
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, Mar. 2021 911

Copyright ⓒ 2021 KSII

This research was supported by Next-Generation Information Computing Development Program

(2015M3C4A7065646) and Basic Research Program (2020R1H1A2011685, 2020R1F1A1072696) through the

National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, GRRC program of

Gyeong- gi province (No. GRRC-KAU-2020-B01, “Study on the Video and Space Convergence Platform for

360VR Services”), ITRC (Information Technology Research Center) support program (IITP-2021-2018-0-01423)

and "HPC Support" Project supported by the Ministry of Science and ICT and NIPA.

http://doi.org/10.3837/tiis.2021.03.006 ISSN : 1976-7277

Empirical Performance Evaluation of
Communication Libraries for Multi-GPU
based Distributed Deep Learning in a

Container Environment

HyeonSeong Choi1, Youngrang Kim1, Jaehwan Lee1, and Yoonhee Kim2*

1 Korea Aerospace University

Goyang-City, Gyeonggi-do, Republic of Korea

[e-mail: chyon794@gmail.com, kimyr207@gmail.com, jlee@kau.ac.kr]
2 Sookmyung Women’s University

Seoul, Republic of Korea

[e-mail: yulan@sm.ac.kr]

*Corresponding author: Yoonhee Kim

Received November 11, 2019; revised May 19, 2020; accepted August 2, 2020;

published March 31, 2021

Abstract

Recently, most cloud services use Docker container environment to provide their services.

However, there are no researches to evaluate the performance of communication libraries for

multi-GPU based distributed deep learning in a Docker container environment. In this paper,

we propose an efficient communication architecture for multi-GPU based deep learning in a

Docker container environment by evaluating the performances of various communication

libraries. We compare the performances of the parameter server architecture and the All-

reduce architecture, which are typical distributed deep learning architectures. Further, we

analyze the performances of two separate multi-GPU resource allocation policies — allocating

a single GPU to each Docker container and allocating multiple GPUs to each Docker container.

We also experiment with the scalability of collective communication by increasing the number

of GPUs from one to four. Through experiments, we compare OpenMPI and MPICH, which

are representative open source MPI libraries, and NCCL, which is NVIDIA’s collective

communication library for the multi-GPU setting. In the parameter server architecture, we

show that using CUDA-aware OpenMPI with multi-GPU per Docker container environment

reduces communication latency by up to 75%. Also, we show that using NCCL in All-reduce

architecture reduces communication latency by up to 93% compared to other libraries.

Keywords: Docker, Collective Communication, Distributed Deep Leaning, Multi-GPU

912 Choi et al.: Empirical Performance Evaluation of Communication Libraries for Multi-GPU
based Distributed Deep Learning in a Container Environment

1. Introduction

Large learning models and a great number of training datasets are required to considerably

improve the accuracy of deep learning based systems [1-4]. Inevitably, this significantly

increases the required learning time. To overcome this problem, distributed deep learning

using multiple GPUs has been proposed [5]. This has been verified practically as well. For

instance, Facebook achieved 76% accuracy while training the ImegeNet dataset with the

Resnet-50 model over one hour using 256 Tesla P100s [6]. Additionally, Sony used the 2176

Tesla V100s in their research which achieved 75% accuracy while training the ImageNet

dataset with the Resnet 50 model over 224 seconds [7]. Based on these two studies, we can

confirm that similar levels of accuracy can be achieved over much shorter training times by

using distributed processing for deep learning with multiple GPUs.

Every year, NVIDIA announces a new GPU with better computing power, and the price of

the GPUs keep increasing. Therefore, hardware acquisition costs quickly become prohibitive.

To solve this problem, many laboratories conduct deep learning in a multi-GPU environment

using cloud services such as Amazon Web Services and Google Cloud Platform. These cloud

services provide a multi-GPU environment to users via a Docker container environment rather

than a virtual machine environment [8, 9]. Therefore, extensive analysis of the communication

performances of distributed deep learning architectures in Docker containers is necessary to

achieve efficient distributed deep learning in multi-GPU environments akin to those provided

by cloud services.

In this paper, we present experimental analysis of various collective communication

libraries in a Docker container environment, which is a typical environment in the training

process of a distributed deep learning system. We employed MPI (Massage Passing Interface),

which is a representative parallel programming library [10], and NCCL (NVIDIA Collective

Communication Library) [11], which is NVIDIA's multi-GPU collective communication

library, to analyze the collective communication performances of multi-GPU based distributed

deep learning systems, especially focusing on multi-GPU resource allocation in the Docker

container environment. We compared OpenMPI, with MPICH, both of which are

representative open source MPI libraries [12, 13]. Further, we analyzed the performance of

CUDA-aware OpenMPI.

The contributions of this paper are two-fold. To begin with, this is the first experimental

result that demonstrates the difference in performance between a single GPU Docker container

environment and a multi-GPU one. Second, an extensive analysis of collective communication

performances under typical distributed deep learning training scenarios is also presented.

Our experiments focus on the collective communication performances of MPI, NCCL, and

CUDA-aware MPI in a distributed deep learning environment as described below.

▪ We consider two typical distributed deep learning architectures in our experiments –

the parameter server architecture and the All-reduce architecture. We analyze each

communication library’s performance in each distributed deep learning architecture. In

the parameter server archtecture, CUDA-aware OpenMPI performed the best. However,

NCCL was the best performer in the All-redeuce archtecture.

▪ We consider two types of GPU resource allocation policies — allocating a single GPU

to a Docker container and allocating multiple GPUs to a Docker container. In all

experimental senarios, allocating multiple GPUs to a Docker container yielded better

performances than allocating a single GPU to a Docker container because of the

commucation overhead between separate Docker containers.

