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요 약

GPU는 다른 도메인의 응용 프로그램에 훨씬 더 높은 명령 처리량과 메모리 대역폭을 제공하므로 최근 범용 응

용 프로그램을 성공적으로 가속화했다. 그러나 큰 메모리 대기 시간으로 인해 GPU 성능에 병목 현상이 남아 있습

니다. 캐시는 칩 외부 메모리 트래픽을 줄이지 만 캐시 관리는 어렵다. Nvidia Ampere 아키텍처에 도입된 새로운

상주 제어 기능을 통해 사용자는 이제 캐시에 상주하는 데이터의 양을 제어할 수 있다. 그러나 여러 애플리케이션

을 동시에 실행하는 동안 주의할 점은 데이터 지속성이 필요한 애플리케이션과 그 양을 식별하는 것이다. 이 백서

에서는 처리량 및 데이터 액세스 빈도로 워크로드를 특성화하고 세 가지 공동 스케줄링 시나리오를 실험하여 최적

의 성능을 위한 영구 캐시 할당을 결정한다. 서로 다른 데이터 액세스가 있는 응용 프로그램을 함께 실행할 때 L2

별도 할당이 지속적인 데이터 액세스가 있는 응용 프로그램에 편향되어서는 안 된다는 것을 관찰했다.
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ABSTRACT

GPUs have successfully accelerated general-purpose applications in recent times as they provide much higher

instruction throughput and memory bandwidth to applications from different domains. There remains however a

bottleneck in the performance of GPUs due to large memory latencies. Caches reduce off-chip memory traffic

however, managing caches is difficult. With the new residency control feature introduced in the Nvidia Ampere

architectures, users can now control how much data is resident in the cache. During co-executions of multiple

applications, the caveat however is to identify which application requires data persistence and by how much. In

this paper, we characterize workloads by throughput and data access frequencies and experiment with three

co-scheduling scenarios to determine persistent cache allocations for optimum performance. We observed that

when co-executing applications with different data accesses, L2 set-aside allocations should not be biased towards

applications with persistent data accesses.
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Ⅰ. Introduction

Graphics Processing Units (GPUs) in

comparison to traditional CPUs, provide much

higher instruction throughput and memory

bandwidth during the execution of applications

[1]. Since the introduction of NVIDIA’s Compute

Unified Device Architecture (CUDA), many

applications including High Performance

Computing (HPC) scientific applications

[2][3][4][5][6][7][8][9], have leveraged the higher

capabilities to run faster on the GPU. As

researchers and private data centers have increased

their deployments of applications on GPUs, shared

clouds like Microsoft Azure[10], Amazon EC2[11]

also provide GPU-based infrastructure services to

support GPU clouds. There remains however, a

bottleneck in the performance of the GPU. GPUs

can hide memory access latencies with

computation however, misaligned memory

accesses, poor data locality in the cache memory,

cache thrashing, high miss rates and poor thread

and block size configurations can have an

expensive impact on performance. HPC

applications for instance, seek to exploit more

parallelism through the use of multiple threads,

however these active threads contend for limited

GPU cache resources during execution. This

results in cache thrashing and high miss rates.

Memory optimization is thus, the most important

area for performance improvement. This paper

investigates the use of L2 cache residency control

as a means of optimizing memory and thus

improving performance.

● We characterize applications by their data

request sizes and by the frequency of data reuse.

● We apply residency control to optimize

memory and improve performance.

● We investigate the impact of the size of the

L2 set-aside cache area on the performance of

applications when run concurrently.

In summary, this is a quantitative study on

exploiting data access frequency in the L2 cache

for a set-aside-aware execution of applications

which improves performance.

The paper is organized as follows: in Section 2,

we briefly discuss some related works on

optimizing L2 cache performance. We give a

background of the heterogeneous memory system

of the GPU architecture and the L2 Cache

residency control feature in Section 3. We explain

our experimental setup in Section 4 and present

the quantitative results in Section 5. We conclude

the paper in Section 6.

Ⅱ. Related Works

Multiple memory optimization techniques and

approaches have been employed to mitigate the

effect of memory limitations. Though there has

been several studies to exploit the data locality in

GPUs [12] [13], Sohan Lal et al.[14] argue that

there is a lack of quantitative analysis of data

locality in GPUs.

2.1. Thrashing Improvement

Techniques

When applied to GPUs, cache bypassing

proposed in CPUs as a thrashing-resistant

technique against early eviction in cachelines may

not achieve the expected improvement[15].

Cache-conscious wavefront scheduling (CCWS)

[13] improves the L1 cache hit rate in GPUs by

alleviating inter-warp contention. These techniques

however do not consider the size of reused data

to improve performance.

2.2. Sectored Caches

Recent GPU architectures including the Nvidia

Ampere architecture employ the use of sectored

caches to fetch only the sectors that are requested

instead of always fetching all the sectors of a

cache line. In A30, a sectored-cache has a cache

line size of 128 bytes (B), divided into four

sectors. On a miss, a sector-cache will only fetch

the 32 B sectors that are requested. A full cache
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line is not automatically fetched however if all

four sectors are requested, it is possible to fetch

a full cache line. This leads to improved

bandwidth utilization even for strided acceses. Jia.

et al [12] explore the use of sectored caches to

tackle issues such as data over-fetch and hence

improve performance.

