executed

jobs, the weight, mGk
, is introduced. mGk

is the proportion

of the GPU resources used during any concurrent execution

of inference jobs relative to the capacity of the whole GPU.

The parameter W represents the number of inference jobs

executed concurrently on a single GPU.

3.2 Scheduling unit

Efficient resource allocation in private clusters and multi-

GPU environments is essential for minimizing makespan

(the total job execution time) and ensuring timely processing

of new inference submissions. Each GPU schedules jobs

based on their resource demands, available capacity (Ravail),

and inherent architectural and execution constraints. This

subsection discusses the constraints, allocation strategies

and job placement considerations. Key notations used in the

scheduling unit are summarized in Table 1.

Cluster Computing (2025) 28:608 Page 7 of 19 608

123

3.2.1 Architectural constraints

GPU resource sharing varies by architecture and vendor.

AMD uses flexible CU allocation and MxGPU virtualiza-

tion, while NVIDIA’s MIG provides hardware-enforced

partitioning for predictable performance. In NVIDIA GPU

architectures (A30, A100, H100, etc.) MIG partitions a

GPU, Gk, into predefined configurations, CGk
, each com-

prising of a unique set of MIG instances, gi per Gk. Only

one configuration can be active per GPU at a time, indi-

cated by a binary variable xGk
2 f0; 1g:

X

i2CGk

xGk
¼ 1; 8Gk ð6Þ

Fig. 6 Batch-aware partition

prediction process

Table 1 Notations
Notation Remarks

Q Workload queue with submitted inference jobs, Q ¼ ðabj; :::; a b mÞ
a b j Inference job submitted to the queue, Q

D a b j Deadline of job a b j

G k A partition-enabled local GPU

gi Valid MIG partition on GPU G

CGk
Predefined valid configurations per GPU

JCTabj ;gi Predicted JCT of abj on gi

RTabj ;gi Relative performance of abj on a gi

mGk
Weight representing the proportion of GPU which is currently being utilized

TGk
Total system throughput achieved on a local GPU

bTGk
Highest expected throughput on a local GPU

SPGk
Set of feasible placements ðabj; giÞ; :::; ðabm; gnÞ on GPU Gk

W Level of concurrency for GPU sharing, the maximum of which is |G|

B A set of inference jobs evaluated for placement on a GPU as a batch

Ravail Available GPU resources for allocation

Rreq Required resources for executing inference jobs in Batch, B

Eabj Time spent executing abj

Cr Cost of reconfiguring a local GPU

Cw Cost of waiting for active jobs to complete

b Threshold for reconfiguration

xGk
, yi;abj Binary variables to indicate architectural and execution constraints

zgi ;gi , sgi Binary variables to indicate merge or split respectively

 608 Page 8 of 19 Cluster Computing (2025) 28:608

123

3.2.2 Execution constraints

Each inference job, a bj, must be placed on a valid GPU

partition, gi, within the feasible placement set

SPGk
¼ ðða bj; giÞ; . . .; ða bm; gnÞÞ. Jobs and partitions

must adhere to the following rules: First, a single job

cannot be assigned to multiple partitions simultaneously.

Second multiple jobs cannot execute on the same partition

concurrently. Third, after a job a bj is completed, its

assigned partition becomes available for reuse. The binary

variable yi;a bj 2 0; 1 indicates whether a job a bj can be

placed on a partition gi:

If yi;a bj ¼¼ 1;) job a bj can execute
X

i2gi
yi;a bj � 1; 8a bj

ð7Þ

yi;a bj þ yi;ajþ1
� 1; 8i; a bj 6¼ ajþ1

If job a bj completes) yi;a bj ¼ 0
ð8Þ

3.2.3 Reconfiguration last placement, RLP

Dynamic GPU partitioning minimizes makespan while

adapting to evolving resource demands. When new jobs

arrive with different resource requests yet logical resources

cannot meet resource demands due to physical partitioning

constraints, reconfiguration is required to harvest resource

fragments and ensure jobs are placed efficiently to maxi-

mize system throughput and minimize makespan. This

often happens when a job is completed and there are other

jobs waiting in the queue. During reconfiguration, all active

jobs must be preempted, introducing overhead costs (Cr).

Dyna-P first evaluates whether merging or splitting

available resources is feasible and beneficial. For instance,

while merging 2 g and 1 g is infeasible on an NVIDIA A30

GPU, it is supported on A100 and H100 GPUs. Addition-

ally, only partitions adjacent each other can be merged.

Binary variables zgi;gi 2 0; 1 and sgi 2 0; 1 indicate whether

a partition can be merged or split respectively:

If zgi;gi ¼¼ 1;)Instances can be merged ð9Þ

If sgi ¼¼ 1;)Instance can be split ð10Þ

If reconfiguration remains necessary due to infeasible

merge or split operations, Dyna-P evaluates whether

reconfiguration is worthwhile despite the potential

throughput gain from utilizing idle partitions. This requires

considering the cost of stopping active jobs and reconfig-

uring (Cr) the full GPU, and the cost of waiting (Cw) for all

active jobs to complete in order to run the next eligible job

in the queue despite the logical availability of resources.

The scheduler must balance the trade-off between

reconfiguring the GPU (Cr) to improve throughput gains

and waiting until other partitions become physically

available (Cw).