▪ To evaluate GPU scalability, we experimented with increasing the number of GPUs

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 913

used. In the parameter server architecture, CUDA-aware MPI exhibited the best

scalability. On the other hand, NCCL proved to be the most scalable in the All-reduce

architecture.

In the parameter server architecture, we show that using CUDA-aware OpenMPI with

multi-GPU per Docker container environment reduces communication latency by up to 75%.

When we use NCCL with multi-GPU per Docker container environment in All-reduce

architecture, communication latency is reduced by up to 93% compared to using other libraries.

This paper presents the most efficient communication libraries for each distributed deep

learning architecture in the Docker container environment via a comparative analysis of

experimental results. Section 2 presents a detailed discussion about the communication

libraries studied in this paper and about distributed deep learning in general. The expermental

environment is described in Section 3. In Sections 4 and 5, we analyze the experimental results

for each distributed deep learning archtecture. The experimental results are summarized in

section 6. Section 7 describes the works that are related to our research. Finally, we conclude

our paper in Section 8.

2. Background

2.1 Collective Communication Libraries

MPI is a standard communication library for parallel programs. MPI assigns jobs based on

processes, and each process corresponds to a set called 'the communicator'. Processes can

exchange messages with other processes corresponding to the same communicator. Processes

in a communicator are identified via a special number assigned to the process called the 'rank'.

There are two kinds of communication methods in MPI — point-to-point communication and

collective communication [14]. MPI_Send and MPI_Recv are typical point-to-point

communication subroutines in MPI. Collective communication is any communication in

which all processes corresponding to the communicator participate together. Collective

communication is implemented based on point-to-point communication. MPI_Bcast,

MPI_Gather, MPI_Allgather, MPI_Reduce, and MPI_Allreduce are all representative

collective communication subroutines. OpenMPI and MPICH are representative open source

MPI libraries. The experiments presented in this paper test MPI_Bcast, MPI_Gather, and

MPI_Allreduce. Fig. 1 depicts the working procedure of collective communication

subroutines.

Fig. 1. MPI collective communication

914 Choi et al.: Empirical Performance Evaluation of Communication Libraries for Multi-GPU
based Distributed Deep Learning in a Container Environment

NCCL is a multi-GPU based collective communication library developed by NVIDIA.

NCCL provides subroutines such as ncclAllgather, ncclReduce, ncclBroadcast, and

ncclAllGather. It constructs a ring-style group to provide maximum bandwidth. The first

version of NCCL only supported communication among GPUs corresponding to a single node.

On the contrary, the second version of NCCL not only supports multi-GPU communication at

a node but also supports communication between GPUs at separate nodes [11].

2.2 Distributed Deep Learning

The increase in training time in deep learning can be solved by distributed deep learning using

the multi-GPU system. Training methods of distribued deep learning can be of two kinds —

data parallelization and model parallelization [5, 15]. Data parallelization is a scheme in which

multiple GPUs divide one large dataset and all GPUs train using the same model. In data

parallelization, each GPU undergoes training on separate datasets, so that the gradients

computed through back propagation are different across the GPUs. Therefore, the gradients

computed on each GPU are reflected in the whole learning process after aggregation.

Parameter server architecture and All-reduce architecture are typical architectures used to

aggregate gradients. Fig. 2 and Fig. 3 depict the operation of each architecture.

Processes involved in the parameter server architecture can be classified into two groups

— the parameter server and workers. The parameter server receives the gradients computed

by the workers, updates the parameters of the learning model, maintains the latest parameters,

and provides the parameters to the workers whenever any worker requests them. Workers

compute the gradients based on input data and model parameters based on the latest parameters

received from the parameter server. The parameter server can operate both in synchronouns

and asynchronous methods. In the synchronous method, parameters are updated once all

workers finish computing gradients. Thus, each worker is able to begin its task after receiving

the latest parameters from the parameter server once the parameters are updated. As

synchronization is performed at each iteration in this method, the accuracy of the whole

learning process is quite high. However, the throughput of a whole cluster depends on the

slowest worker because all workers are synchronized at each iteration. This is a disctinct

disadvantage. In the asynchronous method, parameters are updated whenever the parameter

server receives gradients computed by any worker. Thus, each worker is free to begin its task

immediately, without waiting for the other workers to receive the latest parameters from the

parameter server. The throughput rate of the whole cluster is consequently higher than that in

the synchronous method. However, accuracy is compromized because each worker computes

gradients using different parameters. Tensorflow [16] currently supports the parameter server

architecture for distributed deep learning.

Fig. 2. Parameter server architecture

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 915

Fig. 3. All-reduce architecture

In the All-reduce architecture, instead of having a parameter server to maintain the latest

parameters, each worker communicates with the others via P-to-P communication to maintain

the synchronization of parameters. This method has the advantage of reducing communication

overhead compared with methods employing a parameter server because of the lack of any

communication between the parameter server and the workers. However, its inflexibility is a

disadvantage because it can only operate synchronously. An example of a representative

framework that uses the All-reduce architecture is Horovod [17].

3. Related Works

A few studies exist in the literature that evaluate HPC(High-Performance Computing)

application performances in a Docker environment. Xavier, Miguel G. et al. compared the

performances of container-based virtualization tools (e.g., LXC, Docker, Singularity, bare

metal) using HPL-benchmarks and MPI based applications [18]. Additionally, Saha, Pankaj

et al. compared the performances of MPI applications in bare metal and Docker environments

using various HPC benchmarks [19]. This paper shows that the performance overhead of MPI

applications in the Docker environment are negligible. However, in the aforementioned study,

the authors do not consider MPI applications that use GPUs. Thus, their paper suffers from

limitation that the impact of the Docker environment on MPI applications using GPUs is not

explored.

