
Auto-Scaling of Virtual Resources for Scientific Workflows 
on Hybrid Clouds

Younsun Ahn 
Dept. of Computer Science 

Sookmyung Women’s University 
Seoul, Korea 

ahnysun@sookmyung.ac.kr 

Yoonhee Kim* 

Dept. of Computer Science 
Sookmyung Women’s University  

Seoul, Korea 
yulan@sookmyung.ac.kr 

  

ABSTRACT 
Cloud computing technology enables applications to employ 

scalable resources dynamically. Scientists can promote large-scale 
scientific computational experiments over cloud environment. It is 
essential for many-task-computing (MTC) to certificate stable 
executions of applications even rapid changes of vital status of 
physical resources and furnish high performance resources in a 
long period. Auto-scaling with virtualization provides efficient 
and integrated cloud resource utilization. Auto-scaling issues have 
been actively studied as effective resource management in order 
to utilize large-scale data center in a good shape but most of the 
auto-scaling methods just easily support performance metrics such 
as CPU utilization and data transfer latency but seldom consider 
execution deadline or characteristics of an application. We 
propose an auto-scaling method that finishes all tasks by user 
specified deadline. We accomplish our goal by dynamically 
allocating VMs to maximize resource utilization while meeting a 
deadline and considering task dependency and data transfer time 
in workflow application. We have evaluated our auto-scaling 
method with protein annotation workflow application which tasks 
are specified as a workflow in hybrid cloud environment. The 
results of a simulation show the method performs automatically 
resource allocation actually needed satisfying deadline 
constraints. 

 

Categories and Subject Descriptors 
C.2.4 [Computer Systems Organization]: Distributed Systems  

 

Keywords 
Cloud computing, workflow, auto-scaling, hybrid.  

 

1. INTRODUCTION 
The appearance of Science Clouds allows scientists to facilitate 

large-scale scientific computational experiments over cloud 
environment. Cloud computing enables applications to employ 
scalable resources dynamically. It is essential for many task 
computing (MTC) to certificate stable executions of applications 
even rapid 1 changes of vital status of physical resources and 
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furnish high performance resources in a long period. Thus, it is 
getting significant to research computational problem solving 
environment that gives the management of task executions or 
resources in the large scale of computation. Auto-scaling with 
virtualization can use efficient integrative utilization of cloud 
resources for the computational problem solving environment. 
Technically, auto-scaling can dynamically change the number of 
Virtual Machine (VM) during execution of an application.  

Our previous paper [1] proposed an auto-scaling method to 
provide efficient resource utilization in a hybrid cloud computing 
environment. However, proposed auto-scaling algorithm needs to 
be extended in order to support various patterns of task execution, 
which are Bag-of-Tasks [2] and workflows. Tasks in Bag-of-
Tasks [2] can be scheduled on resources separately from each 
other while tasks in workflow can be performed in order of 
dependency pattern. A workflow is commonly represented by a 
directed acyclic graph (DAG). 

This paper proposes an extended version of the auto-scaling 
method, reflected in patterns of tasks and the requirements of an 
application based on cloud computing infrastructure. Especially, it 
automatically allocates resources depending on tasks in workflow 
on hybrid cloud. We propose an auto-scaling method that finishes 
all tasks by user-specified deadline. We accomplish our goal by 
dynamically allocating VMs to maximize resource utilization 
while meeting a deadline and considering task dependency and 
data transfer time in workflow application. We have evaluated our 
auto-scaling method with a specialized computation and data 
analysis application such as protein annotation workflow 
application [3] which tasks are specified as a workflow in hybrid 
cloud environment. The results of a simulation show the method 
performs automatically resource allocation actually needed 
satisfying deadline constraints.  

The rest of the paper is organized with the sections as follows; 
we introduce an overview of related works in Section 2. Section 3 
explains auto-scaling algorithm, and Section 4 contains contents 
about a scenario of using auto-scaling algorithm and experiment 
results are discussed. Finally, we conclude the paper and discuss 
future work in final section. 