From Eq. 11, the reconfiguration cost Cr includes: a, a
fixed overhead incurred during the reconfiguration process,

Ea bj , the time already spent by active jobs in batch

Bða bjÞ, during execution and a penalty penj, if QoS is not

met. b is the maximum acceptable cost difference for

reconfiguration. In order for reconfiguration to take place,

Dyna-P first ensures that all active jobs are expected to

meet their deadline despite preemption.

Cr � Cw � b

8i; timecurrenta bj;gi
þ JCTa bj;gi �Da bj

where

Ea bj ¼ timecurrenta bj;gi
� timestarta bj;gi

Cw ¼ JCTa bj;gi �max ðEa bj þ penjÞ

Cr ¼ aþ max
a bj2Bstopped

ðEa bjÞ; 8Bða bjÞ

ð11Þ

The Reconfiguration Last Placement policy ensures that

reconfiguration is performed only as a last resort, priori-

tizing resource assignments to existing partitions whenever

possible to minimize the frequency of costly

reconfigurations.

3.2.4 Dyna-P scheduler

Dyna-P schedules inference jobs using a branch-and-bound

(BnB) algorithm to plan placements on GPUs and lever-

ages the merge and split features of NVIDIA MIG to

minimize fragmentation on GPUs.

Scheduling begins when users submit jobs to the queue,

Q ¼ ða bj; :::; a bmÞ. Each user provides QoS require-

ments (e.g., deadline Da bj) for execution. The profiler

profiles applications off-line on a First-Come-First-Served

(FCFS) basis and stores each profile, Pðpa bj ; :::; pa bmÞ, in
a repository.

Performance counters collected during off-line profiling

with DCGM include GRACT, DRAMA, TENSOR, MEM-

ORY USAGE, and JCT. These counters provide a detailed

understanding of the behavior of each job in various GPU

configurations, and are used by the partition predictor

(PREDPART) and performance estimator (PERF) during

scheduling.

Algorithm 2 shows the joint allocation, placement and

scheduling of inference jobs on multiple GPUs in a single

node to meet the QoS requirements of the user while

improving resource utilization and throughput. While the

queue Q is not empty (jQj[0), the partition predictor

(PREDPART) determines the required resources for each

Cluster Computing (2025) 28:608 Page 9 of 19 608

123

inference job. The performance estimator (PERF) predicts

the JCT of the job based on profiled metrics and updates

the information of each job (lines 2-7).

The scheduler selects the GPU with the minimum

Fragmentation Measure (minFM [0, Eq. 12) in Line 8 to

ensure effective utilization. By so doing, smaller jobs are

prioritized for execution, reducing the Head-of-Line

blocking that can occur otherwise.

minFM ¼ 1�
Pm

i¼1 Alloc partitions i

Total partitions
ð12Þ

Algorithm 3 Job placement with BnB

For each GPU, Dyna-P calls Algorithm 3 in Line 13, to

find the batch of jobs BestB, that best maximizes

throughput. The window size or the number of jobs con-

sidered for scheduling at a time, W, is dynamically tuned

based on available resources (Ravail) until the maximum

concurrency for the GPU architecture, |G|, is reached.

Algorithm 3 ensures that both architectural and execu-

tion constraints are met while respecting user-defined QoS.

After determining the set of applications with the highest

throughput, BestB, Dyna-P executes the jobs using the

ASSIGN function after checking whether placement based

on the current partition SPGk
meets the placement demands

of BestB, SPBestB. This prioritizes the Reconfiguration Last

Placement policy and minimizes unnecessary reconfigura-

tions. After reconfigurations, jobs are assigned to partitions

that maximize throughput while reducing fragmentation

and overhead (Lines 18-36).

3.2.4.1 Worst-case Analysis Algorithm 2 runs until all

jobs(a bj) in the queue are scheduled. Dyna-P’s BPP

(Algorithm 1) has a time complexity of OðjQj � jGjÞ,
where |Q| is the number of jobs in the queue and |G| is the

number of partitions possible on the GPU architecture.

Sorting the GPUs based on the minFM takes O(|G|log|G|).

The branch-and-bound algorithm efficiently determines

suitable allocations by exploring possible combinations of

concurrent executions to maximize system throughput

Algorithm 2 Dyna-P scheduler

 608 Page 10 of 19 Cluster Computing (2025) 28:608

123

while reducing the exhaustive search space [37] from |Q!|

to Oð2jW jÞ. The worst-case time complexity of Dyna-P’s

scheduler is therefore OðW � ðjGj log jGj þ 2jW jÞ, where W

is the number of jobs from queue Q evaluated, |G| is the

number of partitions, and 2jW j is the worst-case for

Algorithm 3

3.2.5 Implementation

Dyna-P, implemented with Bash and Python scripts, inte-

grates all components (Fig. 5) and scheduling across multi-

GPUs in a node. Specifically, Dyna-P’s BPP is imple-

mented in Python to match job profiles with the most

suitable GPU partitions. The Performance Estimator uses

XGBoost regression [35] to estimate job completion times

based on performance counters. The branch-and-bound

algorithm, implemented in Python, identifies the set of Jobs

BestB which maximize throughput. With bash scripts,

Dyna-P evaluates the system for reconfigurations and

autonomously manages partition placements and UUIDs

through NVIDIA’s MIG APIs [38].

Figure 7 illustrates two scheduling scenarios: (i) legacy

scheduling using static partitioning with FCFS-based exe-

cution, and (ii) Dyna-P.