There is study that evaluate the performance of GPU applications in a Docker environment.

Kømären, Teemu et al. evaluated GPU performances in host, QEMU, and Docker

environments in cloud gaming systems [20]. The study concludes that GPU performance for

cloud gaming systems with Docker is much better than that of QEMU, and is identical with

that of the host. However,this study suffers from the limitation that it does not analyze the high

communication overhead that may be incurred by using multi-GPU environments.

Futher, some studies analyze the performances of deep learning applications using GPUs in

Docker environments. Siddaramana, Vintha G., and Anto Ajay Raj John analyzed the

performance of deep learning applications in native and Docker environments [21]. Their

performances were compared by running DeepBench and Fathom workloads in a host

environment and in the container environment. Performance comparisons showed that the time

taken to run the kernel was the same on the host and on the container. In the study published

by Xu, Pengfei, Shaohuai Shi, and Xiaowen Chu, the performance of deep learning

916 Choi et al.: Empirical Performance Evaluation of Communication Libraries for Multi-GPU
based Distributed Deep Learning in a Container Environment

frameworks such as Caffe, CNTK,MXNet, and Tensorflow, all of which are being widely used

recently, are evaluated in the Docker container environment [22]. They compared the

performances of I / O, CPU, and GPU in the Docker container environment with their

performances in a host environment. The conclusion of their study was that the performance

of the deep learning frameworks in a Docker container environment was identical to that in a

host environment.

Their research shows that there is no performance degradation on systems with single GPUs.

However, the study suffers from the limitation that the degradation of performanc for deep

learning frameworks due to possible communication overheads has not been explored. In this

paper, we propose a method that can minimize the communication overhead that arises in

multi-GPU based deep learning distributed processing. Based on the results presented in this

paper, it can be concluded that efficient multi-GPU based deep learning distributed processing

in a Docker container environment is viable.

Zhang, Jie, Xiaoyi Lu, and Dhabaleswar K. Panda evaluate the performance of MPI in

Singularity-based container [23]. Their research shows that there is no degradation of MPI

communication performance for both Intel Xeon and Intel Knights Landing in a Singularity-

based container environment. Unlike this research, we use Docker container. Also, we evaluate

the performance of communication between GPUs.

A study published by Z. Li, M. Kihl, Q. Lu and J. A. Andersson Compared the performance

overhead between hypervisor and container based virtualization [24]. According to this study,

in most cases, the performance overhead of the container is less than the performance overhead

of the virtual machine. This result means that virtualization using a container is more efficient

than using a virtual machine. Thus, we evaluate the performance of the communication library

in Docker container environment rather than a hypervisor.

4. Experimental Environment

In order to analyze the communication performance of multi-GPU based distributed deep

learning training in the Docker container environment, experiments were conducted on the

parameter server architecture and the All-reduce architecture. For each architecture, the

experiments were conducted in two distinct modes. One mode proceeded by assigning a single

GPU to one Docker container, and the other proceeded by assigning multiple GPUs to one

Docker container. In the case of MPI, there are various types of implementation. Most MPI

libraries are implemented based on OpenMPI or MPICH. Also, NCCL is developed by

NVIDIA as a collective communication library for communication between GPUs. NCCL is

(A) Broadcast (B) Gather

Fig. 4 Flowchart of parameter server architectureFig. 4. Flowchart of parameter server architecture

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 917

the most efficient library to communicate between NVIDIA’s GPUs. Thus, the experiments

used MPICH, OpenMPI, and NCCL as communication libraries. The recent version of

OpenMPI supports the CUDA-aware MPI function. Therefore, we used CUDA-aware

OpenMPI in our experiments. Intel Xeon CPU E5-2650 CPUs and four NVIDIA GTX Titan

XP were the GPUs used in the experiments. The software used were NVIDIA driver 410.79,

CUDA 10.0, OpenMPI 4.0.0, MPICH 3.3, NCCL 2.4, and Docker 18.09.5. In each experiment,

we exchanged a randomly generated 32-bit floating point array of size 1 GB to evaluate the

communication performance. Since the experiments measure the communication latency, the

results of the experiments do not change depending on the type of the dataset. All experiments

were repeated 1000 times.

(A) MPI_Bcast

(B) ncclBroadcast

(C) MPI_Bcast(CUDA-awareOpenMPI)

Fig. 5 Broadcasting data in the parameter server archtectureFig. 5. Broadcasting data in the parameter server archtecture

918 Choi et al.: Empirical Performance Evaluation of Communication Libraries for Multi-GPU
based Distributed Deep Learning in a Container Environment

4.1 Parameter Server Architecture

In the parameter server method, communication latency was measured twice — once when a

parameter server broadcasts the parameters to the workers and once when the gradients

computed by the workers are aggregated into the parameter server. Additionally, each

experiment was repeated using two separate allocation policies — allocating one GPU to a

Docker container and allocating multiple GPUs to a Docker container. Fig. 4 is a flowchart of

experiment in parameter server architecture.

In parameter server architecture, the parameter server needs to broadcast model parameters

to all workers [25]. So, we use MPI_Bcast of MPI, ncclBroadcast of NCCL, and MPI_Bcast

of CUDA-aware OpenMPI, all of which are one-to-all broadcast subroutines. We measured

and compared the durations required to copy relevant data from the CPU memory of the

parameter server to the GPU memories of all workers. In the experiment using MPI_Bcast, the

parameter server first broadcasts all data in its CPU memory to the workers' CPU memories.