2.3. Residency Control

Walden et al [16] in an effort to maximize

memory bandwidth utilization for a sparse linear

algebra kernel explore the L2 residency control

and the asynchronous copy instruction features of

the A100 architecture. From their experiments, the

use of L2 persistence and asynchronous memory

copies improve the overall performance by 81.2%,

which is slightly better than the original mapping

algorithm with the new A100 features. They

however did not explore the impact of the size of

the L2 set-aside area on performance.

Ⅲ. GPU Memory Architecture

The GPU contains multiple small hardware units

called Streaming Multiprocessors (SMs), on-chip

L2 cache and a high bandwidth DRAM also

known as the global memory (Fig. 1).

Fig. 1. Memory architecture of A30

The SMs can execute many threads concurrently.

These threads are grouped physically into warps

of 32 threads each. As stated GPUs contains

many SMs, and these SMs can execute many

threads concurrently. The threads in the SMs

access data and instructions from the global

memory (DRAM) at a given bandwidth.

Bandwidth is best served by using as much fast

memory and as little slow-access memory as

possible. Thus, there exists on-chip memory such

as registers which are allocated to individual

threads, Read-only memory for specific tasks such

as texture memory, and the L1 cache/shared

memory, for fast data access within each SM.

The L1 cache/shared memory is on-chip memory

that is shared within thread blocks or CUDA

blocks. The shared memory usage is however

controlled via software while L1 cache is

controlled by hardware. Because L1 cache and

shared memory exists on-chip, it is faster than

both L2 cache and global memory. The L1 cache

is however very small in size and not coherent.

To ensure coherence in data accessed from the

global memory by different SMs, the L2 cache is

used.

L2 cache can be accessed by all threads in all

CUDA blocks. Retrieving data from the L2 cache

is faster than retrieving data directly from global

memory (DRAM). In modern GPU architectures,

access to global memory is cached in L1 and L2

by default.

3.1. L2 Caching Policy

The L2 cache potentially provides higher

bandwidth and lower latency accesses to global

memory. A typical cache line size is 128B in

GPUs. In the Ampere architecture, the loads and

stores can be serviced at 32 B granularity known

as a sector[14].

When a CUDA kernel accesses a data region in

the global memory repeatedly, such data accesses

can be considered to be persisting. On the other

hand, if the data is only accessed once, such data

accesses can be considered to be streaming.
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A caching policy is used to determine which

portion of data to cache. Due to the relatively

small ratio of cache sizes to input data sizes of

many HPC applications, there is the need for a

policy to select the data to prioritize for caching.

Consequently, the data access frequencies are

considered in the eviction of the data cache lines.

Streaming data for instance is first in the eviction

priority order and will likely be evicted when

cache eviction is required. This policy is known

as the evict_first policy.

Data considered as persistent and hence stored in

the set-aside region will be last in the eviction

priority order and will likely be evicted only after

other data with the evict_first and evict_normal

policies are evicted.

The persistence offered by the evict_first policy

provides the opportunity to cache frequently

accessed data and thus minimize the time spent in

fetching newer cache lines from the global

memory during executions.

3.2. L2 Cache Data Persistence

Control

The A30 architecture offers a new feature that

allows a portion of the L2 cache to perform

persistent data accesses to device memory, which

ultimately enables higher bandwidth and lower

latency accesses to device memory.This is

achieved through the use of APIs offered in the

CUDA version 11 toolkit to set aside a portion

of the 24-MB L2 cache to perform persistent data

accesses to global memory. If this set-aside

portion is not used by persistent accesses, normal

accesses or streaming data can use it.

The L2 cache set-aside size for persisting accesses

may be adjusted, within limits. For our

experiments, we set aside a limit of 75% of the

L2 cache memory for persisting accesses. Since

the L2 cache size of the A30 GPU is 24MB, this

translates to 18MB of L2 cache memory set aside

for persistent accesses.

Ⅳ. Experimental Setup

4.1. Hardware and Software

Description

Table [1] summarizes the experimental setup for

our experiments. We execute our experiments on

an Nvidia Ampere GPU device with 24GB of

Device memory and 24MB of L2 cache. We use

1 of the 2 GPUs in our A30 environment. The

compute capability is 8.0 and a cache line has a

size of 128 Bytes. For profiling, we use Nvidia’s

Nsight Compute [17].

GPU Device NVIDIA A30

Compute capability 8.0

Device Memory 24GB

GPU memory bandwidth 933 GB/s

L2 cache size 24MB

L1 cache size 192KB

Profiler Nsight Compute

Table 1. Experimental Setup

4.2. Sliding Window Experiment

We implement a sample micro-benchmark [18]

which uses a 1024 MB region in GPU global

memory through the following kernel code Fig. 2.

