
Improving Oversubscribed GPU Memory Performance in the PyTorch
Framework

Jake Choi1 • Heon Young Yeom1
• Yoonhee Kim2

Received: 28 April 2022 / Revised: 2 October 2022 / Accepted: 25 October 2022
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Popular deep learning frameworks like PyTorch utilize GPUs heavily for training, and suffer from out-of-memory (OOM)

problems if memory is not managed properly. CUDA Unified Memory (UM) allows the oversubscription of tensor objects

in the GPU, but suffers from heavy performance penalties. In this paper, we build upon our UM implementation and create

and utilize a minimal overhead CUPTI dynamic profiler to trace unified memory page fault and memory transfer statistics

in PyTorch applications. We also implement CUDA memory prefetch and advise API which can be called directly from the

PyTorch application based on the dynamically profiled statistics to improve oversubscription performance in various

PyTorch models including Resnet and BERT.

Keywords CUDA � Unified memory � PyTorch � prefetch � Advise � CUPTI

1 Introduction

Deep learning (DL) training is widely performed in

graphics processing units (GPU) because of greater per-

formance and efficiency over using central processing units

(CPU) [1]. Even though each individual GPU core may not

be as powerful as a CPU core, GPUs compensate by having

a greater quantity of cores allowing for more parallelism.

In order to efficiently utilize GPUs for computation, entire

DL models and data need to be copied into the GPU

memory before training begins. With increasingly larger

models and sample mini-batches, this can take up a sig-

nificant amount of memory [2]. However, even state-of-

the-art GPUs have limited memory (e.g. 12GB for NVI-

DIA’s Titan XP and 16GB for NVIDIA’s V100 GPU)

compared to host memory. Therefore, if no consideration is

given to the memory usage of a DL training process in any

particular framework (e.g. TensorFlow [12], PyTorch

[23]), then out-of-memory (OOM) faults could occur and

the entire process would fail.

In this paper, in order to rectify the OOM problem, we

present a case study to investigate the effects of imple-

menting CUDA Unified Memory (UM) [40] on the

PyTorch framework. Unified memory allows the virtual-

ization of GPU and CPU host memory to become a single

address space, and performs background data migration

from GPU to CPU host memory and vice versa when GPU

memory is insufficient to store data. This allows for auto-

matic out-of-core computation on widely-used DL frame-

works with no modification to user code. As far as we

know, few research in literature have investigated the

specific effects of implementing CUDA UM on PyTorch.

The rest of this paper is organized as follows. Section 2

provides related work, background knowledge about

CUDA UM, PyTorch, and insights about our design. Sec-

tion 3 discusses the experimental setup and the imple-

mentation of UM on PyTorch. Section 4 evaluates the

performance of PyTorch with UM on the machines and the

current limitations of the implementation. Section 5 con-

cludes this work with future insight.

& Yoonhee Kim

yulan@sookmyung.ac.kr

Jake Choi

kidcoder@snu.ac.kr

Heon Young Yeom

yeom@snu.ac.kr

1 Department of Computer Engineering, Seoul National

University, Seoul, South Korea

2 Department of Computer Science, Sookmyung Women’s

University, Seoul, South Korea

123

Cluster Computing
https://doi.org/10.1007/s10586-022-03805-x(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-022-03805-x&domain=pdf
https://doi.org/10.1007/s10586-022-03805-x

2 Related Work and Background

2.1 Related Work

Several existing methods in literature are used to overcome

OOM limitations by reducing memory consumption. Some

methods use lower-precision floating points [3, 4] or com-

pression [5, 6] in the parameters of the models. However,

such methods influence the accuracy of the model and

require lots of manual parameter tuning. Other methods

involve deletion of intermediate activation tensors after the

forward pass, and recomputation [7] when needed during the

backwards pass, but this affects the performance of the

model because of the trade-off ofmemory space to additional

compute cycles and does not work well for large models

where intermediate activation tensors cannot be easily

recomputed. Additionally, for both of these methods men-

tioned, manual intervention is needed by the programmer.

Swapping out model tensors from host and GPU mem-

ory is another technique used in recent years to reduce the

memory footprint of models. vDNN [8] is a run time

memory management solution, prototyped as a layer above

cuDNN [41] that reduces average GPU memory usage by

releasing intermediate feature maps from GPU memory if

no reuse is required, or offloads them to CPU memory if

further reuse exists but is not immediately required.

vDNN?? [9] extends upon the previous work by per-

forming asynchronous transfer of feature maps, additional

heuristics to address memory fragmentation, and usage of

compression to reduce the pinned main memory footprint.

SuperNeurons [11] is a dynamic GPU memory scheduler

for training deep non-linear neural networks. It uses

memory techniques to dynamically analyze and offload

tensors of each convolution layer of a DNN. These solu-

tions only swap out specific activation tensors which are

determined through manual heuristics, and are limited to a

specific subset of the entire data residing in GPU memory.

Furthermore, their implementations are all built as separate

prototype frameworks used to compare against widely used

production-level frameworks like Torch [13], TensorFlow,

Caffe [14], or MXNet [15].

Dataflow graphs generated from DNN computation

structures also provide knowledge to overlap computation

with communication, allowing for minimization of per-

formance overhead. SwapAdvisor [2] uses Genetic Algo-

rithm [16] and a static dataflow graph with no control-flow

primitives to find the optimal tensor swapping strategy. It

also takes into consideration the GPU operator scheduling,

and memory allocation. However it requires a static data-

flow graph, which is not used by frameworks like PyTorch

or TensorFlow eager mode and only works with a single

GPU. ZeRO-Offload [18] is a GPU-CPU hybrid DL

training library based on PyTorch that allows heteroge-

neous GPU and CPU training and swapping of data across

memory spaces to train huge models with over 13 billion

parameters on a single GPU. It uses a static dataflow graph

to partition the model between the CPU and GPU devices,

and requires modification of application level user code to

use the library. While all of the above outlined methods

optimize performance in terms of communication to

computation cost, all rely on manual awareness of GPU

memory usage on the part of the programmer and do not

really focus on the actual framework being used.

2.2 CUDA Unified Memory

Unified Memory allows for the oversubscription of mem-

ory in GPU applications. Kernels running in the GPU can

access data allocated with cudaMallocManaged even

though the data is allocated on the host side. The order of

operations that happens when such memory allocated on

the CPU is accessed by the GPU is the following: 1.

Allocate new pages on the GPU 2. Unmap old pages on the

CPU 3. Copy from the CPU to the GPU 4. Map new pages

on the GPU 5. Free old CPU pages. When Pascal and Volta

GPUs access a non-resident page, the GPU generates a

fault message and locks the translation lookaside buffer

(TLB) for the corresponding streaming multiprocessor,

which stalls any future translations until all page faults are

resolved [21]. Duplicate fault messages for the same page

can occur forming a page fault group. Driver fault handling

to process and remove duplicate page faults, update CPU

and GPU mapping and transfer data takes a lot of overhead.

Despite the added benefit of memory over-subscription and

elimination of explicit programmer effort, UM has been

criticized as being slow due to excessive page fault han-

dling [20]. Unified Memory tested on a set of different

benchmarks like CUDA SDK’s Diffusion3D Benchmark,

Parboil Benchmark Suite and Matrix Multiplication ported

on UM showed an average performance loss of 10% [22].

