

컨테이너 환경에서 과학 워크플로우를 위한

재구성 기반의 메모리 할당 기법

아두푸 테오도라 O , 최지은, 김윤희

숙명여자대학교 컴퓨터과학과

{theodora, jechoi1205, yulan}@sookmyung.ac.kr

A Reconfiguration-based Memory Allocation Method

for Scientific Workflows in Containers

Theodora Adufu, Jieun Choi, Yoonhee Kim

Sookmyung Women’s University

요 약

 A key challenge during scheduling of scientific HPC applications remains the over-provisioning of

virtual resources for optimal performance during execution. Even though this guarantees the peak

performance of scientific application in virtualized environments, it results in increased amounts of idle

resources which are unavailable for use by other applications. We propose a memory resource

reconfiguration approach which allows the quick release of idle memory resources to new applications

in OS-level virtualized systems, based on the application’s resource usage pattern profile data. Our

proposed approach fine-tunes memory allocation to containers at each stage of the workflow’s

execution life-cycle and hence improves overall memory resource utilization.

1. Introduction


Virtualization technologies [1], [2], [3], [4] serve

as efficient solutions for the execution of scientific

HPC applications with increasing resource demands

through dynamic provisioning of shared resources.

However, users tend to over-provision memory

resources to applications to guarantee adequate

resource availability during rare periods of high

resource demands [5]. A key challenge remains the

variation in memory resource usage during the

execution life-cycle of HPC scientific workflows.

Consequently, this increases the operational costs of

deployment [6].

We propose a resource allocation method which

considers the “bursty” memory usage pattern of

applications and improves memory usage efficiency of

a container throughout the execution life-cycles of an

application by allocating memory resources to

workflows based on the maximum required resources

per task of the workflow to maximize the overall

utilization. The proposed method is also able to

reduce the number of jobs in a queue by releasing idle

memory resources from containers to small jobs

교신저자

during periods of low memory usage. We use Docker

containers to mitigate the platform overheads [7], [8],

[9] of HPV technologies.

In this paper, related works are presented in Section

2 and we describe the proposed method in Section 3.

In section 4, we give the details of the experiment with

corresponding results and conclude in Section 5.

2. Related Works

Few research works aim to maximize resource

utilization by employing dynamic reconfiguration

methods during resource allocation in virtualized

environments. Some works have focused on

application-aware schemes which consider the

characteristics of the application before allocating

resources in an attempt to satisfy users' Service Level

Agreements (SLAs).

The "try-before-buy"[10] resource allocation

method aims to reduce contention among shared

resources. Kundu et al [11] continuously make

changes to resource allocations across multiple

iterations to facilitate redistribution of resources.

DejaVu [12] reuses previous resource allocations for

each class of clustered resources. These methods

however, do not consider the changing resource

75

2016년 한국컴퓨터종합학술대회 논문집

demands of tasks within the application to maximize

resource usage efficiency per application.

3. Reconfiguration-based allocation Method

The ultimate goal of the proposed method, is to

maximize the use of idle resources of applications with

“bursty” resource demands throughout their execution

life-cycle without compromising their performance.

For each group of tasks, our method first uses the

resource usage and execution time (ET) profiles to

estimate the memory requirement (MEst). Next, we

maximize resource usage efficiency by assigning

required memory resources dynamically. For modules

with significantly lower resource demands than the

previous, our method is able to release idle resources

to other applications. The proposed method is thus

able to allocate resources to optimize memory usage

efficiency per container.

4. Experiments and Results

We deploy Ubuntu 14.04-based container images,

on a CentOS 7-based Intel(R) Core (TM) i7 CPU 950

@ 3.07GHz server machine with 4 GB RAM. The target

application, Montage GALFA [13] scientific workflow

is pre-installed in the container.

Montage is a high performance Astronomical Image

Mosaic Engine for creating composite FITS mosaics

using multiple astronomical images. We obtain a set of

five data cubes and aggregate them into a mosaic in

three major stages: data cube shrinking, re-projection

and aggregation.

Montage GALFA has 5 major groups of tasks or

modules, each with different memory resource

demands and execution times as seen in table 1.

Using Valgrind profiling tool [14] and executable bash

scripts, we obtain the memory usage and execution

time data of each module of Montage GALFA as seen

in table 1. From the profiles, we identify the modules

for which memory resources will be reconfigured

during execution as mShrink (mS), mMakeHdr (mMH),

mProjectCube (mPC), mAddCube (mAC) and,

reconfigure the container's memory resources

accordingly.

We compare the memory released (MRel) for the

case when reconfiguration is not performed, (NR: No

reconfiguration) and for the case when there is

reconfiguration (R: With reconfiguration) per module in

our workflow, in one container.

