
Auto-Scaling of Virtual Resources for Scientific Workflows
on Hybrid Clouds

Younsun Ahn
Dept. of Computer Science

Sookmyung Women’s University
Seoul, Korea

ahnysun@sookmyung.ac.kr

Yoonhee Kim*

Dept. of Computer Science
Sookmyung Women’s University

Seoul, Korea
yulan@sookmyung.ac.kr

ABSTRACT
Cloud computing technology enables applications to employ

scalable resources dynamically. Scientists can promote large-scale
scientific computational experiments over cloud environment. It is
essential for many-task-computing (MTC) to certificate stable
executions of applications even rapid changes of vital status of
physical resources and furnish high performance resources in a
long period. Auto-scaling with virtualization provides efficient
and integrated cloud resource utilization. Auto-scaling issues have
been actively studied as effective resource management in order
to utilize large-scale data center in a good shape but most of the
auto-scaling methods just easily support performance metrics such
as CPU utilization and data transfer latency but seldom consider
execution deadline or characteristics of an application. We
propose an auto-scaling method that finishes all tasks by user
specified deadline. We accomplish our goal by dynamically
allocating VMs to maximize resource utilization while meeting a
deadline and considering task dependency and data transfer time
in workflow application. We have evaluated our auto-scaling
method with protein annotation workflow application which tasks
are specified as a workflow in hybrid cloud environment. The
results of a simulation show the method performs automatically
resource allocation actually needed satisfying deadline
constraints.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Distributed Systems

Keywords
Cloud computing, workflow, auto-scaling, hybrid.

1. INTRODUCTION
The appearance of Science Clouds allows scientists to facilitate

large-scale scientific computational experiments over cloud
environment. Cloud computing enables applications to employ
scalable resources dynamically. It is essential for many task
computing (MTC) to certificate stable executions of applications
even rapid 1 changes of vital status of physical resources and

* Corresponding Author
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ScienceCloud 2014, June 23, 2014, Vancouver, BC, Canada.

Copyright © 2014 ACM 978-1-4503-2911-8/14/06…$15.00.
http://dx.doi.org/10.1145/2608029.2608036

furnish high performance resources in a long period. Thus, it is
getting significant to research computational problem solving
environment that gives the management of task executions or
resources in the large scale of computation. Auto-scaling with
virtualization can use efficient integrative utilization of cloud
resources for the computational problem solving environment.
Technically, auto-scaling can dynamically change the number of
Virtual Machine (VM) during execution of an application.

Our previous paper [1] proposed an auto-scaling method to
provide efficient resource utilization in a hybrid cloud computing
environment. However, proposed auto-scaling algorithm needs to
be extended in order to support various patterns of task execution,
which are Bag-of-Tasks [2] and workflows. Tasks in Bag-of-
Tasks [2] can be scheduled on resources separately from each
other while tasks in workflow can be performed in order of
dependency pattern. A workflow is commonly represented by a
directed acyclic graph (DAG).

This paper proposes an extended version of the auto-scaling
method, reflected in patterns of tasks and the requirements of an
application based on cloud computing infrastructure. Especially, it
automatically allocates resources depending on tasks in workflow
on hybrid cloud. We propose an auto-scaling method that finishes
all tasks by user-specified deadline. We accomplish our goal by
dynamically allocating VMs to maximize resource utilization
while meeting a deadline and considering task dependency and
data transfer time in workflow application. We have evaluated our
auto-scaling method with a specialized computation and data
analysis application such as protein annotation workflow
application [3] which tasks are specified as a workflow in hybrid
cloud environment. The results of a simulation show the method
performs automatically resource allocation actually needed
satisfying deadline constraints.

The rest of the paper is organized with the sections as follows;
we introduce an overview of related works in Section 2. Section 3
explains auto-scaling algorithm, and Section 4 contains contents
about a scenario of using auto-scaling algorithm and experiment
results are discussed. Finally, we conclude the paper and discuss
future work in final section.

2. RELATED WORK
Cloud computing offers endless resources by virtualization

technology and facilitates extension and reduction of resources.
Auto-scaling issues are currently being discussed and studied as
effective resource management. On a cloud service provider side,
"Auto-scaling" of AWS [4], Paraleap [5] for Windows Azure [6],
and Scalr [7] use a rule-based auto-scaling method which flexibly
increases or decreases resources to meet user-defined metrics.
Meanwhile, rule-based auto-scaling methods are uncomplicated
enough to allocate resources dynamically, it may not be possible

to satisfy an amount of resources actually needed, then it could
possibly cause violation of deadline and cost.