2.3 Choosing PyTorch as the Framework

PyTorch is a relatively new Python library that is popular

in the research community, and is growing fast. As of the

time of this writing, its main competitor is Tensorflow, and

both frameworks are the most popular frameworks being

used for deep learning. PyTorch performs immediate exe-

cution of dynamic tensor computations with automatic

differentiation and GPU acceleration. Other frameworks

Cluster Computing

123

like Caffe, Tensorflow, or Theano [24] construct a static

dataflow graph that represents the complete computation

and is then repeatedly applied to batches of data. The static

dataflow approach may be used to increase performance

and scalability, but comes at the cost of ease of use, ease of

debugging, and flexibility on the types of computation that

can be represented. PyTorch uses dynamic eager execution,

and still retains performance comparable to the fastest deep

learning libraries. It is a lot easier to make flexible custom

models that would be harder to express in other frame-

works, and many inputs can be flexibly changed during

runtime. Currently, Tensorflow has released eager execu-

tion mode on Tensorflow 2.0, making it more like PyTorch.

However, programmers would have to change a lot of the

existing Tensorflow 1.x code in order to shift to the newer

versions, which leads to backward compatibility issues.

Tensorflow has more production level, industry use cases

where implementation speed is more of a factor than

flexibility. Generally speaking, PyTorch is more research-

oriented, Python-friendly, intuitive, and easy to learn than

the original Tensorflow. The amount of research citing the

PyTorch framework has grown a lot in the past few years

and is still currently growing at a fast pace. These are the

reasons why we chose PyTorch as the framework to

implement CUDA Unified Memory.

Currently in research, we have not seen CUDA UM

implemented in PyTorch. The main reason for this is that

even though UM provides increased productivity for the

programmer and ease of use by solving the OOM problem,

it comes at the cost of heavy performance overheads.

Therefore other explicit methods of memory management

that we already outlined in Sect. 2.2 are used instead. For

graph neural network (GNN) use cases, a unified tensor

implementations for PyTorch exist [26]. Such work adds

certain new functions to the PyTorch framework to allow

programmers to declare tensor objects as a ‘‘unified’’

object. However, this object is not truly using CUDA UM

in the form of a unified virtual memory space because of

performance reasons. Graph objects have poor temporal

and spatial locality, and therefore the ‘‘unified’’ object in

this case is using zero-copy memory where the object is

pinned in host memory and directly mapped to the GPU

device. This is because certain graph tensors are not

accessed frequently even though they make take up a lot of

memory space. Additionally, the programmer has to be

aware of such objects and declare them manually in the

code as unified objects using a different syntax in order to

take advantage of this feature. This approach is not what

we are aiming for in this paper. Our goal is to allow the

programmer to be completely unaware of such memory

management details, and still not encounter OOM prob-

lems while not sacrificing too much performance by uti-

lizing CUDA UM in the PyTorch framework itself.

2.4 Design Differences with Other Frameworks

OC-DNN [25] is an out-of-core DNN framework that takes

advantage of the CUDA UM features in Pascal and newer

architecture GPUs. It uses UM communication primitives

and optimizations like prefetching and advising to avoid

GPU page faults in the Caffe framework. It provides

comparative performance for regular DNNs which fit into

GPU memory, and provides a 1.9x speedup compared to

the pre-existing out-of-core methods that do not utilize UM

for the Caffe framework. The implementation also removes

over 3,000 lines of redundant Caffe code that must be

changed as CUDA UM is implemented instead of explicit

memory copies. However this work implements UM on the

Caffe framework based on C??, which has largely been

inactive for the past couple of years. Caffe is also limited in

the types of deep learning models that it can effectively

deploy. In fact, a successor, Caffe2 [38] was built on top of

the original Caffe in order to increase support for more

non-vision use case models, distributed computation, and

mobile deployment. It also merged with the PyTorch

framework in 2018. Now, the original Caffe has largely

been deprecated after the merge. PyTorch now holds the

entire Caffe2 code base and has the additional benefits of

being more flexible with prototype models and is more

research-oriented. Therefore it makes sense that we focus

on the latest DL framework.

In the design of OC-DNN, file access (obtaining the

training samples from disk) is optimized by replacing all the

file-to-host (F2H) buffer transfers and host-to-GPU (H2D)

transfers with a single unified file-to-managed (F2M) trans-

fer. OC-DNN converts D2D copies that occur during the

layer stage using the Layer class to UM accesses. OC-DNN

improves upon these D2D data dependencies between ker-

nels by using prefetching and advising to evict source buffers

in the forward pass to host memory and prefetch data back in

the backward pass to reduce GPU faults. Such optimizations

can also be applied to PyTorch to work for intermediate data,

but would be more complex to implement in the backend

CUDA kernel management. Finally, Caffe uses for-

ward_cpu(), backward_cpu(), forward_gpu(),

backward_gpu() member functions to deal with CPU

and GPU training separately. OC-DNN unifies the functions

into one type and removes redundant code. Because PyTorch

uses Python, the syntax is more general (e.g. .to(‘‘cu-

da’’)), and the framework is more complex and automated

in dealing with heterogeneous architectures. Therefore the

modifications required are less straightforward.

Choi et al. [31] performs similar work to this paper

where they implement Unified Memory in the PyTorch

framework. They the implemented memory advise and

prefetching in the back end with a simple Python interface

Cluster Computing

123

to memory advise the intermediate results, input data ten-

sor, and model parameters of a PyTorch model. Therefore

they classify all PyTorch data into those three types, and

then perform automatic prefetching and memory advise for

those models based on when the PyTorch tensors call the

.to() function on a single activated GPU. Our approach

is more fine-grained, and we allow complete control over

every single GPU allocated object, and provide the API for

the programmer to use memory prefetch and advise at any

place in the PyTorch application code. In addition to this,

we support memory optimization techniques for multiple

GPUs, and perform dynamic profiling to measure the

amount of GPU page faults and data transfers from host to

GPU generated by each individual GPU allocated tensor.

Tensorflow Huge Model Support (HMS) is a library

designed to speed up huge model training on unified

memory. It analyzes the Tensorflow computation graph,

and implements group execution and prefetch by editing

the graph automatically [34, 35]. This does not apply to

PyTorch because PyTorch uses dynamic computation

graphs. Also, our approach allows the programmer to have

control over prefetching and memory advise, instead of

automatically performing only prefetching and group exe-

cution on a computation graph. PyTorch-UVM-GPT2 [45]

is another related work that evaluates the performance of

PyTorch-UVM with large-scale language models like

GPT-2 and GPT-3. PyTorch-UVM is an implementation of

CUDA UM on PyTorch. However, this work does not use

memory optimization techniques like prefetching and

advise with tensor information to speed up the performance

of large models on PyTorch-UVM.

This paper extends upon and adds functionality to the

Unified Memory implementation in [36]

3 Implementation and Experimental Setup

PyTorch framework consists of Tensor libraries pro-

grammed in C??, Python and CUDA. These libraries

store and operate on tensors, which are multidimensional

rectangular arrays of numbers. Application programs must

import the torch library to user the PyTorch functionality.

Figure 1 shows a simplified view of the PyTorch archi-

tecture. We implemented CUDA UM in the PyTorch

framework backend itself (details outlined in Sect. 3.1).

Then we added functionality to the PyTorch API to be able

to call CUDA optimization functions like cu-

daMemPrefetchAsync and cudaMemAdvise to the

CUDA API using PyTorch CUDA/C?? Extensions (Sect.

3.2). Finally, we added functionality to profile tensor

statistics and bring forth the information to the application

level using CUPTI (Sect. 3.4). Our implementation also

adds support for Multiple GPUs (Sect. 3.3). Figure 3 shows

the modified PyTorch architecture. Our procedure (shown

in Figure 2) of combining dynamic tensor profiling with

memory optimization works generally as follows:

1. Insert CUPTI profiling markers at beginning and end of

deep learning training loop for any workload.

