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Abstract 
 

Recently, most cloud services use Docker container environment to provide their services. 

However, there are no researches to evaluate the performance of communication libraries for 

multi-GPU based distributed deep learning in a Docker container environment. In this paper, 

we propose an efficient communication architecture for multi-GPU based deep learning in a 

Docker container environment by evaluating the performances of various communication 

libraries. We compare the performances of the parameter server architecture and the All-

reduce architecture, which are typical distributed deep learning architectures. Further, we 

analyze the performances of two separate multi-GPU resource allocation policies — allocating 

a single GPU to each Docker container and allocating multiple GPUs to each Docker container. 

We also experiment with the scalability of collective communication by increasing the number 

of GPUs from one to four. Through experiments, we compare OpenMPI and MPICH, which 

are representative open source MPI libraries, and NCCL, which is NVIDIA’s collective 

communication library for the multi-GPU setting. In the parameter server architecture, we 

show that using CUDA-aware OpenMPI with multi-GPU per Docker container environment 

reduces communication latency by up to 75%. Also, we show that using NCCL in All-reduce 

architecture reduces communication latency by up to 93% compared to other libraries. 
 

Keywords: Docker, Collective Communication, Distributed Deep Leaning, Multi-GPU 
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1. Introduction 

Large learning models and a great number of training datasets are required to considerably 

improve the accuracy of deep learning based systems [1-4]. Inevitably, this significantly 

increases the required learning time. To overcome this problem, distributed deep learning 

using multiple GPUs has been proposed [5]. This has been verified practically as well. For 

instance, Facebook achieved 76% accuracy while training the ImegeNet dataset with the 

Resnet-50 model over one hour using 256 Tesla P100s [6]. Additionally, Sony used the 2176 

Tesla V100s in their research which achieved 75% accuracy while training the ImageNet 

dataset with the Resnet 50 model over 224 seconds [7]. Based on these two studies, we can 

confirm that similar levels of accuracy can be achieved over much shorter training times by 

using distributed processing for deep learning with multiple GPUs. 

Every year, NVIDIA announces a new GPU with better computing power, and the price of 

the GPUs keep increasing. Therefore, hardware acquisition costs quickly become prohibitive. 

To solve this problem, many laboratories conduct deep learning in a multi-GPU environment 

using cloud services such as Amazon Web Services and Google Cloud Platform. These cloud 

services provide a multi-GPU environment to users via a Docker container environment rather 

than a virtual machine environment [8, 9]. Therefore, extensive analysis of the communication 

performances of distributed deep learning architectures in Docker containers is necessary to 

achieve efficient distributed deep learning in multi-GPU environments akin to those provided 

by cloud services. 

In this paper, we present experimental analysis of various collective communication 

libraries in a Docker container environment, which is a typical environment in the training 

process of a distributed deep learning system. We employed MPI (Massage Passing Interface), 

which is a representative parallel programming library [10], and NCCL (NVIDIA Collective 

Communication Library) [11], which is NVIDIA's multi-GPU collective communication 

library, to analyze the collective communication performances of multi-GPU based distributed 

deep learning systems, especially focusing on multi-GPU resource allocation in the Docker 

container environment. We compared OpenMPI, with MPICH, both of which are 

representative open source MPI libraries [12, 13]. Further, we analyzed the performance of 

CUDA-aware OpenMPI.  

The contributions of this paper are two-fold. To begin with, this is the first experimental 

result that demonstrates the difference in performance between a single GPU Docker container 

environment and a multi-GPU one. Second, an extensive analysis of collective communication 

performances under typical distributed deep learning training scenarios is also presented. 

Our experiments focus on the collective communication performances of MPI, NCCL, and 

CUDA-aware MPI in a distributed deep learning environment as described below. 

▪ We consider two typical distributed deep learning architectures in our experiments – 

the parameter server architecture and the All-reduce architecture. We analyze each 

communication library’s performance in each distributed deep learning architecture. In 

the parameter server archtecture, CUDA-aware OpenMPI performed the best. However, 

NCCL was the best performer in the All-redeuce archtecture. 

▪ We consider two types of GPU resource allocation policies — allocating a single GPU 

to a Docker container and allocating multiple GPUs to a Docker container. In all 

experimental senarios, allocating multiple GPUs to a Docker container yielded better 

performances than allocating a single GPU to a Docker container because of the 

commucation overhead between separate Docker containers. 