2. RELATED WORK 
Cloud computing offers endless resources by virtualization 

technology and facilitates extension and reduction of resources. 
Auto-scaling issues are currently being discussed and studied as 
effective resource management. On a cloud service provider side, 
"Auto-scaling" of AWS [4], Paraleap [5] for Windows Azure [6], 
and Scalr [7] use a rule-based auto-scaling method which flexibly 
increases or decreases resources to meet user-defined metrics. 
Meanwhile, rule-based auto-scaling methods are uncomplicated 
enough to allocate resources dynamically, it may not be possible 



to satisfy an amount of resources actually needed, then it could 
possibly cause violation of deadline and cost. 

From this reason, on a user side, [8], [9], [10], [11], [12] are the 
studies of auto-scaling in consideration of deadline of applications 
or cost for resource usage. [8] proposes an auto-scaling method 
minimizing resource usage cost for Bag-of-Tasks [2] jobs. It is 
connected with horizontal scaling which adds or removes the 
number of VMs and vertical scaling which expands or reduces the 
size of a VM. However, it is still deficient for accomplished 
resource requirements of dynamic workloads because it is lack of 
the consideration of resource usage during execution of an 
application. There are few studies considering workflow 
scheduling. [9] proposes an algorithm to minimize execution costs 
while meeting deadline for a workflow. Reference [10] respects to 
finish the execution of jobs within deadlines at minimum financial 
cost using their auto scaling method. However, they use only 
public cloud, which means that they just consider simple 
environment. [11], [12] facilitate the execution of workflow 
applications using their auto-scaling methods on Grids, which 
may be changed to adapt to the Cloud computing environment. 
[11] proposes an algorithm that minimizes execution cost, that is 
processing cost and data transmission cost within deadline. [11] 
divides the workflow into partitions and assigned each partition a 
sub-deadline, thus [11] can minimize execution time for the entire 
workflow. [12] proposes an efficient scheduling algorithm for 
dependent jobs. Also, [12] considers communication cost about 
data transfer time. We propose an algorithm for workflow 
referring to Reference [11]’s and [12]’s workflow scheduling 
algorithms.  

In this paper, we propose an extended version of an auto-
scaling method based on our previous research [1] which enables 
dynamic resource allocation considering the types of jobs from 
Bag-of-Tasks [2] as well as the workflow and the characteristics 
of an application. Auto-scaling method can automatically allocate 
cloud resources considering task dependency and data transfer 
time in workflow application. 

3. AUTO-SCALING ALGORITHM 
We extend [1]’s auto-scaling algorithm which can perform only 

tasks in Bag-of-Tasks. Our auto-scaling algorithm can schedule 
tasks in workflow. Auto-scaling technique can discover delay and 
deadline violation to comparing actual start time and estimated 
start time of running tasks. Moreover, monitoring perform every 
regular term. Algorithm’s assumption and notation are referred to 
[1]. Some notations for the workflow scheduling algorithms are 
defined at the below: 

 EFT VM : Estimated finish time of a VM. 

 EST VM  : Earliest start time of a VM. 

 ET VM : Execution time of a task on a VM. 

Algorithm 1, Run-time Scaling is extended based on [1]. We 
propose algorithm 2, Workflow Scheduling algorithm to deal with 
tasks in workflow. In the reference [1], Run-time Scaling 
Algorithm has two polices and depicts our general auto-scaling 
method. Additionally, we extend three policies by adding 
workflow scheduling. Tasks are scheduled with applying one of 
the three policies such as Performance-oriented Scheduling (line 
5), cost-oriented Scheduling (line 8) and Workflow Scheduling 
(line 11) of SLA (Service Level Agreements). Tasks in Bag-of-
Tasks [2] are sorted as descending order based on their execution 
time, while tasks in workflow are sorted as sequential order. 