2. Insert prefetching operations and memory advise at

heuristically determined points in code where potential

improvements can be made

3. Run training loop for 2 to 10 iterations in the profiling

phase.

4. Once profiling data is collected, organize the data and

sort based on largest amounts of GPU faults.

5. Dynamically activate the memory optimization on the

specific tensors that have the greatest amount of GPU

page faults or or eviction transfers based on profiled

data.

6. Continue executing the training loop.

3.1 CUDA Unified Memory Implementation

We implemented CUDA UM in the core c10 CUDA

library inside the PyTorch framework. C10 is similar to

ATen (tensor mathematical operator library), but contains

more recent core PyTorch code. We specifically modified

the CUDA caching allocator in the CUDA backend of the

c10 library. The caching allocator is used to speed up

Python Program

torch, torch.autograd, torch.nn,
torch.multiprocessing, torchutils

ATen or C10 Tensors

C++ libtorch

CPU

PyTorch
torch.JIT

JIT Execution

JIT Extensions

Backends Backends

Dynamic Dispatcher

CUDA XLA

Fig. 1 Brief PyTorch Architecture

Cluster Computing

123

memory allocations and also allows fast memory deallo-

cations without device synchronizations. We specifically

replaced cudaMalloc calls in the block allocator with

cudaMallocManaged. This ensures that all GPU device

allocations will be made using unified memory.

Then we ran the test program shown in Listing 1 using

Python to test if there would be an OOM error. The program

creates a 2D tensor filled with 16 GB of random 4-byte

floating point numbers in the CPU host side, and then sends a

copy to the GPU side. Then it calculates the square of each

number on both the CPU tensor and GPU tensor and tests for

correctness. In our results, the two tensors had equal results

to each other. Listing 1 results in an OOM error in the

unmodified case if theGPU does not have enoughmemory to

accommodate 16 GB of floating point data.

Simplymodifying theGPUdevice-sidememory allocation

mechanism to perform UM allocations is an incomplete

implementation. The PyTorch framework is designed to be

flexible by utilizing a dispatcher mechanism to allow several

backends (CPU, GPU, XLA, or other devices) and data types

to be used for identical operators, through function tables, and

dispatcher keys used to distinguish between different over-

loaded versions of the same function. This allows the flexi-

bility of Python application code towork the same acrossCPU

and GPU, with minimal programmer effort. In order to be a

more complete implementation of UM, tensors allocated on

the CPU backend also need to use cudaMallocManaged

from the CUDA library and explicit memory copies from

device to host or vice versa need to be eliminated. Currently,

when PyTorch functions like .to(‘‘cuda’’) are used,

copies of the same tensor data aremaintained on both host and

GPU, leading to redundant hostmemoryusage onx86 systems

whenGPUmemory is oversubscribed.Wewill dealwith these

issues in future work.

import torch
x = torch.rand(100000,40000)

y = x.to("cuda")

y.pow_(2)
x.pow_(2)

print(torch.equal(x,y.to("cpu")))

Listing 1 Example code to oversubscribe GPU memory
on PyTorch

When profiling the results from Listing 1 using nvprof

[42] after making the UM modifications to PyTorch code,

we notice that OOM errors disappear even though GPU

memory usage is maximized by checking nvidia-smi.

Figure 4 shows a simplified diagram of what NVIDIA

Visual Profiler [43] outputs when Listing 1 is executed. In

for epoch in range(n_epochs):

 model.train()
 start = timer()
 # Training loop
 for ii, (data, target) in
enumerate(train_loader):
 # Tensors to gpu
 if train_on_gpu:
 data, target = data.cuda(),
target.cuda()
 # Clear gradients
 optimizer.zero_grad()
 # Predicted outputs are log probabilities
 output = model(data)

 # Loss and backpropagation of
gradients
 loss = criterion(output, target)
 loss.backward()

 ...
 ...
 ...

TextText

insert prefetch

insert advise

start profile
point

end profile
point

1

2

34 activate
condition

5

Fig. 2 Implementation

Procedure

PyTorch Framework PyTorch CUDA and
C++ Extensions

PyTorch API

CUDA Backend

DL Model (ResNet,
DenseNet,, BeRT,

etc)

Add CUDA API to
PyTorch API

Insert CUDA UM
Optimization

Techniques in
Application Code

Modify PyTorch to
allow profile tensors

using CUPTI
CUPTI Extensions

ATen, C10 Library
Modified to use CUDA

Unified Memory

Fig. 3 Modified PyTorch Architecture

Cluster Computing

123

the actual profiled results, 18 additional PyTorch CUDA

kernels are also executed, but have very low significance

that they are omitted from Figure 4. The cudaMem-

cpyAsync operation from host-to-device overlaps with

the CUDA driver page faults and data migration caused by

UM. This is because data explicitly copied to the device

exceeds available device memory. In this situation, the

CUDA driver forces the data that is least recently copied to

be sent back to host memory due to oversubscription. After

memory copy is complete, the main mathematical opera-

tion kernel (PoW) is executed. Page faults and data

migration are shown in bars above the kernel stream. Each

bar represents groups of many page faults or data migra-

tions occurring during that period.

When tensor sizes are larger than a certain amount (in

this case about 2 GB), PyTorch automatically divides the

vectorized kernel into smaller chunks by invoking a loop to

call the CUDA kernel repeatedly to process different parts

of the tensor. In this case the PoW kernel is invoked a total

of 8 times, and each invocation takes approximately 800

ms in duration on average. During this period, large

amounts of background GPU page faults occur causing

more delay in kernel execution time. When the tensor was

able to completely fit into GPU device memory by

reducing the data size from 16 GB to 1.6 GB, a single PoW

kernel executed and had a duration of about 7 ms. This

means that if GPU device memory is insufficient, there is

an additional overhead of roughly 6330 ms due to GPU

page faults.

When PyTorch creates CUDA kernels that access indi-

vidual elements in a tensor, it does not consider the

physical location of the accessed data. If this information is

known advance, UM optimization techniques can be

applied like prefetching using cudaMemcpyAsync or

cudaMemAdvise, in order to provide preferences for

data placement in certain address ranges. In the Listing 1

example, the PoW kernels access the tensor data in a

sequential manner from the beginning. However data has

already been migrated to host memory due to oversub-

scription. Therefore we prefetched a portion of the data to

the GPU device before launching the kernels (shown in

Figure 5), and were able to save about 3 seconds in total

execution time. The time spent in kernels is reduced from

6.4s to 1.56s and additional overhead from cu-

daMemPrefetchAsync to fetch data from the host side

is 1.86s. Page faults do not occur when the first few PoW

kernels are executed because data already resides in device

memory after the prefetch. Early kernels took as little as 9

GPU Page Fault
Data Migration (HtoD)

GPU Page Fault
Data Migration (HtoD)

powMemcpy HtoD (Async) Memcpy DtoH (Async)
Data Migration (HtoD)

GPU Page Fault GPU Page Fault

pow pow pow pow pow pow pow

Approx. 800ms * 8 = 6.4s

Data Migration (DtoH) Data Migration (DtoH) Data Migration (DtoH)

Overlap

Fig. 4 Profiling UM page faults with nvvp (16 GB data oversubscribed)

GPU Page Fault
Data Migration (HtoD)
GPU Page Fault

Data Migration (HtoD)
Memcpy HtoD (Async) Memcpy DtoH (Async)

Data Migration (HtoD)
GPU Page Fault GPU Page Fault

pow pow

Data Migration (DtoH) Data Migration (DtoH) Data Migration (DtoH)

Overlap

cudaMemPrefetchAsync pppppp

1.56s1.84s

Fig. 5 Profiling UM after prefetch optimization (16 GB data oversubscribed)

Cluster Computing

123

ms to execute. Kernels that accessed the latter portion of

the data took longer because they had to evict existing

device GPU data and replace it with newer data from the

host. Overlapping prefetching with kernels and removing

explicit copies which wrongly send immediately needed

data to host memory can further optimize such scenarios.