▪ To evaluate GPU scalability, we experimented with increasing the number of GPUs 
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used. In the parameter server architecture, CUDA-aware MPI exhibited the best 

scalability. On the other hand, NCCL proved to be the most scalable in the All-reduce 

architecture. 

In the parameter server architecture, we show that using CUDA-aware OpenMPI with 

multi-GPU per Docker container environment reduces communication latency by up to 75%. 

When we use NCCL with multi-GPU per Docker container environment in All-reduce 

architecture, communication latency is reduced by up to 93% compared to using other libraries. 

This paper presents the most efficient communication libraries for each distributed deep 

learning architecture in the Docker container environment via a comparative analysis of 

experimental results. Section 2 presents a detailed discussion about the communication 

libraries studied in this paper and about distributed deep learning in general. The expermental 

environment is described in Section 3. In Sections 4 and 5, we analyze the experimental results 

for each distributed deep learning archtecture. The experimental results are summarized in 

section 6. Section 7 describes the works that are related to our research. Finally, we conclude 

our paper in Section 8. 

2. Background 

2.1 Collective Communication Libraries 

MPI is a standard communication library for parallel programs. MPI assigns jobs based on 

processes, and each process corresponds to a set called 'the communicator'. Processes can 

exchange messages with other processes corresponding to the same communicator. Processes 

in a communicator are identified via a special number assigned to the process called the 'rank'. 

There are two kinds of communication methods in MPI — point-to-point communication and 

collective communication [14]. MPI_Send and MPI_Recv are typical point-to-point 

communication subroutines in MPI. Collective communication is any communication in 

which all processes corresponding to the communicator participate together. Collective 

communication is implemented based on point-to-point communication. MPI_Bcast, 

MPI_Gather, MPI_Allgather, MPI_Reduce, and MPI_Allreduce are all representative 

collective communication subroutines. OpenMPI and MPICH are representative open source 

MPI libraries. The experiments presented in this paper test MPI_Bcast, MPI_Gather, and 

MPI_Allreduce. Fig. 1 depicts the working procedure of collective communication 

subroutines. 

Fig. 1.  MPI collective communication 
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NCCL is a multi-GPU based collective communication library developed by NVIDIA. 

NCCL provides subroutines such as ncclAllgather, ncclReduce, ncclBroadcast, and 

ncclAllGather. It constructs a ring-style group to provide maximum bandwidth. The first 

version of NCCL only supported communication among GPUs corresponding to a single node. 

On the contrary, the second version of NCCL not only supports multi-GPU communication at 

a node but also supports communication between GPUs at separate nodes [11]. 

2.2 Distributed Deep Learning 

The increase in training time in deep learning can be solved by distributed deep learning using 

the multi-GPU system. Training methods of distribued deep learning can be of two kinds — 

data parallelization and model parallelization [5, 15]. Data parallelization is a scheme in which 

multiple GPUs divide one large dataset and all GPUs train using the same model. In data 

parallelization, each GPU undergoes training on separate datasets, so that the gradients 

computed through back propagation are different across the GPUs. Therefore, the gradients 

computed on each GPU are reflected in the whole learning process after aggregation. 

Parameter server architecture and All-reduce architecture are typical architectures used to 

aggregate gradients. Fig. 2 and Fig. 3 depict the operation of each architecture. 

Processes involved in the parameter server architecture can be classified into two groups 

— the parameter server and workers. The parameter server receives the gradients computed 

by the workers, updates the parameters of the learning model, maintains the latest parameters, 

and provides the parameters to the workers whenever any worker requests them. Workers 

compute the gradients based on input data and model parameters based on the latest parameters 

received from the parameter server. The parameter server can operate both in synchronouns 

and asynchronous methods. In the synchronous method, parameters are updated once all 

workers finish computing gradients. Thus, each worker is able to begin its task after receiving 

the latest parameters from the parameter server once the parameters are updated. As 

synchronization is performed at each iteration in this method, the accuracy of the whole 

learning process is quite high. However, the throughput of a whole cluster depends on the 

slowest worker because all workers are synchronized at each iteration. This is a disctinct 

disadvantage. In the asynchronous method, parameters are updated whenever the parameter 

server receives gradients computed by any worker. Thus, each worker is free to begin its task 

immediately, without waiting for the other workers to receive the latest parameters from the 

parameter server. The throughput rate of the whole cluster is consequently higher than that in 

the synchronous method. However, accuracy is compromized because each worker computes 

gradients using different parameters. Tensorflow [16] currently supports the parameter server 

architecture for distributed deep learning. 