At time, t ¼ 30 for instance, although resources are

logically available, they remain physically unavailable due

to improper placement, leading to under-utilization. Job

C has to wait in the queue, reducing the overall throughput

of the GPU. With Dyna-P, resources are dynamically

evaluated for reconfiguration and reallocated, enabling job

C, to execute while considering active job deadlines. This

adaptive reconfiguration utilizes fragmented slices, ensur-

ing jobs like C and F complete on time and reduces overall

Makespan(t=285). In contrast, static partitioning suffers

from head-of-line (HOL) blocking from job B, preventing

timely execution of jobs C and F, leading to missed

deadlines and longer Makespan.

4 Evaluation

Dyna-P is evaluated for efficiency, scalability, and

sensitivity to workload and scheduling characteristics using

the system configuration described in Table 2. The exper-

iments are carried out on a system equipped with two MIG-

enabled NVIDIA A30 GPUs to support dynamic parti-

tioning. NVIDIA DCGM is used to collect profile metrics,

and CUDA version 12.2 ensures compatibility with the

latest GPU features.

A total of 50 Small Language Model (SLM) inference

jobs with variants based on batch sizes ranging from 1 to

64 are submitted to the system. The evaluation focuses on

three major metrics: Job Completion Time (JCT) which is

the time taken to complete individual inference jobs,

Makespan which is the total time required to execute all

submitted jobs and System Throughput (STP) [31, 36]

defined as the weighted sum of throughput per partition,

normalized to a full GPU.

Dyna-P is compared with alternative sharing approa-

ches: Baseline, StaCon, MISO [31] and ORACLE. For

StaCon, a pre-set MIG configuration (2 g.12gb, 1 g.6gb,

1 g.6gb) is used without workload characterization. This

configuration is based on empirical studies of job sets.

Baseline represents executions on a full GPU without

sharing resources and serves as a performance baseline for

maximum capacity. MISO is a state-of-the-art scheduler

adapted to run on NVIDIA A30 GPUs. MISO profiles jobs

during initial execution to predict resource allocations for

subsequent runs. However, for fair comparisons, all jobs

executed using MISO are pre-profiled. ORACLE, like

Dyna-P, implements a placement-aware scheme however,

it has prior knowledge of the partition sizes, job completion

times and the job arrivals and thus does not incur costs due

to poor predictions. Dyna-P is thus not expected to out-

perform ORACLE.

4.1 Efficiency analysis

This section evaluates Dyna-P’s ability to improve system

throughput (STP) and makespan. JCT, Makespan and STP

Fig. 8 compares Dyna-P’s Job Completion Time (JCT),

Makespan and System Throughput (STP) with the alter-

native approaches. From Fig. 8a, Dyna-P improves JCT by

33.18% relative to StaCon and offers comparable JCT to

MISO for most jobs. In Fig. 8b, Dyna-P reduces makespan

by 39.03% relative to StaCon and 12.14% relative to MISO

by using NVIDIA MIG’s merge and split for dynamic

spatial sharing. Dyna-P achieves 14.7% higher STP com-

pared to StaCon due to its dynamic resource allocation

based on workload characteristics as shown in Fig. 8c.

ORACLE with prior knowledge experiences slight

improvements in Makespan compared to Dyna-P.

Figure 8d illustrates the individual job performance

under each approach. Noticeably, StaCon exhibits job

failures at JCT=0, due to out-of-memory (OOM) issues,

emphasizing the importance of workload characterization.

Dyna-P, ORACLE and MISO mitigate these failures by

profiling workloads and allocating resources accordingly.

In all, Dyna-P tends to achieve slightly lower JCTs for

shorter running jobs whilst MISO performs better with

longer running jobs. ORACLE shows the same trend as

Cluster Computing (2025) 28:608 Page 11 of 19 608

123

Dyna-P since the gains in ORACLE are mainly observed

during placements.

The end-to-end (E2E) execution process is further

decomposed to show the activities involved in running all

50 inference jobs using the listed approaches. As shown in

Fig. 8e, f, Baseline experiences the longest queuing time as

jobs execute sequentially, delaying new arrivals. Dyna-P

and ORACLE, using the RLP policy, reduce queuing times

by balancing job restarts to increase concurrent executions

while managing waiting times subject to user deadlines.

Given that merge and split operations are negligible (� 1
8
th

secs), the overhead stems from reconfigurations. In

Fig. 7 Scheduling example with

static partitioning and Dyna-P

Table 2 System configuration

and inference job description
Component Specification Model Params Size Description

GPU device(s) A30 x 2 DistilGPT 82 M Small Text generation

Memory and bandwidth 24GB and 933.1 GB/s Codegen 350 M Medium Code generation

Thermal design power 165 W Flan-T5-Large 770 M Medium Text-to-text

CUDA Ver and drivers 12.2 and 535.171.04 Codellama 1 B Large Code generation

DCGM version 3.1.3 Phi-1 1.3 B Large General purpose

 608 Page 12 of 19 Cluster Computing (2025) 28:608

123

contrast, MISO incurs overheads due to reconfiguration on

job arrival and check-pointing.

4.1.1 Utilization and eco-friendliness

The average resource utilization (SM, memory) for each

approach is compared in Fig. 9. Dyna-P achieves an

average of 99.8% SM and 32.5% memory utilization due to

efficient concurrent executions. ORACLE and MISO

shows similar SM utilization (99.8% and 97.05% respec-

tively) but slightly lower memory utilization. Figure 9 also

evaluates peak power utilization of each approach.