3.2 Prefetch and Advise API Functionality

Memory optimization techniques like cudaMemPrefet

chAsync and cudaMemAdvise are techniques used to

improve the performance of CUDA code when memory is

oversubscribed. However, it would be cumbersome to

implement the techniques in the backend CUDA portion of

PyTorch because such memory optimization techniques can

be arbitrarily placed at any point in code between CUDA

kernels resulting in different performance results, and each

PyTorch application would have different circumstances as

to where such code points are. Therefore, instead of hard

coding the optimizations into the backend,we created anAPI

that allows the PyTorch user to call such memory opti-

mization techniques whenever they want to perform such

optimizations in the user application Python code.

The user needs to know the address, size, and GPU

device ID of memory allocated in the GPU in order to

directly utilize the CUDA memory optimization functions,

because they are the required parameters. However the user

has no knowledge of such parameters unless the information

can be retrieved from the PyTorch backend.We solve this by

managing the tensor information when they are allocated in

the CUDA caching allocator portion of the C10 library.

Because the GPU tensors that are used by PyTorch are all

allocated using cudaMallocManaged, we store the

required parameters when they are allocated into a separate

vector of arrays. The address stored is a virtual address that

can be accessible in both host and GPU because of unified

virtual addressing (UVA) by the UM driver already taking

care of this. In order to add the API to the existing PyTorch

framework, we utilize PyTorch CUDA and C?? extensions

[44] to add the API functionality so that when we call the

functions in the Python application, they can translate

appropriately into the backend CUDA functions.

The API functions listed in Table 1 are defined and

implemented to allow the user to perform memory opti-

mization techniques in PyTorch applications. The user can

obtain the entire list of tensors which is allocated in the

PyTorch backend during the memory allocation of the

GPU using getList. In addition to this, the sorted list,

which contains the list of tensors in descending order of

GPU page faults, based on the CUPTI profiling results

(Sect. 3.4) can also be retrieved using getSortedData

so that the user can perform fine-grained memory opti-

mization based on the dynamically profiled data. The key

functions of this paper prefetchA and adviseA are

both equivalent to and used to perform the cu-

daMemPrefetchAsync and cudaMemAdvise func-

tions within the user application for the GPU tensors,

whose address information can be obtained by using the list

retrieval functions. We can set the type of memory advise

equivalent to the CUDA API with three major types,

ReadMostly, PreferredLocation, and Acces-

sedBy. We implemented these functions using the

PyTorch C?? extensions framework, and prefetching uses

the default CUDA stream 0. The last three functions in

Table 1 are profiler functions, using the CUPTI tool [39],

which is part of the NVIDIA CUDA toolkit. They are used

to perform the functions outlined in Sect. 3.4

3.3 Multi-GPU Support

Unified memory allows for the support of a multi-GPU

setup. In this case, managed memory allocations are visible

to all the GPUs and can migrate to any processor on-de-

mand. Our implementation is not limited to a single GPU,

and we can run larger PyTorch models on multiple GPUs

utilizing UM in the event of over-subscription. Our work

mentions the usage of multiple GPUs with unified memory,

which other literature fails to do so. Therefore by

Table 1 List of API Functions

Function Name Parameters Description

getList N/A Retrieve the list of tensor information

getSortedData N/A Retrieve data sorted on order of GPU page faults

prefetchA Address,bytes, device Identical to cudaMemPrefetchAsync in Python

adviseA Address,bytes, device,type Identical to cudaMemAdvise in Python

profile_start N/A Start CUPTI Profiling of Unified Memory Access Data

profile_stop N/A Stop CUPTI Profiling of Unified Memory Access Data and Perform Count1

profile_register N/A Initialize and Register CUPTI Profiling

1 Perform count is a separate function that organizes the CUPTI data, outlined in Sect. 3.4

Cluster Computing

123

combining multiple GPUs and unified memory, we do not

have to worry about the allocation of memory to each

individual device, because the UM driver will abstract the

entire process. Therefore we can leverage the performance

benefits of having additional GPUs along with their

memory capacity, with a unified address space that

includes the entire host memory. When each individual

tensor is allocated in the backend PyTorch implementation

using cudaMallocManaged, we also record the device

ID that is performing the allocation by obtaining the cur-

rent CUDA device using cudaGetDevice and store it in

our list of tensors. This is possible because the PyTorch

backend in data parallel mode divides tensors quite cleanly

by default and allocates GPU memory corresponding to the

specific GPU that will use that tensor when distributing

tasks to separate processing units. We can simply obtain

the ID of the current device that is responsible for its

tensors. In addition to this, our memory optimization API

outlined in Table 1 allows us to specify the device ID when

we need to perform optimizations to specific GPU devices.

Thus we can advise and prefetch tensors to their respective

GPUs using the respective information from list as to

which respective GPU the tensor was originally allocated

in. Figure 7 shows how we can control which tensor is

prefetched or advised to each individual GPU based on the

device ID we obtain from the tensor list. Therefore in

instances of memory oversubscription, the user can main-

tain control over which GPU device each tensor will be

optimized to.

3.4 Dynamic Profiling of Unified Memory Access

During the course of training most models in PyTorch,

varying numbers of GPU tensors are allocated. We can

manage every single tensor that is allocated in each dif-

ferent workload by storing the tensor address, and size in a

list. However, there would be no information as to what the

allocated GPU object’s purpose is. In addition to this, even

if we knew the object’s purpose, we would not exactly be

able to measure how it is accessed during the course of

model training. We believe that dynamic profiling using

the CUDA Profiling Tools Interface (CUPTI) can achieve

this purpose of measurement. CUPTI is a profiling and

tracing tool provided as a dynamic library that targets

CUDA applications and gives insight to the GPU and CPU

behaviour. Tracing in this case refers to the collection of

timestamps of activities like CUDA API calls, kernel

launches, and memory copies. We can trace the Unified

Memory activity of our CUDA applications by using the

CUPTI Activity API, made accessible by us from the

PyTorch application by the user when tracing wants to be

performed.

Unified Memory

GPU #0 GPU #1 CPU

T1
 <

G
PU

 #
0>

T3
 <

G
PU

 #
1>

T2
 <

G
PU

 #
0>

T4
 <

G
PU

 #
1>

T5
 <

G
PU

 #
1>

T5T2

cudaMemAdvise cudaMemPrefetchAsync

Fig. 7 Multiple GPU Support for Memory Optimization Techniques

PyTorch Application

PyTorch Backend

Unified Memory
Host Memory GPU Memory

.to(GPU)

cudaMallocManaged

Te
ns

or
 1

Te
ns

or
 2

Te
ns

or
 3

Te
ns

or
 4

Te
ns

or
 5

Store Address, Size, DevID

getTensor API

Fig. 6 Obtaining information about every single allocated tensor directly from backend

Cluster Computing

123

In order to provide a fine-grained approach to know

which GPU tensors are accessed the most, we profile the

amount of GPU/CPU page faults, and the amount of host-

to-GPU and GPU-to-host data transfers that take place

when Unified Memory is used. Such metrics are provided

by the CUPTI API by registering the cuptiActiv-

ityConfigureUnifiedMemoryCounter function.

During registration, we provide the details about which

specific Unified Memory counters we are going to profile.

We use the profile_register function shown in Sect.