 

 
Fig. 2.  Parameter server architecture 
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Fig. 3.  All-reduce architecture 

 

In the All-reduce architecture, instead of having a parameter server to maintain the latest 

parameters, each worker communicates with the others via P-to-P communication to maintain 

the synchronization of parameters. This method has the advantage of reducing communication 

overhead compared with methods employing a parameter server because of the lack of any 

communication between the parameter server and the workers. However, its inflexibility is a 

disadvantage because it can only operate synchronously. An example of a representative 

framework that uses the All-reduce architecture is Horovod [17]. 

3. Related Works 

A few studies exist in the literature that evaluate HPC(High-Performance Computing) 

application performances in a Docker environment. Xavier, Miguel G. et al. compared the 

performances of container-based virtualization tools (e.g., LXC, Docker, Singularity, bare 

metal) using HPL-benchmarks and MPI based applications [18]. Additionally, Saha, Pankaj 

et al. compared the performances of MPI applications in bare metal and Docker environments 

using various HPC benchmarks [19]. This paper shows that the performance overhead of MPI 

applications in the Docker environment are negligible. However, in the aforementioned study, 

the authors do not consider MPI applications that use GPUs. Thus, their paper suffers from 

limitation that the impact of the Docker environment on MPI applications using GPUs is not 

explored. 

There is study that evaluate the performance of GPU applications in a Docker environment. 

Kømären, Teemu et al. evaluated GPU performances in host, QEMU, and Docker 

environments in cloud gaming systems [20]. The study concludes that GPU performance for 

cloud gaming systems with Docker is much better than that of QEMU, and is identical with 

that of the host. However,this study suffers from the limitation that it does not analyze the high 

communication overhead that may be incurred by using multi-GPU environments. 

Futher, some studies analyze the performances of deep learning applications using GPUs in 

Docker environments. Siddaramana, Vintha G., and Anto Ajay Raj John analyzed the 

performance of deep learning applications in native and Docker environments [21]. Their 

performances were compared by running DeepBench and Fathom workloads in a host 

environment and in the container environment. Performance comparisons showed that the time 

taken to run the kernel was the same on the host and on the container. In the study published 

by Xu, Pengfei, Shaohuai Shi, and Xiaowen Chu, the performance of deep learning 
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frameworks such as Caffe, CNTK,MXNet, and Tensorflow, all of which are being widely used 

recently, are evaluated in the Docker container environment [22]. They compared the 

performances of I / O, CPU, and GPU in the Docker container environment with their 

performances in a host environment. The conclusion of their study was that the performance 

of the deep learning frameworks in a Docker container environment was identical to that in a 

host environment. 

Their research shows that there is no performance degradation on systems with single GPUs. 

However, the study suffers from the limitation that the degradation of performanc for deep 

learning frameworks due to possible communication overheads has not been explored. In this 

paper, we propose a method that can minimize the communication overhead that arises in 

multi-GPU based deep learning distributed processing. Based on the results presented in this 

paper, it can be concluded that efficient multi-GPU based deep learning distributed processing 

in a Docker container environment is viable. 

Zhang, Jie, Xiaoyi Lu, and Dhabaleswar K. Panda evaluate the performance of MPI in 

Singularity-based container [23]. Their research shows that there is no degradation of MPI 

communication performance for both Intel Xeon and Intel Knights Landing in a Singularity-

based container environment. Unlike this research, we use Docker container. Also, we evaluate 

the performance of communication between GPUs. 

A study published by Z. Li, M. Kihl, Q. Lu and J. A. Andersson Compared the performance 

overhead between hypervisor and container based virtualization [24]. According to this study, 

in most cases, the performance overhead of the container is less than the performance overhead 

of the virtual machine. This result means that virtualization using a container is more efficient 

than using a virtual machine. Thus, we evaluate the performance of the communication library 

in Docker container environment rather than a hypervisor. 