Following that, each worker copies the data from its CPU memory to its GPU memory via

cudaMemcpy. When ncclBroadcast is used for broadcasting data, the data in the CPU memory

of the parameter server is transmitted to chief worker's CPU memory using MPI_Send.

(A) MPI_Gather

(B) ncclAllgather

(C) MPI_Gather(CUDA-aware OpenMPI)

Fig. 6 Gathering data in the parameter server archtecture

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 919

The chief worker copies the data from its CPU memory to its GPU memory via

cudaMemcopy. Finally, the chief worker broadcasts the data from its GPU memory to the

remaining workers' GPU memories via ncclBroadcast. In the case of transmission via CUDA-

aware OpenMPI, the parameter server broadcasts all the data in its CPU memory directly to

the GPU memories of the workers via MPI_Bcast. Fig. 5 depicts the experimental scenarios

of broadcasting data via each subroutine.

During the aggregation of gradients, MPI and CUDA-aware OpenMPI use the MPI_Gather

subroutine, but NCCL uses the ncclAllgather subroutine because there is no ncclGather

subroutine. Using MPI_Gather, each worker calls cudaMemcpy to copy the data from its GPU

memory to its CPU memory. The parameter server gathers data from each worker’s CPU

memory to its CPU memory via MPI_Gather as well. Workers gather data from their GPU

memories to the chief worker's GPU memory using ncclAllgather. The chief worker copies

the gathered data from its GPU memory to its CPU memory via cudaMemcpy, and then

transmits it to the CPU memory of the parameter server via MPI_Send. In the case of CUDA-

aware OpenMPI, it is possible to directly copy all the data in the workers' GPU memories to

the CPU memory of the parameter server by simply calling MPI_Gather. Fig. 6 depicts the

experiment scenarios of gathering data via each subroutine.

4.2 All-reduce Architecture

In the All-reduce architecture, we measured the duration required to execute a reduce sum

operation on the data in the GPU memory of each worker and to store the result in the GPU

memory of each worker for various subroutines. We compared MPI_Allreduce of MPI,

ncclAllreduce of NCCL, and MPI_Allreduce of CUDA-aware OpenMPI. Fig. 7 is a flowchart

of experiments in All-reduce architecture. As in the previous case, each experiment is

conducted in two modes — once by assigning one GPU to each Docker container and once by

assigning multiple GPUs to each Docker container. When MPI_Allreduce is used, each worker

copies the data in its GPU memory to its C PU memory via cudaMemcpy. The reduce sum

operation is then executed on the copied data using MPI_Allreduce. Each worker copies the

resultant data saved in CPU memory of each worker to their respective GPU memories via

cudaMemcpy. On the other hand, when ncclAllreduce is used, it is possible to directly execute

Fig. 7 Flowchart of All-reduce architectureFig. 7. Flowchart of All-reduce architeture

920 Choi et al.: Empirical Performance Evaluation of Communication Libraries for Multi-GPU
based Distributed Deep Learning in a Container Environment

the reduce sum operation on the data present in the workers' GPU memories and to save the

resultant data in GPU memory by simply calling ncclAllreduce. The final candidate — CUDA-

aware OpenMPI — does not require replication of data between CPU and GPU memories via

cudaMemcpy. Instead, it is possible to execute the reduce sum operation on the data stored in

the GPU memory of each worker by simply calling MPI_Allreduce. Fig. 8 depicts the

experimental scenarios arising in the All-reduce architecture.

5. Experimental Results for the Parameter Server Architecture

5.1 Broadcast of Data from the Parameter Server

5.1. 1 Single GPU per Docker Container

Fig. 9(A) depicts the communication latency with the increase in the number of GPUs, during

broadcast using MPI_Bcast, when a single GPU is assigned to each Docker container. The

total communication latency when a single GPU was used was 0.518 s for MPICH. For

OpenMPI, the total communication latency was 0.979 s, which is about 1.9 times that of

MPICH. Thus, OpenMPI performed worse than MPICH in this case. However, when four

GPUs were used, OpenMPI took 1.255 s to broadcast the data while MPICH took 1.213 s.

Therefore, increasing the number of GPUs reduces the difference in communication latencies

caused by the choice of specific MPI libraries. The communication latency recorded for

ncclBroadcast is presented in Fig. 9(B). When the parameter server broadcasts data to the

workers via ncclBroadcast, the variance in communication latency caused by the difference

in the MPI library is negligible except when three GPUs are used. Fig. 9(C) records the

communication latencies when data is broadcasted via MPI_Bcast of CUDA-aware OpenMPI

using varying number of GPUs. When two GPUs were used, the time taken to broadcast the

parameters was 1.668 s, which is about 1.5 times the time taken to broadcast the same data

using one GPU. Using four GPUs increased the communication latency to 1.747 s, which is

1.04 times the time taken by two GPUs. Therefore, CUDA-aware OpenMPI exhibited the best

scalability. According to the data presented in Fig. 9, MPI_Bcast is the optimal choice to

reduce communication latency if only one GPU is active. Further, it can be seen that, if four

GPUs are active, the variance in communication latency caused by the different choices of

MPI libraries is negligible.

5.1.2 Multi-GPU per Docker Container

Fig. 10 presents a graph depicting communication latencies in data broadcasting as the number

(A) MPI_Allreduce (B) ncclAllreduce (C) MPI_Allreduce(CUDA-

aware) Fig. 8. All-reduce data in All-reduce architecture

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 921

of GPUs is increased by allocating multiple GPUs to each Docker container. Fig. 10(A)

records the communication latencies when MPI_Bcast is used as the broadcasting subroutine.