Both Dyna-P and MISO exhibit peak power usage

slightly exceeding the GPU’s Maximum Thermal Design

Power (165W), increasing the risk of thermal throttling

during peak periods. In cluster settings, approaches such as

power capping and Dynamic Voltage and Frequency

Scaling (DVFS) have been proposed to mitigate thermal

throttling in modern GPUs [30].

Figure 10 explores NVIDIA’s power capping to miti-

gate these risks, showing the effects on JCT, Makespan and

System Throughput. Under capped power limits (100W-

160W), STP drops by 33.44% for Dyna-P and 34.80% for

MISO. Despite the reduction, Dyna-P’s batch-aware par-

tition prediction and ability to harvest free resources result

in a lower makespan (50.3% reduction) compared to MISO

(53.89%). These findings highlight Dyna-P’s eco-

friendliness, a critical requirement to reduce thermal

throttling and carbon emissions in GPU clusters.

4.2 Workload-awareness analysis

In Fig. 11, the impact of batch sizes on JCT, Makespan,

and STP is evaluated using two workload types with 10

inference jobs each on a single A30 GPU: (a) small batch

sizes(1-8) and (b) large batch sizes (32-64) respectively.

Dyna-P achieves higher concurrency by assigning

smaller partitions with minimum latency and throughput

trade-off to jobs, resulting in better makespan and STP

compared to MISO. However, this concurrency slightly

increases average JCT due to fewer resources per job.

Dyna-P, ORACLE and MISO outperform StaCon,

which suffers from inflexible resource allocations. Dyna-

P’s dynamic partitioning ensures comparable STP and

makespan to MISO, with better resource utilization. In

general, Dyna-P demonstrates workload awareness,

dynamically adapting resource allocations to maximize

throughput and minimize delays.

Also, successful reconfigurations in Dyna-P are affected

by the prediction of job completion times using the

XGBoost regressor thus, the effect of errors in prediction is

evaluated in this section. An error margin of 15% is gen-

erated and added to the predicted job completion times,

before resource allocations. (Fig. 12) shows the

Fig. 8 Performance and utilization comparison between different approaches

Cluster Computing (2025) 28:608 Page 13 of 19 608

123

comparison of how these errors affect the makespan using

each approach as well as the reconfiguration count.

It is observed that with the error margin added, Dyna-P

experiences 2 additional reconfigurations and 8.09% longer

makespan, relative to the original execution. While this is

undesirable, Dyna-P has a better makespan by 13.6% than

MISO, despite the errors. It also has fewer number of

reconfigurations in both cases.

4.3 Scalability analysis

Dyna-P’s scalability is evaluated using two experiments:

the first is conducted on a single NVIDIA A30 GPU and

the second is a simulation to evaluate the effectiveness of

Dyna-P in harvesting GPU resources for the deployment of

5000 jobs on a 20-node GPU cluster where each node has 8

x A100-40GB GPUs. These experiments assess the sys-

tem’s ability to handle an increasing number of jobs and

adapt to varying job arrival rates.

4.3.1 Concurrent jobs

This experiment investigates how each approach performs

as the number of concurrently scheduled jobs increases for

a single GPU. Figure 13 shows that Dyna-P demonstrates

scalability with a gradual increase in Makespan as the

number of jobs rises. Dyna-P, ORACLE and MISO exhibit

a sharp increase in STP as more jobs are added, indicating

their ability to handle concurrent workloads effectively. As

the number of jobs exceeds four, MISO tends to allocate

larger resources over multiple execution rounds, leading to

a reduction in STP. In contrast, Dyna-P and ORACLE

assign smaller resource partitions for concurrent jobs,

maintaining higher STP.

4.3.2 Simulation with different arrival rates

GPU sharing is known to improve resource allocation rates

whilst reducing the number of GPUs allocated to jobs. This

ultimately reduces the long task wait times. Alibaba

workload trace is used to generate a 5000 job-mix for this

experiment. Batch sizes from 1 to 64 as in preliminary

experiments are assigned to the jobs according to a uniform

distribution. For these experiments, a count is kept of the

number of scheduling decisions made using each approach

as the workloads are increased by 1000 workloads at a

time. With the maximum concurrency on the A100-40GB

being 7, the simulation environment is able to accommo-

date up to 1120 concurrent jobs at a time.

From Fig. 14, Dyna-P is able to efficiently allocate the

minimal necessary GPU resources to jobs using its BPP

and thus improves Makespan whilst ensuring user’s QoS. It

is also able to adapt to the partition profiles of the A100

GPU showing its effectiveness on different GPU archi-

tectures. As the arrival rate increases, the makespan for

Dyna-P, Oracle, and MISO increase by 11.76%, 17.86%,

and 14.67% respectively. Dyna-P and ORACLE, adapting

to increased workloads, are seen to harvest more resource

fragments and thus experience fewer reconfigurations (748

and 746 respectively). MISO, on the other hand, increases

the number of reconfigurations to 756 GPUs, unable to

make use of the resource fragments available across GPUs

and leading to scheduling delays similar to the scenario in

Fig. 1.