4. Experimental Environment 

In order to analyze the communication performance of multi-GPU based distributed deep 

learning training in the Docker container environment, experiments were conducted on the 

parameter server architecture and the All-reduce architecture. For each architecture, the 

experiments were conducted in two distinct modes. One mode proceeded by assigning a single 

GPU to one Docker container, and the other proceeded by assigning multiple GPUs to one 

Docker container. In the case of MPI, there are various types of implementation. Most MPI 

libraries are implemented based on OpenMPI or MPICH. Also, NCCL is developed by 

NVIDIA as a collective communication library for communication between GPUs. NCCL is  
 

  

(A) Broadcast (B) Gather

Fig. 4 Flowchart of parameter server architectureFig. 4.  Flowchart of parameter server architecture 
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the most efficient library to communicate between NVIDIA’s GPUs. Thus, the experiments 

used MPICH, OpenMPI, and NCCL as communication libraries. The recent version of 

OpenMPI supports the CUDA-aware MPI function. Therefore, we used CUDA-aware 

OpenMPI in our experiments. Intel Xeon CPU E5-2650 CPUs and four NVIDIA GTX Titan 

XP were the GPUs used in the experiments. The software used were NVIDIA driver 410.79, 

CUDA 10.0, OpenMPI 4.0.0, MPICH 3.3, NCCL 2.4, and Docker 18.09.5. In each experiment, 

we exchanged a randomly generated 32-bit floating point array of size 1 GB to evaluate the 

communication performance. Since the experiments measure the communication latency, the 

results of the experiments do not change depending on the type of the dataset. All experiments 

were repeated 1000 times.  

 

(A) MPI_Bcast

(B) ncclBroadcast

(C) MPI_Bcast(CUDA-awareOpenMPI)

Fig. 5 Broadcasting data in the parameter server archtectureFig. 5.  Broadcasting data in the parameter server archtecture 
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4.1 Parameter Server Architecture 

In the parameter server method, communication latency was measured twice — once when a 

parameter server broadcasts the parameters to the workers and once when the gradients 

computed by the workers are aggregated into the parameter server. Additionally, each 

experiment was repeated using two separate allocation policies — allocating one GPU to a 

Docker container and allocating multiple GPUs to a Docker container. Fig. 4 is a flowchart of 

experiment in parameter server architecture. 

In parameter server architecture, the parameter server needs to broadcast model parameters 

to all workers [25]. So, we use MPI_Bcast of MPI, ncclBroadcast of NCCL, and MPI_Bcast 

of CUDA-aware OpenMPI, all of which are one-to-all broadcast subroutines. We measured 

and compared the durations required to copy relevant data from the CPU memory of the 

parameter server to the GPU memories of all workers. In the experiment using MPI_Bcast, the 

parameter server first broadcasts all data in its CPU memory to the workers' CPU memories. 

Following that, each worker copies the data from its CPU memory to its GPU memory via 

cudaMemcpy. When ncclBroadcast is used for broadcasting data, the data in the CPU memory 

of the parameter server is transmitted to chief worker's CPU memory using MPI_Send.  

(A) MPI_Gather

(B) ncclAllgather

(C) MPI_Gather(CUDA-aware OpenMPI)

Fig. 6 Gathering data in the parameter server archtecture
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The chief worker copies the data from its CPU memory to its GPU memory via 

cudaMemcopy. Finally, the chief worker broadcasts the data from its GPU memory to the 

remaining workers' GPU memories via ncclBroadcast. In the case of transmission via CUDA-

aware OpenMPI, the parameter server broadcasts all the data in its CPU memory directly to 

the GPU memories of the workers via MPI_Bcast. Fig. 5 depicts the experimental scenarios 

of broadcasting data via each subroutine. 

During the aggregation of gradients, MPI and CUDA-aware OpenMPI use the MPI_Gather 

subroutine, but NCCL uses the ncclAllgather subroutine because there is no ncclGather 

subroutine. Using MPI_Gather, each worker calls cudaMemcpy to copy the data from its GPU 

memory to its CPU memory. The parameter server gathers data from each worker’s CPU 

memory to its CPU memory via MPI_Gather as well. Workers gather data from their GPU 

memories to the chief worker's GPU memory using ncclAllgather. The chief worker copies 

the gathered data from its GPU memory to its CPU memory via cudaMemcpy, and then 

transmits it to the CPU memory of the parameter server via MPI_Send. In the case of CUDA-

aware OpenMPI, it is possible to directly copy all the data in the workers' GPU memories to 

the CPU memory of the parameter server by simply calling MPI_Gather. Fig. 6 depicts the 

experiment scenarios of gathering data via each subroutine. 