From this reason, on a user side, [8], [9], [10], [11], [12] are the
studies of auto-scaling in consideration of deadline of applications
or cost for resource usage. [8] proposes an auto-scaling method
minimizing resource usage cost for Bag-of-Tasks [2] jobs. It is
connected with horizontal scaling which adds or removes the
number of VMs and vertical scaling which expands or reduces the
size of a VM. However, it is still deficient for accomplished
resource requirements of dynamic workloads because it is lack of
the consideration of resource usage during execution of an
application. There are few studies considering workflow
scheduling. [9] proposes an algorithm to minimize execution costs
while meeting deadline for a workflow. Reference [10] respects to
finish the execution of jobs within deadlines at minimum financial
cost using their auto scaling method. However, they use only
public cloud, which means that they just consider simple
environment. [11], [12] facilitate the execution of workflow
applications using their auto-scaling methods on Grids, which
may be changed to adapt to the Cloud computing environment.
[11] proposes an algorithm that minimizes execution cost, that is
processing cost and data transmission cost within deadline. [11]
divides the workflow into partitions and assigned each partition a
sub-deadline, thus [11] can minimize execution time for the entire
workflow. [12] proposes an efficient scheduling algorithm for
dependent jobs. Also, [12] considers communication cost about
data transfer time. We propose an algorithm for workflow
referring to Reference [11]’s and [12]’s workflow scheduling
algorithms.

In this paper, we propose an extended version of an auto-
scaling method based on our previous research [1] which enables
dynamic resource allocation considering the types of jobs from
Bag-of-Tasks [2] as well as the workflow and the characteristics
of an application. Auto-scaling method can automatically allocate
cloud resources considering task dependency and data transfer
time in workflow application.

3. AUTO-SCALING ALGORITHM
We extend [1]’s auto-scaling algorithm which can perform only

tasks in Bag-of-Tasks. Our auto-scaling algorithm can schedule
tasks in workflow. Auto-scaling technique can discover delay and
deadline violation to comparing actual start time and estimated
start time of running tasks. Moreover, monitoring perform every
regular term. Algorithm’s assumption and notation are referred to
[1]. Some notations for the workflow scheduling algorithms are
defined at the below:

 EFT VM : Estimated finish time of a VM.

 EST VM : Earliest start time of a VM.

 ET VM : Execution time of a task on a VM.

Algorithm 1, Run-time Scaling is extended based on [1]. We
propose algorithm 2, Workflow Scheduling algorithm to deal with
tasks in workflow. In the reference [1], Run-time Scaling
Algorithm has two polices and depicts our general auto-scaling
method. Additionally, we extend three policies by adding
workflow scheduling. Tasks are scheduled with applying one of
the three policies such as Performance-oriented Scheduling (line
5), cost-oriented Scheduling (line 8) and Workflow Scheduling
(line 11) of SLA (Service Level Agreements). Tasks in Bag-of-
Tasks [2] are sorted as descending order based on their execution
time, while tasks in workflow are sorted as sequential order.

Algorithm 1 – Run-time Scaling
Input – An application,

SLA={a policy P, a deadline D [, minimum performance requirement
minPM]}

Output – Scaling decision S = { toStartUp, toShutDown }
Scheduling decision S = { tasks → VMs}

1: SCALING ← TRUE;

2: while (true)

3: if SCALING is TRUE

4: switch P

5: case Performance:

6: Sort waiting tasks in decreasing order of execution length;

7: S ← PerformanceOrientedScheduling(
sortedTasks, D, minPM);

8: case Cost:

9: Sort waiting tasks in decreasing order of execution length;

10: S ← CostOrientedScheduling(sortedTasks, D);

11: case Workflow:
Sort waiting tasks in sequential order;

12: S ← WorkflowScheduling(sortedTasks, D);

13: each vm where status is running

14: if no running/waiting tasks on vm then

15: destroy the vm

16: send scaling decisions to DRMS

17: send scheduling decisions to JES

18: waitForNextInterval();

19: SCALING ← SLAMonitoring(runningTasks, D);

Algorithm 2 defines our Workflow Scheduling algorithm. In
this algorithm, DTT (Data Transfer Time) means data transfer
time. Proposed Workflow Scheduling algorithm is based on a
PCH algorithm [12]. When our scaling method tries to allocate
cloud resources, it followed the performance-oriented policy. We
could get tasks on a critical path and group of tasks using PCH
algorithm [12] and then each group can be scheduled. The total
execution time of critical path in a private cloud resource is
calculated and set to a deadline value, also additional time is add
to the deadline value.