Fig. 9 Utilization comparison

 608 Page 14 of 19 Cluster Computing (2025) 28:608

123

Fig. 10 Power capping for

MISO and Dyna-P

Fig. 11 Workload awareness: performance comparison for workloads with different batch sizes

Cluster Computing (2025) 28:608 Page 15 of 19 608

123

5 Related work

Extensive research has explored GPU sharing techniques,

particularly focusing on fine-grained and coarse-grained

spatial sharing methods to maximize resource utilization.

Table 3 provides a comparative overview of related works

and highlights the distinct contributions of Dyna-P.

GSLICE [39] identifies knee-points of diminishing

returns for resource allocation and leverages adaptive

batching for inference workloads to ensure SLO require-

ments. However, the MPS-based sharing employed is

limited to single GPU environments.

Tan et al. [11] framed DNN serving on MIG-enabled

GPUs as a reconfigurable machine scheduling problem.

Their genetic algorithm improves GPU partition assign-

ments to maximize throughput and minimize latency rel-

ative to SLOs. However, their approach allocates one job

Fig. 12 Sensitivity to error

Fig. 13 Performance comparison for increased concurrency on single GPU

Fig. 14 Performance comparison for large-scale workloads

 608 Page 16 of 19 Cluster Computing (2025) 28:608

123

per partition without maximizing co-sharing within MIG

partitions.

Li et al. [31] proposed a method for predicting isolated

GPU partition sizes for a job using MPS. While this

improves isolation and performance, their approach focu-

ses on accurate partitioning rather than adapting to diverse

workloads. Additionally, MISO does not maximize the

resource utilization of per GPU as it focuses on load bal-

ancing rather than minimizing fragmentation, limiting its

effectiveness in multi-GPU scenarios.

Weng et al. in their paper, Beware of Fragmentation

(BoF) [12], leverage a CUDA Runtime API interception

approach deployed in a production cluster that runs a

mixture of training and inference tasks and increases

resource allocation rates by minimizing fragmentation.

While they discuss the problem of fragmentation in GPU

clusters, they do not consider the inherent intra-GPU

placement constraints of modern GPUs.

GPUpool [36] demonstrated fine-grained sharing

through simulations by introducing a programmable kernel

launch parameter to control concurrency. This approach

improves QoS for large batches and minimizes CUDA and

MPS limitations through interference modeling however, it

does not guarantee isolation.

Orion [40] explored CUDA streams to co-locate infer-

ence workloads on shared GPUs demonstrating workload-

awareness during resource sharing. Although this improves

utilization, it does not support multi-GPU scenarios or

incorporate workload diversity.

Dyna-P addresses the gaps in existing approaches by

predicting suitable GPU partitions based on workload-

specific characteristics, ensuring efficient resource alloca-

tion and minimizing under-utilization. Leveraging NVI-

DIA MIG’s merge and split functionalities to dynamically

adapt to evolving workloads, Dyna-P reduces fragmenta-

tion and improves concurrency in multi-GPU environments

while maintaining high throughput and QoS guarantees.

6 Discussions

Recent advancements in green computing, resource-effi-

cient application development, and GPU partitioning

schemes highlight the growing need for dynamic resource

sharing. Modern GPU architectures such as NVIDIA’s

Ampere, Hopper and Blackwell, as well as AMD’s MI300

[41, 42] feature similar GPU partitioning schemes, making

Dyna-P adaptable across different platforms. Dyna-P

enables efficient workload-to-partition mapping, improving

resource allocation to maximize throughput and addressing

fragmentation issues arising from inefficient placements in

shared GPU environments and can easily be integrated

with orchestrators like Kubernetes. This section examines

Dyna-P’s operation with heterogeneous workloads and

discusses its architectural limitations.

6.1 Inference in EdgeAI

GPUs are increasingly driving EdgeAI innovation, serving

as high-end edge servers that enhance performance, reduce

latency, and improve scalability for AI/ML, vision, secu-

rity, and other edge computing applications. As edge GPU

platforms become more capable, lightweight models are

frequently deployed at the edge, leading to dynamic

inference request patterns that require adaptive resource

scaling to prevent fragmentation and under-utilization.

Dyna-P’s directed bipartite graph approach allows for

seamless addition and removal of partition profiles and

model variants based on key characteristics such as

parameter count, batch sizes, and utilization patterns. This

adaptability ensures efficient scheduling of inference jobs,

improving model and partition selections for maximum

throughput, particularly as small language models (SLMs)

gain popularity and evolve.

6.2 Mixed inference and training workloads

In environments such as autonomous vehicles, Neural

Networks must continuously adapt to dynamic conditions

as vehicles move. This necessitates simultaneous GPU

resource provisioning for both inference and training tasks,

requiring effective resource sharing to minimize wait times

and maximize utilization.

To achieve this, Dyna-P’s Batch-aware Partition Predic-

tor (BPP) determines the number of requests to batch and the

most suitable resource-to-batch size ratio. By leveraging

profiled hardware performance counters, Dyna-P estimates

model behavior and job completion times, allowing for

simultaneous scheduling of inference and training requests.

This minimizes reconfigurations, ensuring efficient dynamic

resource allocation without compromising performance.