When three GPUs are used, the communication latency for OpenMPI is about 1.08 times that

for MPICH. However, when four GPUs are used, MPICH took about 1.3 times that for

OpenMPI. Therefore, OpenMPI is a better choice when four or more GPUs are assigned to

each Docker container. Fig. 10(B) presents the communication latencies when data is

broadcast via ncclBroadcast, which increased by about 1.7 times as the number of GPUs used

was increased from one to four. However, when MPI_Bcast was used, communication latency

increased by about 1.9 times as the number of GPUs used was increased from one to four.

Thus, the scalability of NCCL is better than that of MPI. Fig. 10(C) shows a graph of the

results of the experiments conducte d using MPI_Bcast of CUDA-aware OpenMPI. In this

case, communication latency increased by roughly 1.2 times as the number of GPUs used was

increased from one to four and it exhibited the smallest increase among the three candidates.

Moreover, in the case of four GPUs, the communication latency was the smallest at 0.436 s.

(A) Using MPI_Bcast

(B) Using ncclBroadcast

(C) Using MPI_Bcast of CUDA-aware OpenMPI

Fig. 9. Data broadcating latencies corresponding to increasing number of GPUs in single GPU

per Docker container environment

922 Choi et al.: Empirical Performance Evaluation of Communication Libraries for Multi-GPU
based Distributed Deep Learning in a Container Environment

(A) Using MPI_Bcast

(B) Using ncclBroadcast

(C) Using MPI_Bcast of CUDA-aware OpenMPI

Fig. 10. Data broadcating latencies corresponding to increasing number of GPUs in multiple GPUs

 per Docker container environment

5.2 Aggregation of Data in the Parameter Server

5.2.1 Single GPU per Docker Container

Fig. 11 depicts the communication latencies for data aggregation on a parameter server

corresponding to varying number of GPUs, when each Docker container is assigned a single

GPU. As shown in Fig. 11(A), MPICH exhibits a latency that is about 1.1 times that of

OpenMPI in cases in which more than two GPUs are used to call MPI_Gather. Further, as the

number of GPUs was increased from one to four, the communication latency increased by

more than a factor of two. Fig. 11(B) illustrates the communication latencies when data is

aggregated using ncclAllgather. As in the case recorded in Fig. 11(A), the communication

latency while using MPICH was about 1.1 times that while using OpenMPI. Further, with four

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 923

GPUs compared to using one GPU, the communication latency exhibited a significant increase

by a factor of about 10 when four GPUs were used instead of one. Fig. 11(C) is a

communication latency graph for the case in which MPI_Gather of CUDA-aware OpenMPI

was used. In this case, the communication latency almost doubled when the number of GPUs

was increased from one to four. This is a small increase in latency compared to the 10-fold

increase in the case of ncclAllreduce. Fig. 11 indicates that using general MPI_Gather

achieves the smallest communication latency for data aggregation when a single GPU is

assigned to each Docker container. It was also confirmed that using general MPI_Gather

shows the smallest increase in communication latency as the number of GPUs used is

increased. OpenMPI performs better than MPICH in this scenario.

(A) Using MPI_Gather

(B) Using ncclAllgather

(C) Using MPI_Gather of CUDA-aware OpenMPI

Fig. 11. Data gathering latencies corresponding to increasing number of GPUs in single GPU per

Docker container environment

924 Choi et al.: Empirical Performance Evaluation of Communication Libraries for Multi-GPU
based Distributed Deep Learning in a Container Environment

5.2.2 Multi-GPU per Docker Container

Fig. 12 depicts the communication latencies corresponding to increasing number of GPUs

during aggregation of data on a parameter server in a multi-GPU per Docker container

environment. Fig. 12(A) shows the graph of communication latencies when MPI_Gather was

used. As is evident from the figure, there is almost no variation in communication latencies

due to different choices of MPI libraries. Fig. 12(B) is the graph of communication latencies

when ncclAllgather was used for data aggregation. Overall, the communication latency for

MPICH was about 20% smaller than that for OpenMPI. The graph presented in Fig. 12(C)

shows the same data for the case of MPI_Gather of CUDA-aware OpenMPI. With four active

GPUs, the total communication latency in this case was 1.108 s, smaller than that for both MPI

and NCCL. This case also exhibited the smallest communication latency during data

aggregation with multiple GPUs in the Multi-GPU per Docker container environment, as is

evident from Fig. 12. Further, ncclAllgather requires the longest duration for data aggregation

because the size of the data being used in communication is increased in its case.

(A) Using MPI_Gather

(B) Using ncclAllgather

(C) Using MPI_Gather of CUDA-aware OpenMPI

Fig. 12. Data gathering latencies corresponding to increasing number of GPUs in multiple GPUs per

Docker container environment

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 925

6. Experimental Results for the All-reduce Architecture

6.1 Single GPU per Docker Container

Fig. 13 depicts communication latencies of varying subroutines in the All-reduce architecture

corresponding to increasing number of GPUs in a single GPU per Docker container

environment. Fig. 13(A) presents the communication latencies when MPI_Allreduce is used.

In this case, OpenMPI shows communication latency which is up to 60% smaller than for

MPICH. Fig. 13(B) is the communication latency graph when ncclAllreduce is used. In this

case, the communication latencies for different libraries is almost identical as long as four

GPUs are employed. With three active GPUs, MPICH required a duration that was about 1.3

times that for OpenMPI. However, with two active GPUs, OpenMPI took about 1.9 times

longer than MPICH. Fig. 13 indicates that, overall, in a single GPU per Docker container

environment, OpenMPI tends to require a longer duration when the two GPUs are active than

when three GPUs are active. Therefore, if OpenMPI is to be used, it is advisable to use three

or more GPUs. Further, ncclAllreduce exhibits better overall performance than

MPI_Allreduce.