4.2 All-reduce Architecture  

In the All-reduce architecture, we measured the duration required to execute a reduce sum 

operation on the data in the GPU memory of each worker and to store the result in the GPU 

memory of each worker for various subroutines. We compared MPI_Allreduce of MPI, 

ncclAllreduce of NCCL, and MPI_Allreduce of CUDA-aware OpenMPI. Fig. 7 is a flowchart 

of experiments in All-reduce architecture. As in the previous case, each experiment is 

conducted in two modes — once by assigning one GPU to each Docker container and once by 

assigning multiple GPUs to each Docker container. When MPI_Allreduce is used, each worker 

copies the data in its GPU memory to its C PU memory via cudaMemcpy. The reduce sum 

operation is then executed on the copied data using MPI_Allreduce. Each worker copies the 

resultant data saved in CPU memory of each worker to their respective GPU memories via 

cudaMemcpy. On the other hand, when ncclAllreduce is used, it is possible to directly execute  

 

Fig. 7 Flowchart of All-reduce architectureFig. 7.  Flowchart of All-reduce architeture 
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the reduce sum operation on the data present in the workers' GPU memories and to save the 

resultant data in GPU memory by simply calling ncclAllreduce. The final candidate — CUDA-

aware OpenMPI — does not require replication of data between CPU and GPU memories via 

cudaMemcpy. Instead, it is possible to execute the reduce sum operation on the data stored in 

the GPU memory of each worker by simply calling MPI_Allreduce. Fig. 8 depicts the 

experimental scenarios arising in the All-reduce architecture. 
 

 

5. Experimental Results for the Parameter Server Architecture 

5.1 Broadcast of Data from the Parameter Server 

5.1. 1 Single GPU per Docker Container 

Fig. 9(A) depicts the communication latency with the increase in the number of GPUs, during 

broadcast using MPI_Bcast, when a single GPU is assigned to each Docker container. The 

total communication latency when a single GPU was used was 0.518 s for MPICH. For 

OpenMPI, the total communication latency was 0.979 s, which is about 1.9 times that of 

MPICH. Thus, OpenMPI performed worse than MPICH in this case. However, when four 

GPUs were used, OpenMPI took 1.255 s to broadcast the data while MPICH took 1.213 s. 

Therefore, increasing the number of GPUs reduces the difference in communication latencies 

caused by the choice of specific MPI libraries. The communication latency recorded for 

ncclBroadcast is presented in Fig. 9(B). When the parameter server broadcasts data to the 

workers via ncclBroadcast, the variance in communication latency caused by the difference 

in the MPI library is negligible except when three GPUs are used. Fig. 9(C) records the 

communication latencies when data is broadcasted via MPI_Bcast of CUDA-aware OpenMPI 

using varying number of GPUs. When two GPUs were used, the time taken to broadcast the 

parameters was 1.668 s, which is about 1.5 times the time taken to broadcast the same data 

using one GPU. Using four GPUs increased the communication latency to 1.747 s, which is 

1.04 times the time taken by two GPUs. Therefore, CUDA-aware OpenMPI exhibited the best 

scalability. According to the data presented in Fig. 9, MPI_Bcast is the optimal choice to 

reduce communication latency if only one GPU is active. Further, it can be seen that, if four 

GPUs are active, the variance in communication latency caused by the different choices of 

MPI libraries is negligible. 

5.1.2 Multi-GPU per Docker Container 

Fig. 10 presents a graph depicting communication latencies in data broadcasting as the number 

(A) MPI_Allreduce (B) ncclAllreduce (C) MPI_Allreduce(CUDA-

aware) Fig. 8.  All-reduce data in All-reduce architecture 
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of GPUs is increased by allocating multiple GPUs to each Docker container. Fig. 10(A) 

records the communication latencies when MPI_Bcast is used as the broadcasting subroutine. 

When three GPUs are used, the communication latency for OpenMPI is about 1.08 times that 

for MPICH. However, when four GPUs are used, MPICH took about 1.3 times that for 

OpenMPI. Therefore, OpenMPI is a better choice when four or more GPUs are assigned to 

each Docker container. Fig. 10(B) presents the communication latencies when data is 

broadcast via ncclBroadcast, which increased by about 1.7 times as the number of GPUs used 

was increased from one to four. However, when MPI_Bcast was used, communication latency 

increased by about 1.9 times as the number of GPUs used was increased from one to four. 