3.2 to initialize and register the CUPTI metrics and counter

buffers. We can start profiling at and point of the PyTorch

application code by inserting a call to profile_start

and stop profiling by using profile_stop when we want

to collect the metrics until that point. Once the CUPTI

profiler finishes collecting all the metrics, we organize the

data by creating a hash map where the key of each tensor is

the address of the tensor. The metrics output data in the

form of a Unified Memory counter every time an asyn-

chronous activity happens, when data is oversubscribed in

the GPU. If the address in the counter is within the range of

the tensor address, we add the count of the corresponding

metric value. Each time a GPU page fault occurs, we

increment the number of page faults by one, and each time

there is a data transfer, we add the total number of bytes

that is transferred from device to host or vice versa, like

shown in Figure 12. In addition to this, we also distinguish

between the actual reason why there was a GPU page fault

or cause of data migration.

In the case of a GPU or CPU page fault, the cause of the

fault can be attributed to whether it is a read, write, or

atomic memory instruction. Memory prefetch calls can also

trigger a page fault. Our profiler distinguishes between read

and write operations. In the case of a memory transfer

operation (DtoH or HtoD), the cause of transfer in the case

of DtoH is in order to make room for another block of

memory on the GPU. In the case of HtoD, there are three

cases: one is to guarantee the data coherence on the GPU,

another is the UVM driver speculatively migrating data

before being accessed by the GPU in order to increase

performance, and the last is migration due to an explicit

call like prefetch. Our profiler catches the speculative, and

data coherence calls for the HtoD case, and we classify all

DtoH operations as eviction calls.

4 Evaluation

4.1 Experimental Setup

The experimental setup is a single server machine equipped

with 4 NVIDIA Titan XP GPUs, and a single home machine

Fig. 9 CUPTI Profiling Output for Top 10 Largest Tensors in Resnet-18 Workload with Batch Size 256

Key (Address) V1 (Type) V2 (Value)

0-1000 GPU_PAGE_FAULT 0

HTOD_TRANSFER 0

DTOH_TRANSFER 0

1000-5000 GPU_PAGE_FAULT 0

HTOD_TRANSFER 0

DTOH_TRANSFER 0

GPU PAGE FAULT @ 100
DTOH (4MB) @ 300
HTOD (16MB) @ 2000
GPU PAGE FAULT @ 4000

Key (Address) V1 (Type) V2 (Value)

0-1000 GPU_PAGE_FAULT 1

HTOD_TRANSFER 0

DTOH_TRANSFER 4MB

1000-5000 GPU_PAGE_FAULT 1

HTOD_TRANSFER 16MB

DTOH_TRANSFER 0

Fig. 8 Adding all counter data into a managed hash table

Cluster Computing

123

equipped with two GPUs, one GTX 1660 Ti and one GTX

1050Ti. The TitanXPGPUhas 12GB, the 1660Ti has 6GB,

and the 1050 Ti has 4 GB of memory available. The server

has a total of 125 GB of host memory available. The home

machine has a total of 48 GB available. We use PyTorch

1.9.0 in developer mode for implementation purposes, and

also use Anaconda [37] to shift between our changes and the

base case. Our workload that we run to test actual execution

time in our evaluation is the PyTorch ImageNet Training

example which has a lot of available DNNs for training

vision like Alexnet [27], Resnet [28], and VGG [29]. The

dataset used is the Tiny Imagenet 200 [30]. We also use the

Transformers [32] models workload to test other deep

learning model architectures in natural language processing

(NLP) like Bidirectional Encoder Representations from

Transformers (BERT).

4.2 Results

For the Tiny Imagenet 200 workload, we profiled the

activities between the first iteration and second iteration of

training by placing aprofile_start andprofile_stop

call inside the training loop. Profiling results shown in Fig-

ure 9 showed us that there are 3 types of transfers occurring

through the UVM driver, in the case of ResNet-18. The

figure only shows us the results for the ten largest tensors, but

there are actually 64 tensors for a total allocated memory of

8166 MB. In the case of DtoH transfers, all transfers are

eviction transfers, and are done in 2MB chunks of data. They

are evicted automatically by the UVMdriver because of lack

of space in GPU memory. In the case of HtoD transfers, the

majority are speculative transfers performed to predict

accesses to the data by the GPU, while a minor share com-

prises of actual coherence faults, needing the data to be

transferred to ensure correctness. For page faults, read and

write page faults are distinguished. Based on Figure 9 there is

usually a greater portion of write GPU faults compared to

read GPU faults. Other vision training models in the Tiny

Imagenet 200 workload follow a similar pattern in terms of

the ratios of the types of data transfers and page faults. We

noticed that there are many tensors created with duplicate

sizes, and although it is not shown in Figure 9, there are very

few tensors that actually have a majority of read GPU faults.

In comparison to this, there are actually a number of tensors

that have only write GPU faults and no read operations. The

total number of GPU tensors generated during a workload

varies depending on the model type and the batch size.

Figures 10 and 11 show us the allocated GPU tensor

count for each vision processing and NLP workloads,

Fig. 10 PyTorch Vision Processing Workload Allocated GPU Tensor Count by Size

Cluster Computing

123

respectively. We noticed that for ResNet, doubling the

batch size does not affect the number of different types of

tensors; only the size of the individual tensors are mostly

doubled, as shown in Figure 10. For DenseNet, the number

of different types of tensors increases as the batch size

changes. Total memory used by the GPU also increases as

batch size is increased. DenseNet generally uses various

smaller types of tensors, while ResNet uses larger size

tensors. For BERT, doubling batch size does not really

affect the number of different size tensors. However, there

is a tensor size that is used much more heavily than other

sizes, and that is size 12 MB for BERT BS-32 and size 24

MB for BERT BS-64. We also notice a trend that work-

loads using smaller tensor sizes tend to benefit more from

our memory optimization techniques in our results that we

will show next.

The results of training varying vision processing models

on the Titan XP GPUs are shown in Figure 12. The labels

on the x-axes explain the model name, batch size, and the

amount of GPU tensor data oversubscribed in comparison

to the total amount of GPU memory available. The labels

on the y-axes show the memory techniques that we applied

to the model in order to increase performance. Lower

execution times mean better performance. We only show

the best case times for the various memory optimization

techniques we apply on tensors that we select based on

heuristics and profiled information. We can perform the

memory advise using several options, AccessedBy,

SetPreferredLocation, and SetReadMostly,

and we can also choose to advise the device we prefer the

tensors to reside in (CPU or GPU). Pre refers to using

prefetching with selected tensors based on counter infor-

mation, and the location that we perform prefetching on is

(determined through trial and error) before the tensors are

accessed in the code. Adv refers to using memory advise

on selected tensors that have high GPU page fault counts or

large amounts of data transfers from CPU to GPU. The

default option for memory advise that we perform if

nothing is mentioned is SetPreferredLocation. We

also try to prefetch tensors in advance before coherence

faults occur in a way that would improve performance by

placing the prefetch operations in sections in code that

would provide such benefit. Again, where we place such

prefetch operations is completely decided by trial and

error. Adv1Pre refers to combining memory advise and

prefetching. Adv(CPU) is an experimental case where we

Fig. 12 PyTorch Vision Processing Workload Training Execution Time(s) for 50 Iterations on Titan XP GPUs

Fig. 11 PyTorch NLP Workload Allocated GPU Tensor Count by Size

Cluster Computing

123

place tensors on host memory to be directly accessed by

GPU in order to avoid page faults and transfers to GPU

memory. Oversubscription rate is calculated by the total

memory of GPU tensors allocated divided by the total

memory of all GPU devices in use.