(A) Using MPI_Allreudce

(B) Using ncclAllreduce

(C) Using MPI_AllreuduceCUDA-aware OpenMPI

Fig. 13. Data Allreduce latencies corresponding to increasing number of GPUs in single GPU per

Docker container environment

926 Choi et al.: Empirical Performance Evaluation of Communication Libraries for Multi-GPU
based Distributed Deep Learning in a Container Environment

6.2 Multi-GPU per Docker Container

Fig. 14 depicts the communication latencies for various subroutines in the All-reduce

architecture corresponding to varying number of GPUs used in a multi-GPU per Docker

container environment. Fig. 14(A) shows that communication latency is reduced by up to 60%

by using MPI_Allreduce of OpenMPI instead of using MPI_Allreduce of MPICH. Fig. 14(B)

is a graph of latencies in the case in which All-reduce is executed via ncclAllreduce. As is

evident from the figure, as the number of GPUs increases from two to four, the communication

latency increases by a factor of about 1.5. NcclBroadcast exhibits the smallest communication

latency of 0.208 s using four GPUs. When CUDA-aware OpenMPI was used as the

communication library, the communication latency was about 1.9 times that for OpenMPI.

Therefore, ncclAllreduce is the most optimal method to reduce communication latency on the

All-reduce architecture when multiple GPUs can be assigned to each Docker container. If

NCCL is not available, OpenMPI exhibits smaller communication latency compared to

MPICH or CUDA-aware OpenMPI and is thus a better choice.

(A) Using MPI_Allreuduce

(B) Using ncclAllreduce

(C) Using MPI_AllreudceCUDA-aware OpenMPI

Fig. 14. Data Allreduce latencies corresponding to increasing number of GPUs in multiple GPUs per

Docker container environment

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 927

7. Summary of Experimental Results

Fig. 15, Fig. 16 and Fig. 17 summarize the results of the experiments conducted in this paper.

We choose OpenMPI as MPI library to summarize our experiments with four active GPUs.

Fig. 15 depicts that the durations required by the parameter server to broadcast data to the

workers in the parameter server architecture. In the environment in which multiple GPUs are

assigned per Docker container, the best performance was achieved with MPI_Bcast of CUDA-

aware OpenMPI, yielding a duration of 0.436 s. The poorest performance was obatined with

MPI_Bcast of OpenMPI. However, in the single GPU per Docker container environment,

MPI_Bcast of OpenMPI exhibited the best performance with a duration of 1.255 s. Therefore,

if multiple GPUs can be assigned to each Docker container, MPI_Bcast of CUDA-aware

OpenMPI is the optimal choice. If only one GPU can be allocated to each Docker container,

MPI_Bcast of OpenMPI is the best choice.

Fig. 16 presents the durations required by the workers to execute data aggregation to the

parameter server in the parameter server architecture. In the environment with multi-GPU per

Docker container, CUDA-aware OpenMPI performed the best with a duration of 1.108 s.

However, in the environment with a single GPU per Docker container, MPI_Bcast of

OpenMPI performed the best at 1.573 s. Therefore, as in the previous case, allocating multiple

GPUs to each Docker container and using MPI_Bcast of CUDA-aware OpenMPI provides the

best method to reduce communication overhead. If only one GPU can be allocated to each

Docker container, MPI_Bcast of OpenMPI is the best at reducing communication latency. In

the parameter server architecture, the CUDA-aware OpenMPI is the optimal choice to execute

data transfer in the multi-GPU per Docker container environment. However, if multiple GPUs

cannot be allocated to each Docker container, OpenMPI is the best option to transfer data while

reducing communication overhead.

Fig. 17 records the durations required by various subroutines to execute the reduce sum

operation in the All-reduce architecture. In particular, when allocating multi-GPU to a Docker

container, using ncclAllreduce shows the lowest communication latency with 0.208 seconds.

In all environments of the All-reduce architecture, ncclAllreduce is the best performer.

Therefore, in the context of multi-GPU deep learning in the All-reduce architecture, using

ncclAllreduce of NCCL minimizes communication latency.

Table 1 and Table 2 show the best and worst results of each experiment. In parameter server

architecture, CUDA-aware OpenMPI shows the best performance for both broadcasting and

gathering. When allocating multi-GPU to Docker container, data broadcasting latency via

MPI_Bcast of CUDA-aware OpenMPI is 0.436 seconds. However, when allocating single

GPU to Docker container, data broadcasting latency is increased by about four times to 1.747

seconds. In single GPU per Docker container environment, Data gathering via ncclAllgather

takes 4.456 seconds. On the other hand, data gathering via MPI_Gather of CUDA-aware

OpenMPI takes 1.108 seconds in multi-GPU per container environment. In case of All-reduce

architecture, using NCCL as a communication library shows the best performance.

ncclAllreduce takes 0.208 seconds to execute All-reduce in Multi-GPU per Docker container

environment. While, MPI_Allreduce of CUDA-aware OpenMPI takes 3.201 seconds in single

GPU per Docker container, which is about 15 times that of ncclAllreduce.
Because of the overhead caused by communication between Docker containers, assigning a

single GPU to a Docker container exhibits lower performance. Communication overhead

between Docker containers is smaller when OpenMPI is used rather than NCCL or CUDA-

aware OpenMPI in the parameter server architecture. However, in the All-reduce architecture,

communication overhead between Docker containers is minimized by using NCCL.