First, tasks on a critical path are scheduled on a same resource,
which can execute all tasks in a critical path (line 2). Every time
we try to schedule tasks, it is a rule to choose private cloud
resource prior to public cloud. It is important to consider task
dependencies and data transfer time in workflow. Each task could
get an EFT (Estimated Finish Time) of a parent task and set an
EST (Earliest Start Time) value to EFT of a parent task in order to
consider order of tasks (line 4-5). With an executing on a same
resource of tasks on the critical path, a communication overhead
is reduced. Parent task and child task are performed on a same
VM, data transfer time is zero.

When tasks which are not on a critical path are scheduled to
VMs, tasks check a parent task’s state. If parent tasks are
allocated to cloud resources, child tasks could be allocated (line
6). Unless parent tasks are scheduled cloud resources, child tasks
must wait to be allocated. As mentioned above, each task could
get an EFT of a parent task and calculate an EST value
considering EFT of a parent task and data transfer time. In case
there are a number of parent tasks, a task chooses latest EFT
among them and calculates an EST value with EFT of a parent
task and data transfer time. (line 7-10 (private), line 12-16
(public)).

Algorithm 2– workflow scheduling algorithm
Input –Waiting jobs of the application,
Output –Scheduling decision S = { tasks → VMs}

1: for each task do

2: if task in a critical path then

3: if There is no VM running then

4:
VM ← find a vm on which all tasks in a critical path can

run within the D;

5: else

6: VM ← current VM for a critical path

7: end if

8: EST VM ← related previous job EFT VM and previous task’s DTT;

9: EFT VM ← EST VM + ET VM;

10: else

11:

12:

VM ← find a vm on which task can start the
fastest within the D; // find a private vm

ESTVM ← related previous task EFT VM

and previous task’s DTT;

13: EFT VM ← EST VM + ET VM;

14: if VM is null //no private VM available

15:
VM ← find a cheapest vm on which task can run within the D;

// find a public vm

16:
ESTVM ← related previous job EFT VM

and previous task’s DTT;

17: EFT VM ← EST VM + ET VM;

18: end if

19: schedule task to VM;

20: continue with the next task;

21: end if

4. SCENARIO AND EXPERIMENTS
We use CloudSim [13] to simulate protein annotation workflow

in workflow. We simulate our proposed auto-scaling algorithm in
hybrid cloud environment that is merged private cloud and public
cloud resources. In this experiment, we use four private clouds
have 330 MIPS and public clouds (Amazon EC2) have 600 MIPS
or 2400 MIPS.

Protein annotation workflow [3] application has dependent
tasks and needs to deal with large information. Protein annotation
workflow [3] developed by London e-Science Center. Protein
annotation workflow [3] application has fifteen services. Protein
annotation workflow [3] application consists of several steps to
fulfilling service. Several services are sequentially performed.
Every service in a workflow generates output data required by its
child services as inputs in Figure 1.

Among services, we specially consider HMMer, IMPALA,
BLAST, PSI-BLAST and PSI-PRED services. Each service’s
explanation refers to [14], [15], [16], [17], [18]. In our experiment,
we concentrate input data and output data in order to consider data
transfer time. HMMer, IMPALA, BLAST, PSI-BLAST and PSI-
PRED services are required large input data. Accordingly, in case
of considering data transfer time, all values of data transfer time
are not equal. Values which are required large input data are given
a weighting. PSI-BLAST service is required not only large input
data, but also large output data, because next PSI-PRED service
needs to all output data of the PSI-BLAST. Therefore, values
which are required large input data and output data are given a
weighting.

 Figure 1. e- protein service structure [3].

Figure 2 shows a simple form of protein annotation workflow [3]
in Figure1 representing a number of tasks. The number of tasks is
fifteen and we use a length of tasks that are featured on
parentheses in Figure 2. Each task has task dependencies. A value
on a bridge between tasks represents a data transfer time. Parent
task and child task are performed on a same VM, data transfer
time is zero. While, they are performed on a different VM, data
transfer time is considered with the value. The I/O data of the
workflows range from 1.2GB to 29.2GB. The available network
bandwidth between services is 100Mbps.

Figure 2. Protein annotation workflow [3] structure.

We compare experiments with different data transfer time. First
case, a fundamental data transfer time is 100 seconds and some
data transfer time have weighting value that is a 200 seconds.
Second, an essential data transfer time is 800 seconds and some
data transfer time have weighting value that is a 900 seconds.
Third case, a radical data transfer time is 2000 seconds and some
data transfer time have weighting value that is a 2400 seconds.
Figure 3 shows a result of the number of VM with protein
annotation workflow structure (Figure 2) based on the workflow
scheduling algorithm.