Thus, the scalability of NCCL is better than that of MPI. Fig. 10(C) shows a graph of the 

results of the experiments conducte d using MPI_Bcast of CUDA-aware OpenMPI. In this 

case, communication latency increased by roughly 1.2 times as the number of GPUs used was 

increased from one to four and it exhibited the smallest increase among the three candidates. 

Moreover, in the case of four GPUs, the communication latency was the smallest at 0.436 s. 

 
(A) Using MPI_Bcast 

 
(B) Using ncclBroadcast 

 
(C) Using MPI_Bcast of CUDA-aware OpenMPI 

Fig. 9.  Data broadcating latencies corresponding to increasing number of GPUs in single GPU  

per Docker container environment 
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(A) Using MPI_Bcast 

 
(B) Using ncclBroadcast 

 
(C) Using MPI_Bcast of CUDA-aware OpenMPI 

Fig. 10.  Data broadcating latencies corresponding to increasing number of GPUs in multiple GPUs 

 per Docker container environment 

5.2 Aggregation of Data in the Parameter Server 

5.2.1 Single GPU per Docker Container 

Fig. 11 depicts the communication latencies for data aggregation on a parameter server 

corresponding to varying number of GPUs, when each Docker container is assigned a single 

GPU. As shown in Fig. 11(A), MPICH exhibits a latency that is about 1.1 times that of 

OpenMPI in cases in which more than two GPUs are used to call MPI_Gather. Further, as the 

number of GPUs was increased from one to four, the communication latency increased by 

more than a factor of two. Fig. 11(B) illustrates the communication latencies when data is 

aggregated using ncclAllgather. As in the case recorded in Fig. 11(A), the communication 

latency while using MPICH was about 1.1 times that while using OpenMPI. Further, with four 
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GPUs compared to using one GPU, the communication latency exhibited a significant increase 

by a factor of about 10 when four GPUs were used instead of one. Fig. 11(C) is a 

communication latency graph for the case in which MPI_Gather of CUDA-aware OpenMPI 

was used. In this case, the communication latency almost doubled when the number of GPUs 

was increased from one to four. This is a small increase in latency compared to the 10-fold 

increase in the case of ncclAllreduce. Fig. 11 indicates that using general MPI_Gather 

achieves the smallest communication latency for data aggregation when a single GPU is 

assigned to each Docker container. It was also confirmed that using general MPI_Gather 

shows the smallest increase in communication latency as the number of GPUs used is 

increased. OpenMPI performs better than MPICH in this scenario. 

 
(A) Using MPI_Gather 

 
(B) Using ncclAllgather 

 
(C) Using MPI_Gather of CUDA-aware OpenMPI 

Fig. 11.  Data gathering latencies corresponding to increasing number of GPUs in single GPU per 

Docker container environment 
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5.2.2 Multi-GPU per Docker Container 

Fig. 12 depicts the communication latencies corresponding to increasing number of GPUs 

during aggregation of data on a parameter server in a multi-GPU per Docker container 

environment. Fig. 12(A) shows the graph of communication latencies when MPI_Gather was 

used. As is evident from the figure, there is almost no variation in communication latencies 

due to different choices of MPI libraries. Fig. 12(B) is the graph of communication latencies 

when ncclAllgather was used for data aggregation. Overall, the communication latency for 

MPICH was about 20% smaller than that for OpenMPI. The graph presented in Fig. 12(C) 

shows the same data for the case of MPI_Gather of CUDA-aware OpenMPI. With four active 

GPUs, the total communication latency in this case was 1.108 s, smaller than that for both MPI 

and NCCL. This case also exhibited the smallest communication latency during data 

aggregation with multiple GPUs in the Multi-GPU per Docker container environment, as is 

evident from Fig. 12. Further, ncclAllgather requires the longest duration for data aggregation 

because the size of the data being used in communication is increased in its case. 