Algorithm 1 – Run-time Scaling 
Input – An application,  

SLA={a policy P, a deadline D [, minimum performance requirement 
minPM ]} 

Output – Scaling decision S = { toStartUp, toShutDown } 
Scheduling decision S = { tasks → VMs} 

1: SCALING ← TRUE; 

2: while (true) 

3: if SCALING  is TRUE 

4: switch P 

5: case Performance: 

6: Sort waiting tasks in decreasing order of execution length; 

7: S ← PerformanceOrientedScheduling( 
sortedTasks, D, minPM);  

8: case Cost: 

9: Sort waiting tasks in decreasing order of execution length; 

10: S ← CostOrientedScheduling(sortedTasks, D);  

11: case Workflow:
Sort waiting tasks in sequential order; 

12: S ← WorkflowScheduling(sortedTasks, D);  

13: each vm where status is running 

14: if no running/waiting tasks on vm then 

15: destroy the vm 

16: send scaling decisions to DRMS 

17: send scheduling decisions to JES 

18: waitForNextInterval(); 

19: SCALING  ← SLAMonitoring(runningTasks, D); 

 

Algorithm 2 defines our Workflow Scheduling algorithm. In 
this algorithm, DTT (Data Transfer Time) means data transfer 
time. Proposed Workflow Scheduling algorithm is based on a 
PCH algorithm [12]. When our scaling method tries to allocate 
cloud resources, it followed the performance-oriented policy. We 
could get tasks on a critical path and group of tasks using PCH 
algorithm [12] and then each group can be scheduled. The total 
execution time of critical path in a private cloud resource is 
calculated and set to a deadline value, also additional time is add 
to the deadline value.  

First, tasks on a critical path are scheduled on a same resource, 
which can execute all tasks in a critical path (line 2). Every time 
we try to schedule tasks, it is a rule to choose private cloud 
resource prior to public cloud. It is important to consider task 
dependencies and data transfer time in workflow. Each task could 
get an EFT (Estimated Finish Time) of a parent task and set an 
EST (Earliest Start Time) value to EFT of a parent task in order to 
consider order of tasks (line 4-5). With an executing on a same 
resource of tasks on the critical path, a communication overhead 
is reduced. Parent task and child task are performed on a same 
VM, data transfer time is zero.     

When tasks which are not on a critical path are scheduled to 
VMs, tasks check a parent task’s state. If parent tasks are 
allocated to cloud resources, child tasks could be allocated (line 
6). Unless parent tasks are scheduled cloud resources, child tasks 
must wait to be allocated. As mentioned above, each task could 
get an EFT of a parent task and calculate an EST value 
considering EFT of a parent task and data transfer time. In case 
there are a number of parent tasks, a task chooses latest EFT 
among them and calculates an EST value with EFT of a parent 
task and data transfer time. (line 7-10 (private), line 12-16 
(public)).  

 



Algorithm 2– workflow scheduling algorithm 
Input –Waiting jobs of the application,  
Output –Scheduling decision S = { tasks → VMs} 

1: for each task  do 

2: if task  in a critical path then 

3: if There is no VM  running then 

4: 
VM ← find a vm on which all tasks in a critical path can  

run within the D;  

5: else 

6: VM ← current VM  for a critical path 

7: end if 

8: EST VM ← related previous job EFT VM and  previous task’s DTT; 

9: EFT VM ← EST VM + ET VM;    

10: else  

11: 
 
 

12: 

VM ← find a vm on which task  can start  the 
fastest within the D;  // find a private vm 

 
ESTVM ← related previous task  EFT VM  

and  previous task’s DTT; 

13: EFT VM ← EST VM + ET VM; 

14: if VM is null  //no private VM available  

15: 
VM  ← find a cheapest vm on which task can run within the D;  

// find a public vm 

16: 
ESTVM  ← related previous job EFT VM   

and  previous task’s DTT; 

17: EFT VM ← EST VM + ET VM; 

18: end if 

19: schedule task  to VM; 

20: continue with the next task; 

21: end if 

 

4. SCENARIO AND EXPERIMENTS 
We use CloudSim [13] to simulate protein annotation workflow 

in workflow. We simulate our proposed auto-scaling algorithm in 
hybrid cloud environment that is merged private cloud and public 
cloud resources. In this experiment, we use four private clouds 
have 330 MIPS and public clouds (Amazon EC2) have 600 MIPS 
or 2400 MIPS.  

Protein annotation workflow [3] application has dependent 
tasks and needs to deal with large information. Protein annotation 
workflow [3] developed by London e-Science Center. Protein 
annotation workflow [3] application has fifteen services. Protein 
annotation workflow [3] application consists of several steps to 
fulfilling service. Several services are sequentially performed. 
Every service in a workflow generates output data required by its 
child services as inputs in Figure 1.  