928 Choi et al.: Empirical Performance Evaluation of Communication Libraries for Multi-GPU
based Distributed Deep Learning in a Container Environment

Fig. 16. Data gathering latencies in the parameter server architecture

Fig. 17. Data Allreduce latencies in the All-reduce architecture

Fig. 15. Data broadcast latencies in the parameter server architecture

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 929

Table 1. Best results of each experiment
Experiment GPU allocation type Subroutine Latency(sec)

Broadcasting Multi-GPU per container MPI_Bcast(CUDA-aware) 0.436

Gathering Multi-GPU per container MPI_Gather(CUDA-aware) 1.108

All-reduce Multi-GPU per container ncclAllreduce 0.208

Table 2. Worst results of each experiment
Experiment GPU allocation type Subroutine Latency(sec)

Broadcasting Single GPU per container MPI_Bcast(CUDA-aware) 1.747

Gathering Single GPU per container ncclAllgather 4.456

All-reduce Single GPU per container MPI_Allreduce(CUDA-aware) 3.201

8. Conclusion

In this paper, we analyze the performances of collective communication techniques used in

the parameter server architecture and the All-reduce architecture via extensive experiments to

ascertain the viability of multi-GPU based deep learning in Docker container environment.

The experiments used the libraries MPICH, OpenMPI, NCCL, and CUDA-aware OpenMPI.

In a Docker container environment, owing to the communication overhead between the

docker containers, allocating multiple GPUs to each Docker container yielded better

performances than allocating a single GPU to each Docker container. Therefore, allocating

multiple GPUs to each Docker container can reduce performance degradation.In the parameter

server architecture, CUDA-aware OpenMPI was ascertained to be the most optimal choice to

reduce communication latency when multiple GPUs are allocated to each Docker container.

However, if multiple GPUs cannot be allocated to each Docker container, using OpenMPI

instead is most optimal. Further, in the All-reduce architecture, using NCCL is the best method

to reduce communication latency regardless of GPU resource allocation policies. Further

experiments on performances in multi-node environments will be performed in the future.

References

[1] J. Deng, W. Dong, R. Socher, L. Jia, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical

image database,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp.

248-255, 2009. Article (CrossRef Link)

[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A.

Rabinovich, “Going deeper with convolutions,” in Proc. of IEEE Conference on Computer Vision

and Pattern Recognition, pp. 1-9, 2015. Article (CrossRef Link)

[3] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for image classifier

architecture search,” in Proc. of the AAAI Conference on Artificial Intelligence, vol. 33, no. 1, pp.

4780-4789, 2019. Article (CrossRef Link)

[4] Y. Huang, Y. Cheng, A. Bapna, O. First, D. Chen, M. Chen, H. Lee, K. Ngiam, Q. V. Le, Y. Wu,

and Z. Chen, “Gpipe: Efficient training of giant neural networks using pipeline parallelism,”

Advances in Neural Information Processing Systems, vol. 32, 2019. Article (CrossRef Link)

[5] M. Zinkevich, M. Weimer, L. Li, and A. Smola, “Parallelized stochastic gradient descent,”

Advances in Neural Information Processing Systems, 2010. Article (CrossRef Link)

[6] P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and

K. He, “Accurate, large minibatch sgd: Training imagenet in 1 hour,” arXiv preprint

arXiv:1706.02677, 2017. Article (CrossRef Link)

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1609/aaai.v33i01.33014780
https://papers.nips.cc/paper/8305-gpipe-efficient-training-of-giant-neural-networks-using-pipeline-parallelism
https://papers.nips.cc/paper/4006-parallelized-stochastic-gradient-descent
https://arxiv.org/abs/1706.02677v2

930 Choi et al.: Empirical Performance Evaluation of Communication Libraries for Multi-GPU
based Distributed Deep Learning in a Container Environment

[7] H. Mikami, Hiroaki, P. Uchupala, Y. Tanaka, and Y. Kageyama, “Massively distributed SGD:

ImageNet/ResNet-50 training in a flash,” arXiv preprint arXiv:1811.05233, 2018.

Article (CrossRef Link)

[8] D. Bernstein, “Containers and Cloud: From LXC to Docker to Kubernetes,” IEEE Cloud

Computing, vol. 1, no. 3, pp. 81-84, Sep. 2014. Article (CrossRef Link)

[9] Overview of amazon web services, Amazon Whitepapers, 2020. Article (CrossRef Link)

[10] J. Dongarra, S. W. Otto, M. Snir, and D. Walker, “An introduction to the MPI

standard,” Communications of the ACM 18, 1995. Article (CrossRef Link)

[11] J. Sylvain, “Nccl 2.0,” GTC, 2017. Article (CrossRef Link)

[12] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay, P.

Kambadur, B. Barrett, A. Lumsdaine, A. Lumsdaine, R. Castain, D. Daniel, R. Graham, and T.

Woodall, “Open MPI: Goals, concept, and design of a next generation MPI implementation,” in

Proc. of European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting,

vol. 3241, pp. 97-104, 2004. Article (CrossRef Link)

[13] W. Gropp, E. Lusk, N. Doss, and A. Skjullum, “A high-performance, portable implementation of

the MPI message passing interface standard,” Parallel Computing, vol. 22, no. 6, pp. 789-828,

1996. Article (CrossRef Link)

[14] B. Barker, “Message passing interface (MPI),” in Proc. of Workshop: High Performance

Computing on Stampede, vol. 262, 2015. Article (CrossRef Link)

[15] J. Dean, G. S. Corradeo, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A.

Senior, and P. Tucker, “Large scale distributed deep networks,” in Proc. of the 25th International

Conference on Neural Information Processing Systems, pp. 1223-1231, 2012.