Figure 3. The result of auto-scaling representing the number

of VM

Figure 3 represents the performance of the proposed auto-
scaling method comparing with different data transfer time. The
proposed auto-scaling algorithm successfully performs
automatically allocating tasks in workflow considering task
dependency and data transfer time. In Figure 3, a dot pattern
graph represents data transfer time is 100 seconds or 200 seconds.
Entire tasks are completed within 7300 seconds. While, a pattern
of diagonal graph shows all tasks are finished within 9600
seconds. It is the result of 800 seconds or 900 seconds data
transfer time. Last horizontal pattern graph shows the result of
2000 seconds or 2400 seconds data transfer time case. The dot
pattern graph shows that it uses more VMs than a pattern of
diagonal graph does in the middle of execution time because tasks
in the dot pattern graph can reduce waiting time on account of
short data transfer time. The dot pattern graph uses relatively little
VMs in the latter half of execution time. In a pattern of diagonal
graph, tasks should wait to be allocated until long data transfer
time is finished, so they take longer execution time and need little
VMs than the dot pattern graph. Horizontal pattern graph shows
as similar as other cases at the beginning of the execution time. It
takes longest execution time among all cases. Also, it is efficient
to allocate same VM for tasks which have task dependency and
have long data transfer time. In case data transfer time is short, the
auto-scaling method can maximize resource utilization in order to
allocate tasks to VMs as soon as possible.

Figure 4 (a). Scenario of data transfer time 100/ 200 seconds.

Figure 4 (b). Scenario of data transfer time 800/ 900 seconds.

Figure 4 represents scenarios using auto-scaling method with
Protein annotation workflow [3] application. In Figure 4 (a), we
assumed that data transfer time is 100 seconds or 200 seconds. On
the other hand, data transfer time is 800 seconds or 900 seconds in
Figure 4 (b). Tasks are scheduled in sequential order. Private
cloud resources can be considered for tasks in the first priority. If
tasks cannot be finished in private cloud resources within

deadline, we could arrange public cloud resources for tasks. In
Figure 4 (a), to care task dependency, tasks in a critical path
choose a VM that can run all tasks in a critical path. Task #1, #5,
#6, #8, #11, #12, #14, and #15 are allocated on same VM that is
VM #0. Task #2, #3, #4 are not included in a critical path and
don’t have previous task which related dependency, so they can
be allocated in parallel on new VMs. Task #6 confirms EFT of
task #5, #3, and #2 and then we add data transfer time and latest
EFT among them. As a result, we can get EST of task # 6.Task #7
can be scheduled on VM1, but it is allocated on VM #2 which
performs dependency task, that is task #3, in order to reduce a
data transfer time. A VM #2 can allocate tasks for 1800 to 2250
second. However, task #8, #9 and #10 cannot be allocated on VM
until task #6 is finished so, VM #2 suspends during that time. This
result can represent scale-in. Task #4 is finished on a VM #3 and
then other tasks do not run on the VM #3. Thus, scale-in occurs.
Task #8, #9 and #10 have task dependency on task #6, so they
consider data transfer time between task #6. Task #8 can be
scheduled on same VM which is allocated to task #6 and data
transfer time can be determined 0 second, thus as soon as task #6
is finished, task #8 is allocated on VM. After task #6 and data
transfer time is finished, Task #9 and #10 can be allocated. They
can be allocated in parallel on VMs. Task #13 has five parent
tasks which are task #4, #7, #8, #9, and #10. Task #10 is
completed in latest of them all. Therefore, task #13 can be
allocated when a task #10 and data transfer time between task #10
is finished. Task #14 is waited until task #13 and task #12 is
finished and data transfer time is finished. Finally, task #15 is
finished within a deadline. All tasks are finished and meet the
deadline.

We supposed that data transfer time is 800 seconds or 900
seconds (as shown in Figure 4 (b)). From tasks #1 to #8 are
allocated to same VMs like Figure 4 (a). However, Task #9 and
Task #10 are not allocated to resources which are allocated in
Figure 4 (a). After task #6 is completed, task #8 is scheduled on
VM #0. Task #9 and #10 are waited to fulfill data transfer time
and then they can be allocated at 3950 seconds. At that time, All
VMs can allocate tasks, so task #9 is allocated on VM #0 and task
10 is scheduled on VM # 1.

Figure 5. The percentage of tasks completed.