Among services, we specially consider HMMer, IMPALA, 
BLAST, PSI-BLAST and PSI-PRED services. Each service’s 
explanation refers to [14], [15], [16], [17], [18]. In our experiment, 
we concentrate input data and output data in order to consider data 
transfer time. HMMer, IMPALA, BLAST, PSI-BLAST and PSI-
PRED services are required large input data. Accordingly, in case 
of considering data transfer time, all values of data transfer time 
are not equal. Values which are required large input data are given 
a weighting. PSI-BLAST service is required not only large input 
data, but also large output data, because next PSI-PRED service 
needs to all output data of the PSI-BLAST. Therefore, values 
which are required large input data and output data are given a 
weighting. 

 
 Figure 1. e- protein service structure [3].  

Figure 2 shows a simple form of protein annotation workflow [3] 
in Figure1 representing a number of tasks. The number of tasks is 
fifteen and we use a length of tasks that are featured on 
parentheses in Figure 2. Each task has task dependencies. A value 
on a bridge between tasks represents a data transfer time. Parent 
task and child task are performed on a same VM, data transfer 
time is zero. While, they are performed on a different VM, data 
transfer time is considered with the value. The I/O data of the 
workflows range from 1.2GB to 29.2GB. The available network 
bandwidth between services is 100Mbps. 

 

 
Figure 2.  Protein annotation workflow [3] structure. 

We compare experiments with different data transfer time. First 
case, a fundamental data transfer time is 100 seconds and some 
data transfer time have weighting value that is a 200 seconds. 
Second, an essential data transfer time is 800 seconds and some 
data transfer time have weighting value that is a 900 seconds. 
Third case, a radical data transfer time is 2000 seconds and some 
data transfer time have weighting value that is a 2400 seconds. 
Figure 3 shows a result of the number of VM with protein 
annotation workflow structure (Figure 2) based on the workflow 
scheduling algorithm. 



 
Figure 3. The result of auto-scaling representing the number 

of VM  

Figure 3 represents the performance of the proposed auto-
scaling method comparing with different data transfer time. The 
proposed auto-scaling algorithm successfully performs 
automatically allocating tasks in workflow considering task 
dependency and data transfer time. In Figure 3, a dot pattern 
graph represents data transfer time is 100 seconds or 200 seconds. 
Entire tasks are completed within 7300 seconds. While, a pattern 
of diagonal graph shows all tasks are finished within 9600 
seconds. It is the result of 800 seconds or 900 seconds data 
transfer time. Last horizontal pattern graph shows the result of 
2000 seconds or 2400 seconds data transfer time case. The dot 
pattern graph shows that it uses more VMs than a pattern of 
diagonal graph does in the middle of execution time because tasks 
in the dot pattern graph can reduce waiting time on account of 
short data transfer time. The dot pattern graph uses relatively little 
VMs in the latter half of execution time. In a pattern of diagonal 
graph, tasks should wait to be allocated until long data transfer 
time is finished, so they take longer execution time and need little 
VMs than the dot pattern graph. Horizontal pattern graph shows 
as similar as other cases at the beginning of the execution time. It 
takes longest execution time among all cases. Also, it is efficient 
to allocate same VM for tasks which have task dependency and 
have long data transfer time. In case data transfer time is short, the 
auto-scaling method can maximize resource utilization in order to 
allocate tasks to VMs as soon as possible.  

 
Figure 4 (a). Scenario of data transfer time 100/ 200 seconds. 

Figure 4 (b). Scenario of data transfer time 800/ 900 seconds. 