 
(A) Using MPI_Gather 

 
(B) Using ncclAllgather 

 
(C) Using MPI_Gather of CUDA-aware OpenMPI 

Fig. 12.  Data gathering latencies corresponding to increasing number of GPUs in multiple GPUs per 

Docker container environment 
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6. Experimental Results for the All-reduce Architecture 

6.1 Single GPU per Docker Container 

Fig. 13 depicts communication latencies of varying subroutines in the All-reduce architecture 

corresponding to increasing number of GPUs in a single GPU per Docker container 

environment. Fig. 13(A) presents the communication latencies when MPI_Allreduce is used. 

In this case, OpenMPI shows communication latency which is up to 60% smaller than for 

MPICH. Fig. 13(B) is the communication latency graph when ncclAllreduce is used. In this 

case, the communication latencies for different libraries is almost identical as long as four 

GPUs are employed. With three active GPUs, MPICH required a duration that was about 1.3 

times that for OpenMPI. However, with two active GPUs, OpenMPI took about 1.9 times 

longer than MPICH. Fig. 13 indicates that, overall, in a single GPU per Docker container 

environment, OpenMPI tends to require a longer duration when the two GPUs are active than 

when three GPUs are active. Therefore, if OpenMPI is to be used, it is advisable to use three 

or more GPUs. Further, ncclAllreduce exhibits better overall performance than 

MPI_Allreduce. 
 

 
(A) Using MPI_Allreudce 

 
(B) Using ncclAllreduce 

 
(C) Using MPI_AllreuduceCUDA-aware OpenMPI 

Fig. 13.  Data Allreduce latencies corresponding to increasing number of GPUs in single GPU per 

Docker container environment 
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6.2 Multi-GPU per Docker Container 

Fig. 14 depicts the communication latencies for various subroutines in the All-reduce 

architecture corresponding to varying number of GPUs used in a multi-GPU per Docker 

container environment. Fig. 14(A) shows that communication latency is reduced by up to 60% 

by using MPI_Allreduce of OpenMPI instead of using MPI_Allreduce of MPICH. Fig. 14(B) 

is a graph of latencies in the case in which All-reduce is executed via ncclAllreduce. As is 

evident from the figure, as the number of GPUs increases from two to four, the communication 

latency increases by a factor of about 1.5. NcclBroadcast exhibits the smallest communication 

latency of 0.208 s using four GPUs. When CUDA-aware OpenMPI was used as the 

communication library, the communication latency was about 1.9 times that for OpenMPI. 

Therefore, ncclAllreduce is the most optimal method to reduce communication latency on the 

All-reduce architecture when multiple GPUs can be assigned to each Docker container. If 

NCCL is not available, OpenMPI exhibits smaller communication latency compared to 

MPICH or CUDA-aware OpenMPI and is thus a better choice. 

 

 
(A) Using MPI_Allreuduce 

 
(B) Using ncclAllreduce 

 
(C) Using MPI_AllreudceCUDA-aware OpenMPI 

Fig. 14.  Data Allreduce latencies corresponding to increasing number of GPUs in multiple GPUs per 

Docker container environment 
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7. Summary of Experimental Results 

Fig. 15, Fig. 16 and Fig. 17 summarize the results of the experiments conducted in this paper. 

We choose OpenMPI as MPI library to summarize our experiments with four active GPUs.  

Fig. 15 depicts that the durations required by the parameter server to broadcast data to the 

workers in the parameter server architecture. In the environment in which multiple GPUs are 

assigned per Docker container, the best performance was achieved with MPI_Bcast of CUDA-

aware OpenMPI, yielding a duration of 0.436 s. The poorest performance was obatined with 

MPI_Bcast of OpenMPI. However, in the single GPU per Docker container environment, 

MPI_Bcast of OpenMPI exhibited the best performance with a duration of 1.255 s. Therefore, 

if multiple GPUs can be assigned to each Docker container, MPI_Bcast of CUDA-aware 

OpenMPI is the optimal choice. If only one GPU can be allocated to each Docker container, 

MPI_Bcast of OpenMPI is the best choice.  

Fig. 16 presents the durations required by the workers to execute data aggregation to the 

parameter server in the parameter server architecture. In the environment with multi-GPU per 

Docker container, CUDA-aware OpenMPI performed the best with a duration of 1.108 s. 