Table 3 Comparison of related works and Dyna-P

Research work Sharing type FR P MG DR

BoF [12] MIG U � U �
MISO [31] MIG/ MPS � � U U

Gpulet [37] MPS � � � �
GSLICE [39] MIG � � U �
Orion [40] CUDA streams � � � �
Dyna-P MIG U U U U

FR fragmentation reduction, P intra-GPU placement, MG multi-GPU,

DR dynamic reconfiguration

Cluster Computing (2025) 28:608 Page 17 of 19 608

123

6.3 High performance computing workloads

Research on HPC resource allocation [8, 9, 30, 36, 40] has

shown that certain scientific benchmark applications (e.g.

SCAN, LavaMD, Heartwall, Gaussian) do not fully saturate

GPU resources, making them suitable for GPU sharing. Prior

work [8, 9] has demonstrated that compute and memory

intensities can be leveraged to further optimize GPU

resource sharing at a finer granularity. Dyna-P can extend

this approach by maximizing resource utilization for tenants

running multiple jobs with varying compute and memory

demands, while still benefiting from the isolation provided

by hardware-level partitioning. This ensures efficient GPU

allocation for heterogeneous HPC workloads, improving

both job throughput and system efficiency.

6.4 Limitations

As discussed, Dyna-P is designed to schedule diverse

workloads that require partial GPU resources. Thus, large-

scale AI/HPC applications like Large Language Models

(LLMs) that require multiple GPUs for training and infer-

ence, are beyond the scope of the current implementation.

Also, Dyna-P is unable to migrate active jobs when the

GPU requires reconfiguration. This is as a result of the lack

of inter-partition communication in modern GPU archi-

tectures. This restriction reduces the potential for real-time

load balancing and elastic resource allocation for bursty

workloads during execution. Enhancing partition commu-

nication capabilities could further improve dynamic GPU

reconfiguration, allowing for more efficient utilization of

fragmented resources in cluster-wide deployments.

7 Conclusion

In this paper, we introduced Dyna-P, a resource allocation,

job placement, and scheduling framework designed to

improve GPU utilization in multi-tenant environments. By

analyzing workload characteristics and using NVIDIA’s

merge and split, Dyna-P effectively assigns GPU partitions

and co-locates compatible workloads to maximize resource

usage while maintaining workload performance.

Our evaluation shows that addressing resource frag-

mentation enables Dyna-P to improve system throughput

and minimize Makespan by harvesting unused resources

for other jobs. Its combination of fine-grained and coarse-

grained sharing strategies provides a flexible, workload-

aware approach to resource management, making it suit-

able for multi-GPU environments in modern GPU clusters.

Acknowledgements This work was supported by the National

Research Foundation of Korea (NRF) grant funded by the Korea

Government (MSIT) (No. 2021R1A2C1003379).

Author contributions T.A wrote the main manuscript text and Y.K is

the corresponding author for the manuscript. All authors reviewed the

manuscript.

Funding Funding was provided by National Research Foundation of

Korea (No. 2021R1A2C1003379).

Data availability No datasets were generated or analysed during the

current study.

Declarations

Competing interests The authors declare no competing interests.

References

1. Amazon Web Services. Recommended GPU instances. https://

docs.aws.amazon.com/kokr/dl-ami/latest/devguide/gpu.html.

Accessed 22 Dec 2024

2. IBM Cloud. IBM Cloud Server’s NVIDIA GPU. https://www.

ibm.com/kr-ko/cloud/gpu?mhsrc=ibmsearcha&mhq=GPU.

Accessed 22 Dec 2024

3. Google Cloud. Cloud GPU. https://cloud.google.com/gpu?hl=ko.

Accessed 22 Dec 2024

4. Run.ai. GPU scheduling. https://www.run.ai/guides/multi-gpu/

gpu-scheduling. Accessed 22 Dec 2024

5. Ollama. Ollama. https://ollama.com/. Accessed 22 Dec 2024

6. Google Cloud. About GPUs in GKE. https://cloud.google.com/

kubernetes-engine/docs/concepts/gpus. Accessed 22 Dec 2024

7. KubeEdge. KubeEdge: a Kubernetes native edge computing

framework. https://kubeedge.io/. Accessed 22 Dec 2024

8. Adufu, T., Ha, J., Kim, Y.: Exploring the diversity of multiple job

deployments over GPUs for efficient resource sharing. In: 38th

International Conference on Information Networking (ICOIN

2024) (2024)

9. Adufu, T., Ha, J., Kim, Y.: An analysis of efficient GPU resource

sharing for concurrent HPC application executions. In: KNOMS

Review 25.1 (2022)

10. Wikipedia Contributors. Bin-packing problem. https://en.wikipe

dia.org/wiki/Binpackingproblem. Accessed 22 Dec 2024

11. Tan, C., et al.: Serving DNN models with multi-instance GPUs: a

case of the reconfigurable machine scheduling problem (2021).

https://doi.org/10.48550/arXiv.2109.11067

12. Weng, Q., et al.: Beware of fragmentation: scheduling GPU-

sharing workloads with fragmentation gradient descent. In: 2023

USENIX Annual Technical Conference (USENIX ATC 23),

pp. 995–1008 (2023). https://doi.org/10.5555/3555555.3569555

13. Dhakal, A., et al.: Spatial sharing of GPU for autotuning DNN

models (2020). arXiv:2008.03602

14. Ferikoglou, A.: et al. Resource aware GPU scheduling in

Kubernetes infrastructure. In: PARMA-DITAM@HiPEAC

(2021)

15. Chiang, M.-C., Chou, J.: DynamoML: dynamic resource man-

agement operators for machine learning workloads. In: CLOSER

(2021)