Figure 4 represents scenarios using auto-scaling method with 
Protein annotation workflow [3] application. In Figure 4 (a), we 
assumed that data transfer time is 100 seconds or 200 seconds. On 
the other hand, data transfer time is 800 seconds or 900 seconds in 
Figure 4 (b). Tasks are scheduled in sequential order. Private 
cloud resources can be considered for tasks in the first priority. If 
tasks cannot be finished in private cloud resources within 

deadline, we could arrange public cloud resources for tasks. In 
Figure 4 (a), to care task dependency, tasks in a critical path 
choose a VM that can run all tasks in a critical path. Task #1, #5, 
#6, #8, #11, #12, #14, and #15 are allocated on same VM that is 
VM #0. Task #2, #3, #4 are not included in a critical path and 
don’t have previous task which related dependency, so they can 
be allocated in parallel on new VMs. Task #6 confirms EFT of 
task #5, #3, and #2 and then we add data transfer time and latest 
EFT among them. As a result, we can get EST of task # 6.Task #7 
can be scheduled on VM1, but it is allocated on VM #2 which 
performs dependency task, that is task #3, in order to reduce a 
data transfer time. A VM #2 can allocate tasks for 1800 to 2250 
second. However, task #8, #9 and #10 cannot be allocated on VM 
until task #6 is finished so, VM #2 suspends during that time. This 
result can represent scale-in. Task #4 is finished on a VM #3 and 
then other tasks do not run on the VM #3. Thus, scale-in occurs. 
Task #8, #9 and #10 have task dependency on task #6, so they 
consider data transfer time between task #6. Task #8 can be 
scheduled on same VM which is allocated to task #6 and data 
transfer time can be determined 0 second, thus as soon as task #6 
is finished, task #8 is allocated on VM. After task #6 and data 
transfer time is finished, Task #9 and #10 can be allocated. They 
can be allocated in parallel on VMs. Task #13 has five parent 
tasks which are task #4, #7, #8, #9, and #10. Task #10 is 
completed in latest of them all. Therefore, task #13 can be 
allocated when a task #10 and data transfer time between task #10 
is finished. Task #14 is waited until task #13 and task #12 is 
finished and data transfer time is finished. Finally, task #15 is 
finished within a deadline. All tasks are finished and meet the 
deadline.  

We supposed that data transfer time is 800 seconds or 900 
seconds (as shown in Figure 4 (b)). From tasks #1 to #8 are 
allocated to same VMs like Figure 4 (a). However, Task #9 and 
Task #10 are not allocated to resources which are allocated in 
Figure 4 (a). After task #6 is completed, task #8 is scheduled on 
VM #0. Task #9 and #10 are waited to fulfill data transfer time 
and then they can be allocated at 3950 seconds. At that time, All 
VMs can allocate tasks, so task #9 is allocated on VM #0 and task 
# 10 is scheduled on VM # 1. 

 
Figure 5. The percentage of tasks completed. 

Figure 5 shows the percentage of tasks completed for the 
Protein annotation workflow [3] application at every interval. 
Figure 5 represents comparing the percentage of tasks completed 
by changing data transfer time. If data transfer time is short, the 
auto-scaling method can complete tasks as fast as possible by 
automatically allocating VMs. In Figure 5, a triangle line is a 
result that is not considering data transfer time. Diamond line 
represents that data transfer time is 100 seconds or 200 seconds. 
Dot line is a result which data transfer time is 800 seconds or 900 
seconds. X line takes 2000 seconds or 2400 seconds in order to 
transfer data. 



Triangle line shows tasks are finished fastest within 7200 
seconds among lines. Data transfer time does not influence the 
execution time up to 2100 seconds. Until 2100 seconds, three 
lines look like similar style. The dot line is performed faster than 
any other lines at the end of the execution time. X line shows that 
tasks are performed 50% tasks during half of the execution time. 
X line takes long time to transfer data. It is observed that 
increasing the data transfer time dose affect execution time and 
resource utilization significantly. 

5. CONCLUSION AND FUTURE WORK 

In this paper, we proposed auto-scaling method that effectively 
managed applications in workflow type in hybrid cloud 
computing. We conducted experiments with a scientific 
application such as Protein annotation workflow [3] application. 

In the simulation with protein annotation workflow [3], scale-in 
and scale-out that is auto-scaling were automatically performed 
within its deadline. The method expands or contracts resources 
dynamically by considering task dependency and data transfer 
time. Resources can be used efficiently as needed using proposed 
auto-scaling method.  

Furthermore, we plan to add diverse policies such as semantic 
policy considering characteristic of application. 
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