Article (CrossRef Link)

[16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, and

M. Isard, “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” in

Proc. of the 12th USENIX Conference on Operating Systems Design and Implementation

(OSDI’16), pp. 265-283, 2016. Article (CrossRef Link)

[17] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep learning in TensorFlow,”

arXiv preprint arXiv:1802.05799, 2018. Article (CrossRef Link)

[18] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. Rose, “Performance

evaluation of container-based virtualization for high performance computing environments,” in

Proc. of the 21st Euromicro International Conference on Parallel, pp. 233-240, 2013.

Article (CrossRef Link)

[19] P. Saha, A. Beltre, P. Uminski, and M. Govindaraju, “Evaluation of docker containers for scientific

workloads in the cloud,” in Proc. of International Conference on Advanced Research Computing,

pp. 1-8, 2018. Article (CrossRef Link)

[20] T. Kämäräinen, Y. Shan, M. Siekkinen, and A. Ylajaaski, “Virtual machines vs. containers in cloud

gaming systems,” in Proc. of International Workshop on Network and Systems Support for Games

(NetGames), pp. 1-6, 2015. Article (CrossRef Link)

[21] V. G. Siddaramanna and A. A. R. John, “Effect of Performance on Containerized Deep Learning

Applications,” Presented at WinTechCon-2018, organized by IEEE CAS Bangalore Chapter, IEEE

Bangalore Section, and IEEE WiE Council, pp. 1-6, 2018.

[22] P. Xu, S. Shi, and X. Chu, “Performance evaluation of deep learning tools in Docker containers,”

in Proc. of the 3rd International Conference on Big Data Computing and Communications

(BIGCOM), pp. 395-403, 2017. Article (CrossRef Link)

[23] J. Zhang, X. Lu, and D. K. Panda, “Is Singularity-based Container Technology Ready for Running

MPI Applications on HPC Clouds?,” in Proc. of the 10th International Conference on Utility and

Cloud Computing, pp. 151-160, 2017. Article (CrossRef Link)

[24] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson, “Performance Overhead Comparison between

Hypervisor and Container Based Virtualization,” in Proc. of IEEE 31st International Conference

on Advanced Information Networking and Applications (AINA), pp. 955-962, 2017.

Article (CrossRef Link)

https://arxiv.org/abs/1811.05233
https://doi.org/10.1109/MCC.2014.51
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/introduction.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.3074
https://on-demand.gputechconf.com/gtc/2017/presentation/s7155-jeaugey-nccl.pdf
https://on-demand.gputechconf.com/gtc/2017/presentation/s7155-jeaugey-nccl.pdf
https://doi.org/10.1007/978-3-540-30218-6_19
https://dl.acm.org/doi/10.1016/0167-8191%2896%2900024-5
http://www.cac.cornell.edu/education/training/StampedeJan2015/IntroMPI.pdf
https://dl.acm.org/doi/10.5555/2999134.2999271
https://dl.acm.org/doi/10.5555/3026877.3026899
https://arxiv.org/abs/1802.05799
https://doi.org/10.1109/PDP.2013.41
https://doi.org/10.1145/3219104.3229280
https://doi.org/10.1109/NetGames.2015.7382987
https://doi.org/10.1109/BIGCOM.2017.32
https://doi.org/10.1145/3147213.3147231
https://doi.org/10.1109/AINA.2017.79

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 931

[25] G. Heigold, E. McDermott, V. Vanhoucke, A. Senior, and M. Bacchiani, “Asynchronous stochastic

optimization for sequence training of deep neural networks,” in Proc. of IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5587-5591, 2014.

Article (CrossRef Link)

Hyeonseong Choi is a M.S. candidate in Electronics and Information Engineering at Korea

Aerospace University (KAU). He received his B.S. in Telecommunication and Information

engineering from Korea Aerospace University. His primary research interests include

distributed computing, high-performance computing, and multi-GPU based distributed deep

learning framework.

Youngrang Kim received his B.S. and M.S. in Electronics and Information Engineering at

Korea Aerospace University (KAU). His primary research interests include distributed

computing, high-performance computing, and multi-GPU based distributed deep learning

framework.

Jaehwan Lee is an Associate Professor at the Department of Electronics and Information

Engineering of Korea Aerospace University. He received his B.S. and M.S. in Electrical

Engineering from Seoul National University, and Ph.D. in Computer Science from

University of Maryland at College Park. He has several industry research experiences;

Korea Telecom (KT) as a senior researcher (2000–2005), NEC labs in America and Bell

labs, Alcatel-lucent as a research intern, and Samsung System Architecture lab in US as a

Research Staff Engineer. His research interests include distributed computing, high-

performance computing, and Big-data infrastructures to support data intelligence. He was

a recipient of the General Electric (GE) Scholarship and the Korean Government

Scholarship for Electric Power Industry.

Yoonhee Kim is the professor of Computer Science Department at Sookmyung Women’s

University. She received her B.S in Computer Science from Sookmyung Women’s

University in 1991, her M.S and Ph.D. in Computer and Information Science from Syracuse

University in 1996 and 2001, respectively. She was a Research Staff Member at the

Electronics and Telecommunication Research Institute during 1991 and 1994. Before

joining the faculty of Sookmyung Women’s University in 2001, she was the faculty of

Computer Engineering dept. at Rochester Institute of Technology in NY, USA. Her

research interests span many aspects of runtime support and management in distributed

computing systems. She is a member of IEEE and ACM, and she has served on variety of

program committees, advisory boards, and editorial boards.

https://doi.org/10.1109/ICASSP.2014.6854672