The trend that we noticed was that the lower the over-

subscription rate, the more performance gain we were able

to achieve using memory techniques. In the case of

ResNet18 with BS-256, we were able to reduce execution

time from 252 seconds to 159 seconds, which is approxi-

mately a 38% reduction. In comparison to this, when

oversubscription rate was over 2 for ResNet50 BS-256,

execution time was only roughly the same, slightly better,

or even worse no matter what technique we applied on

various combinations of tensors. This isn’t to say that there

is no way to reliably improve performance, it is just that we

could not determine the exact timing in code to prefetch the

appropriate tensors to apply memory optimizations on

based on the profiled data. Because of the incredibly large

amount of permutations that we can perform on memory

advise and prefetching, there is no way of knowing the

optimal permutation of the application of memory tech-

niques on the tensors. Therefore we rely on heuristics and

the profiled data that we receive from the CUPTI profiler

after the first few iterations of training to decide which

tensors to apply memory techniques on. However, the

profiled data for most deep learning workloads showed that

in the case of oversubscription, all tensors in their entire

size were evicted into CPU host memory (in chunks of data

that we summed) and recalled back into GPU memory

using page faults every single iteration in the training loop.

Applying memory advise and prefetching on too many

tensors at once also causes an adverse effect on perfor-

mance. Therefore each individual tensor should be more

actively monitored at the exact point in time in which they

are accessed during training. Simply profiling the accesses

across the entire training iteration and counting totals for

GPU faults and transfers is not enough to determine the

access pattern of every single tensor. Directly placing

tensors in host memory to avoid GPU faults (Adv(CPU))

also usually results in adverse performance decreases for

virtually every single workload that we tested in this paper.

For DenseNet161 using four GPUs, we noticed that per-

forming different heuristics for prefetching and memory

advise based on the profiled data actually decreased perfor-

mance from baseline 376 seconds to 391 seconds using

Adv1Pre. In this case, prefetching actually worsened per-

formance more than advise. This could be due to improper

timing of prefetches in the experiment. We did not distin-

guish between read faults and write faults in choosing the

tensors to be advised in the GPU. Also oversubscription rate

was quite high. In our results for DenseNet121 (tested on

1050 Ti instead of Titan XP), advising mostly write-only

tensors improved execution time from 99 seconds to 96

seconds in 50 iterations. Prefetching did not make a signifi-

cant difference in execution time, also possibly due to

improper placement of prefetching operations. For multi-

GPU ResNet152 and ResNet50, advising tensors to remain

on their respective GPUs improved execution time perfor-

mance from188 seconds to 176 seconds and 79 to 72 seconds

respectively. This could be attributed to low oversubscrip-

tion rates of 1.01x.

Our solution is straightforward to use on single or

multiple GPUs requiring minimal changes to application

code when more devices are recruited. The reason for this

was stated in Sect. 3.3, where tensors are already dis-

tributed and allocated in their respective GPU devices by

the PyTorch framework. Therefore, we can simply store

the device ID and use memory prefetching and advise on

the corresponding device as a parameter to our API. Ten-

sors located on certain GPU memory would not be pre-

fetched and advised to remain on different GPU memory

because the accessing device would be different and doing

so would almost always result in performance slowdowns.

If one GPU is oversubscribed, then other GPUs would also

be oversubscribed because data tends to be allocated

evenly in PyTorch. Therefore the performance results for

multiple GPU tend to be similar to single GPUs.

We also test our solution on NLP models like BERT.

Figure 13 shows the experimental execution times (in

seconds) of NLP workloads. In the BERT-Base BS-32

MRPC workload, we set the SetReadMostly option for

tensors where there are less than 2 GPU write page faults

during profiling. However, the results show that this actu-

ally worsens performance by almost 70 seconds compared

to the baseline of 283 seconds (not shown in graph because

it is not a best case time) because the option creates

duplicate data on both host memory and the GPU memory.

The purpose of it is to reduce CPU page faults, but based

on our profiled data there are no CPU page faults for any of

the GPU tensors during training, nullifying the purpose.

Forcing tensors to remain at host memory also reduces

performance heavily, because this causes GPU accesses to

access zero-copy memory, and forces data to travel across

the PCIe bus every single time they are accessed. Because

all tensors are usually accessed during every iteration

similar to the vision processing workloads, this causes

severe performance drawbacks. This resulted in poor exe-

cution times of 642 seconds for Adv (CPU). It adviced the

tensors to reside in host memory to be directly accessed

from the GPU. The best results were obtained when we

combined memory advising and prefetching (Adv1Pre) to

obtain an execution time of 270 seconds compared to the

baseline of 283.

For the other BERT workloads, we did not attempt

needlessly place tensors in host memory because we knew

Cluster Computing

123

already that it would result in poor execution times. These

other BERT workloads use different task names likeMNLI

and SST2 as a different method of training General Lan-

guage Understanding Evaluation (GLUE) workload, where

they differ in accuracy and speed. In both cases,

prefetching and advising the top-3 tensors in terms of total

page fault count gave slightly better results of 330 seconds

compared to the baseline of 334 seconds, similar to the first

example. All tasks had identical oversubscription rates. We

tested fine training GPT2 and RoBERTa for language

modeling on WikiText-2 [4] dataset, and achieved better

results when advising and prefetching write-only tensors

which have a majority of write GPU faults compared to

read GPU faults. MarianMT was a translation workload

and this approach was also effective towards it, even

though it had a higher oversubscription rate. For BERT-

Large, the oversubscription rate was 4.64x, so we tested it

on 15 iterations instead of the usual 50 due to extremely

long execution times on our machines, and were able to

increase performance slightly by prefetching and advising

write-only tensors as well. Overall, the results for both

vision processing and language processing workloads

showed similar straightforward patterns, with performance

decreasing for Adv(CPU) scenarios and performance

generally improving slightly in the best case when prefetch

and memory advise is used on tensors.

5 Conclusion

In this paper, we created a fine-grained approach to

selectively profile the activities for all GPU-allocated ten-

sor in PyTorch using CUPTI, and created an API for the

user to apply unified memory techniques like memory

advise and prefetching on GPU-allocated tensors anywhere

in the PyTorch application. We profiled activities like

GPU/CPU read and write page faults, and DtoH and HtoD

coherence, speculative, and eviction transfers. We

dynamically profiled several vision processing and NLP

workloads like ResNet, DenseNet, BERT, RoBERTa,

GPT2, and MarianMT for a set amount of iterations, and

then applied unified memory techniques on heuristically

selected tensors. We were able to achieve minor perfor-

mance improvements of up to roughly 8% on less over-

subscribed workloads like multi-GPU ResNet152 and

ResNet50. In addition to this, we were able to achieve

performance improvements of up to 4% by prefetching and

advising write-only tensors on the NLP workloads

regardless of oversubscription rates. Workloads that used

smaller tensor sizes like NLP and DenseNet also tended to

benefit more from our unified memory techniques regard-

less of oversubscription rates.

Despite this, there were workloads where we were not

able to achieve performance improvements. The reason

was because based on our profiling results, all data ranges

of GPU-allocated tensors in PyTorch are repeatedly used in

every single training iteration making optimization diffi-

cult. In addition to this, prefetching needs to be timed

optimally for tensors to be removed from GPU when they

are not needed and retrieved beforehand in advance before

they are used. This is difficult to perform in a fine-grained

manner because of the large number of tensors that are

allocated and used at different points of the training iter-

ation. Also, simply advising large numbers of tensors to

remain without being evicted in GPU is not effective

because other tensors would inevitable have to be fetched

from host memory. Instead of using heuristics to somewhat

randomly guess which tensors are better suited to remain or

Fig. 13 PyTorch NLP Workload Training Execution Time(s) for 50 Iterations on 1050 Ti and 1660 Ti GPUs

Cluster Computing

123

be prefetched in GPU memory, a better option would be to

have pre-determined knowledge on the exact point in time

each individual GPU tensor is required during each phase

of training (through exact profiling of timestamps relative

to the point in code). Then automatic application so

memory advise and prefetch based on such knowledge

would be helpful to solve this issue. This is what we want

to pursue in future work.