Table 1. Memory allocation, Released Memory and

Memory usage Efficiency for Reconfiguration and No

Reconfiguration methods

The initial memory allocation for both methods is

2414MB and the memory released per module is

shown in Table 1. R method releases memory of up to

2402MB for use by other applications with execution

times shorter than 234 seconds. NR however does not

reconfigure resources throughout execution and thus

does not maximize memory usage.

We calculate the memory usage efficiency per

module using equation 1 and observe that as the total

amount of memory freed by using our approach

increases there is better memory usage per container,

eliminating waste introduced by memory resource

over-provisioning.

Eff(%) = Memory Usage x 100 (1)

 Memory Allocation

From the results, the highest memory efficiency (Eff)

with reconfiguration, R, is 99.99% during the execution

of mAddCube. For mProjectCube, the memory usage

efficiency for both methods is the same at 99.98%

since at this point, 2414MB is allocated to the

container. Relatively, our approach is able to improve

the memory utilization of the container by up to 96%

for periods of low resource usage.

4. Conclusion and Future Works

We present a reconfiguration-based memory

allocation method that maximizes the memory usage

efficiency of containers. Our method uses memory

usage profile data to plan the allocation of memory

resources throughout the execution life-cycle in a

manner that ensures that the required amount of

memory is allocated per module for applications with

Module ET,

secs

MEst

(MB)

NR:

Alloc

(MB)

NR:

Eff

(%)

R:

Alloc

(MB)

R:

MRel

(MB)

R:

Eff

(%)

Initial 0 0 2414 0 0 2414 0

mS 234 11.7 2414 0.48 12 -2402 97.3

mIT 0.29 11.7 2414 0.49 12 0 97.6

mMH 0.05 16.8 2414 0.70 17 5 98.8

mPC 238 2413 2414 99.9 2414 2397 99.9

mIT 0.23 11.7 2414 0.49 18 0 61.6

mAC 859 1682 2414 69.7 1683 -731 99.9

76

2016년 한국컴퓨터종합학술대회 논문집

“bursty” resource demands. Results show that with

our method, applications with “bursty” resource

demands are able to release idle resources to other

applications.

In the future we will expand the proposed method to

reduce job queuing time of incoming tasks and the

number of tasks in a queue through dynamic resource

reconfiguration and provisioning schemes. Also, we

will expand our resource allocation approach to

support other computing resources such as disks, and

cache memory.

References

[1] Nimbus, http://www.nimbusproject.org/

[2] OpenStack, http://www.OpenStack.org

[3] Amazon EC2, http://aws.amazon.com

[4] Docker, http://www.docker.com

[5] Kalyvianaki et al, “Ad Hoc Mobile Wireless

Networks: Protocols and Systems”, Prentice Hall

PTR, New Jersey, 2002.

[6] Eun-Kyu Lee, “Cooperative Virtual Data Center:

Sharing Data and Resources among Multiple

Computing Entities”, International Journal of

Software Engineering and Its Applications Vol. 9,

No. 11 (2015), pp. 137-152

[7] Adufu et al, “Is container-based technology a

winner for high performance scientific

applications?”, Network Operations and

Management Symposium (APNOMS), 2015 17th

Asia-Pacific

[8] Memari et al, “Towards virtual honeynet based on

LXC virtualization” Region 10 Symposium, 2014

IEEE, pp. 496-501

[9] Xavier et al, “Performance Evaluation of

Container-based Virtualization for High

Performance Computing Environments” Parallel,

Distributed and Network-Based Processing (PDP),

2013 21st Euromicro International Conference on,

2013, pp. 233-240

[10] Yu et al., “Resource Allocation in Virtualized

Systems Based on Try-Before-Buy Approach”,

Published in 2nd International conference on

Challenges in Environmental Science and

Computer Engineering, 2011, pp 193-199.

[11] Hong et al, “Application-aware Resource

Allocation for SDN-based Cloud Datacenters”,

Proc. Int’l. Conf. Cloud Computing and Big Data

2013, Fuzhou, China, Dec. 2013.

[12] Vasic et al, “DejaVu: Accelerating Resource

Allocation in Virtualized Environments”, ASPLOS’12,

March 3–7, 2012, London, England, UK

[13] Montage, http://montage.ipac.caltech.edu

[14] Valgrind, http://www.valgrind.org/

Acknowledgement

This research was supported by Next-Generation

Information Computing Development Program

through the National Research Foundation of

Korea(NRF) funded by the Ministry of Science, ICT &

Future Planning (2015M 3C 4A7065646r)

77

2016년 한국컴퓨터종합학술대회 논문집