However, in the environment with a single GPU per Docker container, MPI_Bcast of 

OpenMPI performed the best at 1.573 s. Therefore, as in the previous case, allocating multiple 

GPUs to each Docker container and using MPI_Bcast of CUDA-aware OpenMPI provides the 

best method to reduce communication overhead. If only one GPU can be allocated to each 

Docker container, MPI_Bcast of OpenMPI is the best at reducing communication latency. In 

the parameter server architecture, the CUDA-aware OpenMPI is the optimal choice to execute 

data transfer in the multi-GPU per Docker container environment. However, if multiple GPUs 

cannot be allocated to each Docker container, OpenMPI is the best option to transfer data while 

reducing communication overhead. 

Fig. 17 records the durations required by various subroutines to execute the reduce sum 

operation in the All-reduce architecture. In particular, when allocating multi-GPU to a Docker 

container, using ncclAllreduce shows the lowest communication latency with 0.208 seconds. 

In all environments of the All-reduce architecture, ncclAllreduce is the best performer. 

Therefore, in the context of multi-GPU deep learning in the All-reduce architecture, using 

ncclAllreduce of NCCL minimizes communication latency. 

Table 1 and Table 2 show the best and worst results of each experiment. In parameter server 

architecture, CUDA-aware OpenMPI shows the best performance for both broadcasting and 

gathering. When allocating multi-GPU to Docker container, data broadcasting latency via 

MPI_Bcast of CUDA-aware OpenMPI is 0.436 seconds. However, when allocating single 

GPU to Docker container, data broadcasting latency is increased by about four times to 1.747 

seconds. In single GPU per Docker container environment, Data gathering via ncclAllgather 

takes 4.456 seconds. On the other hand, data gathering via MPI_Gather of CUDA-aware 

OpenMPI takes 1.108 seconds in multi-GPU per container environment. In case of All-reduce 

architecture, using NCCL as a communication library shows the best performance. 

ncclAllreduce takes 0.208 seconds to execute All-reduce in Multi-GPU per Docker container 

environment. While, MPI_Allreduce of CUDA-aware OpenMPI takes 3.201 seconds in single 

GPU per Docker container, which is about 15 times that of ncclAllreduce. 
Because of the overhead caused by communication between Docker containers, assigning a 

single GPU to a Docker container exhibits lower performance. Communication overhead 

between Docker containers is smaller when OpenMPI is used rather than NCCL or CUDA-

aware OpenMPI in the parameter server architecture. However, in the All-reduce architecture, 

communication overhead between Docker containers is minimized by using NCCL. 
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Fig. 16.  Data gathering latencies in the parameter server architecture 

Fig. 17.  Data Allreduce latencies in the All-reduce architecture 

Fig. 15.  Data broadcast latencies in the parameter server architecture 
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Table 1. Best results of each experiment 
Experiment GPU allocation type Subroutine Latency(sec) 

Broadcasting Multi-GPU per container MPI_Bcast(CUDA-aware) 0.436 

Gathering Multi-GPU per container MPI_Gather(CUDA-aware) 1.108 

All-reduce Multi-GPU per container ncclAllreduce 0.208 

 

Table 2. Worst results of each experiment 
Experiment GPU allocation type Subroutine Latency(sec) 

Broadcasting Single GPU per container MPI_Bcast(CUDA-aware) 1.747 

Gathering Single GPU per container ncclAllgather 4.456 

All-reduce Single GPU per container MPI_Allreduce(CUDA-aware) 3.201 

8. Conclusion 

In this paper, we analyze the performances of collective communication techniques used in 

the parameter server architecture and the All-reduce architecture via extensive experiments to 

ascertain the viability of multi-GPU based deep learning in Docker container environment. 

The experiments used the libraries MPICH, OpenMPI, NCCL, and CUDA-aware OpenMPI. 

In a Docker container environment, owing to the communication overhead between the 

docker containers, allocating multiple GPUs to each Docker container yielded better 

performances than allocating a single GPU to each Docker container. Therefore, allocating 

multiple GPUs to each Docker container can reduce performance degradation.In the parameter 

server architecture, CUDA-aware OpenMPI was ascertained to be the most optimal choice to 

reduce communication latency when multiple GPUs are allocated to each Docker container. 

However, if multiple GPUs cannot be allocated to each Docker container, using OpenMPI 

instead is most optimal. Further, in the All-reduce architecture, using NCCL is the best method 

to reduce communication latency regardless of GPU resource allocation policies. Further 

experiments on performances in multi-node environments will be performed in the future. 
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