16. Yeung, G., et al.: Towards GPU utilization prediction for cloud

deep learning. In: USENIX Workshop on Hot Topics in Cloud

Computing (2020)

 608 Page 18 of 19 Cluster Computing (2025) 28:608

123

https://docs.aws.amazon.com/kokr/dl-ami/latest/devguide/gpu.html
https://docs.aws.amazon.com/kokr/dl-ami/latest/devguide/gpu.html
https://www.ibm.com/kr-ko/cloud/gpu?mhsrc=ibmsearcha%20&mhq=GPU
https://www.ibm.com/kr-ko/cloud/gpu?mhsrc=ibmsearcha%20&mhq=GPU
https://cloud.google.com/gpu?hl=ko
https://www.run.ai/guides/multi-gpu/gpu-scheduling
https://www.run.ai/guides/multi-gpu/gpu-scheduling
https://ollama.com/
https://cloud.google.com/kubernetes-engine/docs/concepts/gpus
https://cloud.google.com/kubernetes-engine/docs/concepts/gpus
https://kubeedge.io/
https://en.wikipedia.org/wiki/Binpackingproblem
https://en.wikipedia.org/wiki/Binpackingproblem
https://doi.org/10.48550/arXiv.2109.11067
https://doi.org/10.5555/3555555.3569555
http://arxiv.org/abs/2008.03602

17. NVIDIA. Multi-process service (MPS). https://docs.nvidia.com/

deploy/mps/index.html. Accessed 17 Oct 2023

18. Zhao, H., et al.: Tacker: tensor-CUDA core kernel fusion for

improving the GPU utilization while ensuring QoS. In: 2022

IEEE International Symposium on High-Performance Computer

Architecture (HPCA), pp. 800–813 (2022). https://doi.org/10.

1109/HPCA53966.2022.00064

19. Zhao, H., et al.: Exploiting intra-SM parallelism in GPUs via

persistent and elastic blocks. In: 2021 IEEE 39th International

Conference on Computer Design (ICCD), pp. 290–298 (2021).

https://doi.org/10.1109/ICCD53106.2021.00054

20. NVIDIA. Multi-instance GPUs. https://docs.nvidia.com/data

center/tesla-/mig-user-guide/index.html. Accessed 17 Oct 2023

21. Michael Larabel. The AMD Radeon graphics driver makes up

roughly 10.5% of the Linux kernel. Phoronix.com, October

(2020). https://www.phoronix.com/scan.php?page=news

item&px=Linux-5.9-AMDGPU-Stats

22. Lu, Z., et al.: Small language models: survey, measurements, and

insights (2024). arXiv:https://arxiv.org/abs/2409.15790 [cs.CL]

23. Van Nguyen, C., et al.: A survey of small language models

(2024). arXiv:https://arxiv.org/abs/2410.20011 [cs.CL]

24. Chung, H.W., et al.: Scaling instruction-finetuned language

models (2022). https://doi.org/10.48550/ARXIV.2210.11416

25. Gunasekar, S., et al.: Textbooks are all you need (2023). arXiv:

2306.11644

26. Mahajan,K., et al.: Themis: fair and efficientGPUcluster scheduling

(2019). arXiv:https://arxiv.org/abs/1907.01484 [cs.DC]

27. Zhao, H., et al.: HiveD: sharing a GPU cluster for deep learning

with guarantees. In: 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 20). USENIX

Association, Nov., pp. 515–532 (2020). https://www.usenix.org/

conference/osdi20/presentation/zhao-hanyu

28. Han, Z., et al.: Scheduling placement-sensitive BSP jobs with

inaccurate execution time estimation, pp. 1053–1062 (2020).

https://doi.org/10.1109/INFOCOM41043.2020.9155445

29. Nijkamp, E., et al.: A conversational paradigm for program

synthesis (2022). arXiv:https://arxiv.org/abs/2210.11416

30. Arima, E., et al.: Optimizing hardware resource partitioning and

job allocations on modern GPUs under power caps. In: Workshop

Proceedings of the 51st International Conference on Parallel

Processing (2023). https://doi.org/10.1145/3547276.3548630

31. Li, B., et al.: MISO: exploiting multi-instance GPU capability on

multi-tenant GPU clusters. In: Proceedings of the 13th Sympo-

sium on Cloud Computing (2022)

32. Bashir, N., et al.: Take it to the limit: peak prediction-driven

resource over-commitment in datacenters. In: Proceedings of the

Sixteenth European Conference on Computer Systems. EuroSys

’21. Association for Computing Machinery, pp. 556–573 (2021).

https://doi.org/10.1145/3447786.3456259

33. NVIDIA. Data center GPU manager (DCGM) 3.1. https://docs.

nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.

html. Accessed 7 May 2024

34. Li, B., et al.: Clover: toward sustainable AI with carbon-aware

machine learning inference service. In: Proceedings of the

International Conference for High Performance Computing,

Networking, Storage and Analysis. ACM, pp. 1–15 (2023).

https://doi.org/10.1145/3581784.3607034

35. Pedregosa, F., et al.: Scikit-learn: machine learning in python.

J. Mach. Learn. Res. 12, 2825–2830 (2011)

36. Tan, X.S., et al.: GPUPool: a holistic approach to fine-grained

GPU sharing in the cloud. In: Proceedings of the International

Conference on Parallel Architectures and Compilation Tech-

niques (PACT) (2023). https://doi.org/10.1145/3559009.3569650

37. Choi, S., et al.: Multi-model machine learning inference serving

with GPU spatial partitioning. In: PARMA-DITAM@HiPEAC

(2021)