Figure 5 shows the percentage of tasks completed for the
Protein annotation workflow [3] application at every interval.
Figure 5 represents comparing the percentage of tasks completed
by changing data transfer time. If data transfer time is short, the
auto-scaling method can complete tasks as fast as possible by
automatically allocating VMs. In Figure 5, a triangle line is a
result that is not considering data transfer time. Diamond line
represents that data transfer time is 100 seconds or 200 seconds.
Dot line is a result which data transfer time is 800 seconds or 900
seconds. X line takes 2000 seconds or 2400 seconds in order to
transfer data.

Triangle line shows tasks are finished fastest within 7200
seconds among lines. Data transfer time does not influence the
execution time up to 2100 seconds. Until 2100 seconds, three
lines look like similar style. The dot line is performed faster than
any other lines at the end of the execution time. X line shows that
tasks are performed 50% tasks during half of the execution time.
X line takes long time to transfer data. It is observed that
increasing the data transfer time dose affect execution time and
resource utilization significantly.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed auto-scaling method that effectively
managed applications in workflow type in hybrid cloud
computing. We conducted experiments with a scientific
application such as Protein annotation workflow [3] application.

In the simulation with protein annotation workflow [3], scale-in
and scale-out that is auto-scaling were automatically performed
within its deadline. The method expands or contracts resources
dynamically by considering task dependency and data transfer
time. Resources can be used efficiently as needed using proposed
auto-scaling method.

Furthermore, we plan to add diverse policies such as semantic
policy considering characteristic of application.

A.1 Acknowledgement

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT and Future
Planning (NRF-2013R1A1A3007866)

6. REFERENCES
[1] Hyejeong Kang, Jung-in Koh, Yoonhee Kim. 2013. A SLA

driven VM Auto-Scaling Method in Hybrid Cloud
environment. APNOMS, Hiroshima, Japan, 25-28.

[2] W. Cirne, F. Brasileiro, J. Sauve, Na. Andrade, D. Paranhos,
E. Santos-Neto, R. Medeiros. 2003. Grid Computing for Bag
of Jobs Applications. Proceedings of the 3rd IFIP Conference
on E-Commerce, E-Business and E-Government, September
2003.

[3] A. O'Brien, S. Newhouse and J. Darlington. 2004. Mapping
of Scientific Workflow within the e-Protein project to
Distributed Resources. In UK e-Science All Hands Meeting,
Nottingham, UK. September. 2004.

[4] Amazon Web Service, http://aws.amazon.com/

[5] Windows Azure, http://www.windowsazure.com/

[6] Paraleap, https://www.paraleap.com/

[7] Scalr, http://scalr.com/

[8] S. Dutta, S. Gera, A. Vermam, and B. Viswanathan. 2012.
Smartscale: Automatic application scaling in enterprise
clouds. 5th IEEE International Conference on Cloud
Computing (CLOUD)(June, 2012), 221-228

[9] L. Bittencourt, and E. Maderia. 2011. HCOC: A Cost
Optimization Algorithm For Workflow Scheduling in Hybrid
clouds. J. Internet Services and Applications. 2 (December.
2011), Springer-Verlag, 207-227.

[10] M. Mao, and M. Humphrey. 2011. Auto-scaling to minimize
cost and meet application deadlines in cloud workflows.
High Performance Computing, Networking, Storage and
Analysis (SC), 2011 International Conference for. November
12-18, 2011.

[11] J. Yu, R. Buyya, and C. K. Tham. 2005. Cost-based
scheduling of scientific workflow applications on utility grids.
e-Science and Grid Computing, 2005 First International
Conference on IEEE, 8-147.

[12] L. F. Bittencourt, and E. R. Madeira. 2008. A performance
oriented adaptive scheduler for dependent tasks on grids.
Concurrency and Computation: Practice and Experience. 20,
9 (2008), 1029-1049.

[13] Rodrigo N., Calheiros, R. Ranjan, A. Beloglazov, C. A. F.
De Rose, and R. Buyya. 2011. Cloudsim: a toolkit for
modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms.
Software: Practice and Experience, 41, 1 (2011), 23-50.

[14] HMMER, http://hmmer.janelia.org/

[15] IMPALA,
http://www.cloudera.com/content/cloudera/en/products-and-
services/cdh/impala.html

[16] Johnson, M. Zaretskaya, I. Raytselis, Y. Merezhuk, Y.
McGinnis S. Madden T. L. 2008. NCBI BLAST: a better
web interface. Nucleic Acids Research 36 (July. 2008), W5-
W9.

[17] Bergman, Nicholas H, Medha Bhagwat, and L. Aravind.
2007. PSI-BLAST Tutorial.

[18] PSI-PRED, http://bioinf.cs.ucl.ac.uk/index.php?id=779