Author Contributions Jake Choi: Conceptualization, Software,

Implementation, Writing - original draft, Review, Methodology,

Validation. Heon Young Yeom: Supervision. Yoonhee Kim: Corre-

sponding Author, Funding acquisition, Administration, Supervision.

Funding This work was supported by the National Research Foun-

dation of Korea(NRF) grant funded by the Korea government(MSIT)

(No.NRF-2021R1A2C1003379)

Data Availability The datasets generated during and/or analysed

during the current study are available from the corresponding author

on reasonable request.

Declarations

Competing interests The authors have no relevant financial or non-

financial interests to disclose.

Informed Consent Written informed consent for publication of this

paper was obtained from all authors.

References

1. Ebubekir, B., Banu, D.: Performance Analysis and CPU vs GPU

Comparison for Deep Learning. In: 2018 6th International Con-

ference onControl Engineering& Information Technology (CEIT)

(pp. 1–6). (2018). https://doi.org/10.1109/CEIT.2018.8751930

2. Huang, C., Jin, G., Li, J.: SwapAdvisor: Pushing Deep Learning

Beyond the GPU Memory Limit via Smart Swapping. In Pro-

ceedings of the Twenty-Fifth International Conference on

Architectural Support for Programming Languages and Operating

Systems (ASPLOS ’20). Association for Computing Machinery,

New York, NY, USA, 1341–1355. (2020). https://doi.org/10.

1145/3373376.3378530

3. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep

Learning with Limited Numerical Precision. In: Proceedings of

the 32nd International Conference on International Conference on

Machine Learning - Volume 37 (ICML’15). (2015). JMLR.org,

1737–1746

4. Judd, P., Albericio, J., Hetherington, T., Aamodt, T., Jerger, N.,

Moshovos, A.: Proteus: Exploiting Numerical Precision Vari-

ability in Deep Neural Networks. In: Proceedings of the 2016

International Conference on Supercomputing (ICS’16). (2016).

Association for Computing Machinery, Article 23

5. Chen, C., Choi, J., Brand, D., Agrawal, A., Zhang, W.,

Gopalakrishnan, K.: Adacomp: Adaptive residual gradient com-

pression for data-parallel distributed training. In: AAAI (2018)

6. Lin, Y., Han, S., Mao, H., Wang, Y., Dally, W.: Deep Gradient

Compression: Reducing the Communication Bandwidth for Dis-

tributed Training. arXiv preprint arXiv:1712.01887 (2017)

7. Chen, T., Xu, B., Zhang, C., Guestrin, C.: Training deep nets with

sublinear memory cost (2016). arXiv preprint arXiv:1604.06174

(2016)

8. Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar, A., Keckler, S.:

vDNN: Virtualized Deep Neural Networks for Scalable, Mem-

ory-Efficient Neural Network Design. In: The 49th Annual IEEE/

ACM International Symposium on Microarchitecture

(MICRO’49). IEEE Press, Article 18 (2016)

9. Jain, A., Phanishayee, A., Mars, J., Tang, L., Pekhimenko, G.:

Gist: Efficient data encoding for deep neural network training. In

2018 ACM/IEEE 45th Annual International Symposium on

Computer Architecture (ISCA) (2018), IEEE, pp. 776–789

10. S. S.B., Garg, A., Kulkarni, P.: Dynamic Memory Management

for GPU-Based Training of Deep Neural Networks. In: 2019

IEEE International Parallel and Distributed Processing Sympo-

sium (IPDPS), pp. 200–209 (2019). https://doi.org/10.1109/

IPDPS.2019.00030

11. Wang, L., Ye, J., Zhao, Y., Wu, W., Li, A., Leon Song, S., Xu, Z.,

Kraska, T.: Superneurons: Dynamic GPU Memory Management

for Training Deep Neural Networks. In: Proceedings of the 23rd

ACM SIGPLAN Symposium on Principles and Practice of Par-

allel Programming (PPoPP’18) (2018)

12. Abadi, M., Barham, P., Chen, J., Chen, Z., A, Davis, Dean, J.,

Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensor-

flow: A system for large-scale machine learning. In: OSDI, Vol.

16, pp. 265–283 (2016)

13. Collobert, R., Bengio, S., Mariéthoz, J.: Torch: a modular

machine learning software library. Tech. rep, Idiap (2002)

14. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Gir-

shick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional

architecture for fast feature embedding. In: Proceedings of the

22nd ACM international conference on Multimedia, ACM,

pp. 675–678 (2014)

15. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T.,

Xu, B., Zhang, C., Zhang, Z.: Mxnet: A flexible and efficient

machine learning library for heterogeneous distributed systems.

arXiv preprint arXiv:1512.01274 (2015)

16. Davis, L.: Handbook of genetic algorithms. (1991)

17. Awan, A., Chu, C., Subramoni, H., Lu, X., Panda, D.: OCDNN:

Exploiting Advanced Unified Memory Capabilities in CUDA 9

and Volta GPUs for Out-of-Core DNN Training. In: 25th IEEE

International Conference on High Performance Computing, Data,

and Analytics (HiPC) (2018)

18. Manian, K.V., Ammar, A.A., Ruhela, A., Chu, C.-H., Subramoni,

H., Panda, D. K.: Characterizing CUDA Unified Memory (UM)-

Aware MPI Designs on Modern GPU Architectures. In: Pro-

ceedings of the 12th Workshop on General Purpose Processing

Using GPUs (GPGPU ’19). Association for Computing

Machinery, New York, NY, USA, 43–52 (2019). https://doi.org/

10.1145/3300053.3319419

19. Ren, J., Rajbhandari, S., R.Aminabadi, Y., Ruwase, O., Yang, S.,

Zhang, M., Li, D., He, Y.: ZeRO-Offload: Democratizing Billion-

Scale Model Training. (2021). arXiv:abs/2101.06840

20. Knap, M., Czarnul, P.: Performance evaluation of Unified

Memory with prefetching and oversubscription for selected par-

allel CUDA applications on NVIDIA Pascal and Volta GPUs.

J. Supercomput. 75, 7625–7645 (2019). https://doi.org/10.1007/

s11227-019-02966-8

21. Sakharnykh, N.: Maximizing unified memory performance in

cuda. (2017). https://devblogs.nvidia.com/maximizing-unified-

memory-performance-cuda/

22. Li, W., Jin, G., Cui, X., See, S.: An evaluation of unifed memory

technology on nvidia gpus. In: 2015 15th IEEE/ACM Interna-

tional Symposium on Cluster, Cloud and Grid Computing,

pp 1092–1098. (2015). https://doi.org/10.1109/CCGrid.2015.105

Cluster Computing

123

https://doi.org/10.1109/CEIT.2018.8751930
https://doi.org/10.1145/3373376.3378530
https://doi.org/10.1145/3373376.3378530
http://arxiv.org/abs/1712.01887
http://arxiv.org/abs/1604.06174
https://doi.org/10.1109/IPDPS.2019.00030
https://doi.org/10.1109/IPDPS.2019.00030
http://arxiv.org/abs/1512.01274
https://doi.org/10.1145/3300053.3319419
https://doi.org/10.1145/3300053.3319419
http://arxiv.org/abs/abs/2101.06840
https://doi.org/10.1007/s11227-019-02966-8
https://doi.org/10.1007/s11227-019-02966-8
https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/
https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/
https://doi.org/10.1109/CCGrid.2015.105

23. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,

G., Chintala, S.: PyTorch: An imperative style, high-performance

deep learning library. In: Advances in Neural Information Pro-

cessing Systems 32 (pp. 8024–8035). (2019). Curran Associates,

Inc. Retrieved from http://papers.neurips.cc/paper/9015-pytorch-

an-imperative-style-high-performance-deep-learning-library.pdf

24. Theano Development Team. Theano: A Python framework for

fast computation of mathematical expressions. arXiv e-prints,

abs/1605.02688, May (2016)

25. Awan, A.A., Chu, C., Subramoni, H., Lu, X., Panda, D.K.: OC-

DNN: Exploiting Advanced Unified Memory Capabilities in

CUDA 9 and Volta GPUs for Out-of-Core DNN Training. In:

2018 IEEE 25th International Conference on High Performance

Computing (HiPC), (2018), pp. 143–152, https://doi.org/10.1109/

HiPC.2018.00024

26. Min, S., Wu, K., Huang, S., Hidayetoglu, M., Xiong, J., Ebra-

himi, E., Chen, D., Hwu, W.: PyTorch-Direct: Enabling GPU

Centric Data Access for Very Large Graph Neural Network

Training with Irregular Accesses. CoRR abs/2101.07956 (2021)

27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classifica-

tion with deep convolutional neural networks. In Advances in

Neural Information Processing Systems; Curran Associates, Inc.:

New York, NY, USA, (2012); pp. 1097–1105

28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for

image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA,

26 June–1 July (2016); pp. 770–778

29. Simonyan, K., Zisserman, A.: Very deep convolutional networks

for large-scale image recognition. arXiv 2014, arXiv:1409.1556

30. Barnes, Z.: Techniques for Image Classification on Tiny-Ima-

geNet. (2017)

31. Choi, H., Lee, J.: Efficient use of GPU memory for large-scale

deep learning model training. Appl. Sci. 11(21), 10377 (2021).

https://doi.org/10.3390/app112110377

32. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi,

A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J.,

Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le

Scao, T., Gugger, S., et al.: Transformers: state-of-the-art natural

language processing. In: Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing: System

Demonstrations, pp. 38–45, Online. Association for Computa-

tional Linguistics. (2020)

33. Merity, S., Xiong, C., Bradbury, J., Socher, R.: Pointer Sentinel

Mixture Models. (2016)

34. Chen, C.L., Chen, C.C., Yu, W.H., et al.: An annotation-free

whole-slide training approach to pathological classification of

lung cancer types using deep learning. Nat. Commun. 12, 1193
(2021). https://doi.org/10.1038/s41467-021-21467-y

35. Chuang, W.Y., Chen, C.C., Yu, W.H., et al.: Identification of

nodal micrometastasis in colorectal cancer using deep learning on

annotation-free whole-slide images. Mod. Pathol. (2021). https://

doi.org/10.1038/s41379-021-00838-2

36. Choi, J., Yeom, H. Y., Kim, Y.: Implementing CUDA Unified

Memory in the PyTorch Framework. In: 2021 IEEE International

Conference on Autonomic Computing and Self-Organizing Sys-

tems Companion (ACSOS-C), (2021), pp. 20–25. https://doi.org/

10.1109/ACSOS-C52956.2021.00029

37. Anaconda Software Distribution.: Anaconda Documentation.

Anaconda Inc. Retrieved from https://docs.anaconda.com/ (2020)

38. Caffe2. https://caffe2.ai/

39. CUPTI. https://docs.nvidia.com/cuda/cupti/index.html

40. NVIDIA.: Beyond GPU Memory Limits with Unified Memory on

Pascal, 2016. URL https://developer.nvidia.com/blog/beyond-

gpumemory-limits-unified-memory-pascal/

41. NVIDIA, cuDNN: GPU Accelerated Deep Learning, 2016

42. NVIDIA Profiler nvprof. https://docs.nvidia.com/cuda/profiler-

users-guide/index.html

43. NVIDIA Profiler User’s Guide. https://docs.nvidia.com/cuda/pro

filer-users-guide/

44. PyTorch Documentation.: https://pytorch.org/docs/ stable/cpp_

extension.html/ (2020)

45. CUDA-UVM-GPT2.: https://github.com/kooyunmo/cuda-uvm-

gpt2/ (2020)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Jake Choi is a PhD candidate in

the Distributed Computing Sys-

tems Laboratory at Seoul

National University. He

received his BS in Computer

Science with a minor in Man-

agement Science from KAIST

in 2013. His research interests

include GPUs, systems, and

computer security.

Heon Y. Yeom (Member, IEEE)

received the B.S. degree in

computer science from Seoul

National University, in 1984,

and the M.S. and Ph.D. degrees

in computer science from Texas

A &M University, in 1986 and

1992, respectively. From 1986

to 1990, he worked with the

Texas Transportation Institute

as a Systems Analyst, and from

1992 to 1993, he was with

Samsung Data Systems as a

Research Scientist. He joined

the Department of Computer

Science, Seoul National University, in 1993, where he currently is a

Professor with the School of Computer Science and Engineering. He

teaches and researches on distributed systems and transaction

processing.

Cluster Computing

123

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/HiPC.2018.00024
https://doi.org/10.1109/HiPC.2018.00024
http://arxiv.org/abs/1409.1556
https://doi.org/10.3390/app112110377
https://doi.org/10.1038/s41467-021-21467-y
https://doi.org/10.1038/s41379-021-00838-2
https://doi.org/10.1038/s41379-021-00838-2
https://doi.org/10.1109/ACSOS-C52956.2021.00029
https://doi.org/10.1109/ACSOS-C52956.2021.00029
https://docs.anaconda.com/
https://caffe2.ai/
https://docs.nvidia.com/cuda/cupti/index.html
https://developer.nvidia.com/blog/beyond-gpumemory-limits-unified-memory-pascal/
https://developer.nvidia.com/blog/beyond-gpumemory-limits-unified-memory-pascal/
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/
https://docs.nvidia.com/cuda/profiler-users-guide/
https://pytorch.org/docs/%20stable/cpp_extension.html/
https://pytorch.org/docs/%20stable/cpp_extension.html/
https://github.com/kooyunmo/cuda-uvm-gpt2/
https://github.com/kooyunmo/cuda-uvm-gpt2/

Yoonhee Kim She is the profes-

sor of the Computer Science

Department at Sookmyung

Women’s University. She

received her Bachelor’s degree

from Sookmyung Women’s

University in 1991, her Master

degree and Ph.D. from Syracuse

University in 1996 and 2001,

respectively. She was a

Research Staff Member at the

Electronics and Telecommuni-

cation Research Institute during

1991 and 1994. Before joining

the faculty of Sookmyung

Women’s University in 2001, she was the faculty of Computer

Engineering dept. at Rochester Institute of Technology in NY, USA.

Her research interests span many aspects of runtime support and

management in distributed and cloud computing. She is a member of

IEEE and ACM, and she has served on a variety of program com-

mittees, advisory boards, and editorial boards.

Cluster Computing

123

	Improving Oversubscribed GPU Memory Performance in the PyTorch Framework
	Abstract
	Introduction
	Related Work and Background
	Related Work
	CUDA Unified Memory
	Choosing PyTorch as the Framework
	Design Differences with Other Frameworks

	Implementation and Experimental Setup
	CUDA Unified Memory Implementation
	Prefetch and Advise API Functionality
	Multi-GPU Support
	Dynamic Profiling of Unified Memory Access

	Evaluation
	Experimental Setup
	Results

	Conclusion
	Author Contributions
	Data Availability
	References