38. NVIDIA. GPU management and deployment: multi instance

GPU management. https://docs.nvidia.com/deploy/nvml-api/

groupnvmlMultiInstanceGPU.html. Accessed 20 Jan 2025

39. Dhakal, A., Kulkarni, S.G., Ramakrishnan, K.K.: GSLICE: con-

trolled spatial sharing of GPUs for a scalable inference platform.

arxiv:https://arxiv.org/abs/2011.03897. Accessed 22 Dec 2024

40. Strati, F., Ma, X., Klimovic, A.: Orion: interference-aware, fine-

grained GPU sharing for ML applications. In: Proceedings of the

Nineteenth European Conference on Computer Systems (2024)

41. AMD. AMD CDNA 3 architecture. https://www.amd.com/con

tent/dam/amd/en/documents/instinct-tech-docs/white-papers/

amd-cdna-3-white-paper.pdf. Accessed 9 Mar 2025

42. AMD. Deep dive into the MI300 compute and memory partition

modes. https://rocm.blogs.amd.com/software-tools-optimization/

compute-memory-modes/README.html. Accessed 9 Mar 2025

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Theodora Adufu is currently a

Ph.D. candidate in the Depart-

ment of Software at Sookmyung

Women’s University, South

Korea. She received her B.Sc.

degree in Computer Science and

Economics from the University

of Ghana in 2013, and her M.Sc.

degree in Computer Science

from Sookmyung Women’s

University in 2016. Since 2022,

she has been pursuing her Ph.D.

in Computer Science at the

same institution. Her research

interests include cloud comput-

ing, GPU scheduling, and quantum computing.

Yoonhee Kim is currently a

professor in the Department of

Software at Sookmyung

Women’s University, South

Korea. She received her B.S.

degree in Computer Science

from Sookmyung Women’s

University in 1991, and her

M.S. and Ph.D. degrees in

Computer Science from Syra-

cuse University in 1996 and

2000, respectively. She worked

as a researcher at the Electronics

and Telecommunications

Research Institute (ETRI) from

1991 to 1994. She then served as an assistant professor in the

Department of Computer Engineering at the Rochester Institute of

Technology from 2000 to 2001. From 2001 to 2016, she was a pro-

fessor in the Department of Computer Science at Sookmyung

Women’s University, and since 2017, she has been a professor in the

Department of Software at the same institution. Her research interests

include cloud systems and workflow management.

Cluster Computing (2025) 28:608 Page 19 of 19 608

123

https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://doi.org/10.1109/HPCA53966.2022.00064
https://doi.org/10.1109/HPCA53966.2022.00064
https://doi.org/10.1109/ICCD53106.2021.00054
https://docs.nvidia.com/datacenter/tesla-/mig-user-guide/index.html
https://docs.nvidia.com/datacenter/tesla-/mig-user-guide/index.html
https://www.phoronix.com/scan.php?page=newsitem%20&px=Linux-5.9-AMDGPU-Stats
https://www.phoronix.com/scan.php?page=newsitem%20&px=Linux-5.9-AMDGPU-Stats
http://arxiv.org/2409.15790
http://arxiv.org/2410.20011
https://doi.org/10.48550/ARXIV.2210.11416
http://arxiv.org/abs/2306.11644
http://arxiv.org/abs/2306.11644
http://arxiv.org/1907.01484
https://www.usenix.org/conference/osdi20/presentation/zhao-hanyu
https://www.usenix.org/conference/osdi20/presentation/zhao-hanyu
https://doi.org/10.1109/INFOCOM41043.2020.9155445
http://arxiv.org/2210.11416
https://doi.org/10.1145/3547276.3548630
https://doi.org/10.1145/3447786.3456259
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.html
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.html
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.html
https://doi.org/10.1145/3581784.3607034
https://doi.org/10.1145/3559009.3569650
https://docs.nvidia.com/deploy/nvml-api/groupnvmlMultiInstanceGPU.html
https://docs.nvidia.com/deploy/nvml-api/groupnvmlMultiInstanceGPU.html
http://arxiv.org/2011.03897
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://rocm.blogs.amd.com/software-tools-optimization/compute-memory-modes/README.html
https://rocm.blogs.amd.com/software-tools-optimization/compute-memory-modes/README.html

	Dyna-P: placement-aware dynamic partitioning for lightweight applications with modern GPUs
	Abstract
	Introduction
	Background and motivation
	Resource density, scalability and performance
	Placement sensitivity and system throughput

	Placement-aware GPU partitioning: Dyna-P
	Capacity evaluator
	Batch-aware partition predictor
	Performance estimator: system throughput

	Scheduling unit
	Architectural constraints
	Execution constraints
	Reconfiguration last placement, RLP
	Dyna-P scheduler
	Worst-case Analysis

	Implementation

	Evaluation
	Efficiency analysis
	Utilization and eco-friendliness

	Workload-awareness analysis
	Scalability analysis
	Concurrent jobs
	Simulation with different arrival rates

	Related work
	Discussions
	Inference in EdgeAI
	Mixed inference and training workloads
	High performance computing workloads
	Limitations

	Conclusion
	Author contributions
	Data availability
	References