Fig. 2. Kernel code for sliding window experiment [18]

An access policy window Fig. 3 specifies a

contiguous region of global memory and a

persistence property in the L2 cache for accesses

within that region. As shown in Fig. 3, the

stream level attribute data structure is used to set

the region of the device memory which will

persist in L2 cache when initially accessed.
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Fig. 3. Access Policy for sliding window experiment [18]

Similar to NVIDIA’s sliding window experiment

[18], we specified the access to the freqSize *

sizeof(int) bytes of memory to be persistent and

varied this persistent data region from 10MB to

40MB (Fig. 4) to model various scenarios where

data fits in or exceeds the available set-aside

portion of 18MB for our NVIDIA A30 GPU.

Normal or streaming accesses can use the

remaining 6MB of the non set-aside L2 portion.

We used a fixed hit-ratio of 1.0 for our

experiment.

Fig. 4. Mapping the persistent accesses to L2 set-aside

for our Nvidia A30 environment

The performance of the kernel in Fig. 2 is shown

in Fig. 5 and Fig. 6. With a hit ratio of 1.0, the

hardware attempted to cache the whole 40MB

window in the set-aside L2 cache area. However,

since the set-aside area (18MB) was smaller than

the window, cache lines were evicted to make

room for data required for the executions. The

premature eviction of data before any significant

reuse is known as cache thrashing.

Fig. 5. Sliding window with hit-ratio

When the persistent data region fitted well into

the 18MB set-aside portion of the L2 cache, a

performance increase of as much as 47% is

observed in Fig. 5. However, once the size of

this persistent data region exceeded the size of

the L2 set-aside cache portion, there was

approximately 25% drop in performance. We

attribute the fall in performance to thrashing of

L2 cache lines.

Controlling the hit-ratio

The hitRatio value can be used to manually

control the amount of data different

accessPolicyWindows from concurrent CUDA

streams can cache in L2. The hitRatio can

therefore be used to reduce the amount of data

moved into and out of the L2 cache.

In order to optimize the performance and reduce

thrashing, we tuned the numbytes and hitratio

parameters in the access window so that a

random 10MB of the total persistent data

(data_in_cache) was resident in the L2 set-aside

cache portion and investigated the performance

with an experiment. According to equation 1, this

translated to a hit ratio of 0.556.

From the results in Fig. 6, we observed an
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overall improvement in performance for L2

set-aside cache portions which exceeded the size

of the persistent data region.

Fig. 6. Sliding window with adjusted hit-ratio

4.3. Workloads

We chose two workloads from the

cudaSDKsamples[19] benchmark suites with data

input sizes greater than our L2 cache size for our

experiments. A short description of the workloads,

the input data sizes and the kernels per workload

is given below and summarized in Table 2.

Workload
Kernels and

Functions

Input

Data,

MB

Histogram
Histogram64,

mergedHistogram64
64

Conjugate

Gradient
gpuConjugateGradient 108.8

Table 2. Description of workloads

Histogram: A histogram is a commonly used

analysis tool in image processing and data mining

applications. They show the frequency of

occurrence of each data element [20]. The

histogram used in our experiments has two (2)

kernels: histogram64() and mergedhistogram64()

used for analysis in our experiments.

Conjugate Gradient (CG) Solver: The

conjugateGradientMultiBlockCG implements a

conjugate gradient solver on a GPU using Multi

Block Cooperative Groups. The sample used in

our experiments has only one kernel [21].

4.4. Application Characterization for

Frequent Accesses

We began by profiling each of the kernels for the

workloads to determine the L2 cache access

patterns. This was to inform the decision on the

size of cache resources to be allocated to each

application during scheduling. We considered the

approach by Alsop et al. [22] and characterized

the kernels according to the following:

Memory intensiveness: As a general rule,

workloads with low compute bandwidth and high

memory request bandwidth are more likely to be

sensitive to caching policy than workloads with

low memory request bandwidth and high compute

bandwidth [22].

Frequent Data Accesses: Kernels with smaller

data sizes generated from global memory into L2

cache but with relative large data sizes generated

to L1 cache can be considered to be reusing data

in the L2 cache compared to other kernels and

are thus classified to have Persistent accesses.

Kernels with similar or same data size generated

from global memory into L2 cache and into L1

cache can be considered to have Streaming

accesses. Finally, kernels considered to have

Normal accesses are those with relatively smaller

sized data generated into L1 cache compared to

data generated from global memory into L2

cache.

Ⅴ. Results

5.1. Application Characterization

Based on the values of the compute throughput

and memory throughput for each of the kernels

shown in Fig. 7, we ascertained that all the

kernels were memory intensive with kernel

histogram64 being the most memory intensive.

We also collected metrics on data request and

access sizes to obtain insight into which
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workloads have persistent accesses and which

Fig. 7. The compute and memory throughput for the

kernels

ones have streaming accesses. Based on the

difference in the size of data generated in L1

relative to the data cached, we identified the

access type for each kernels as either persistent,

streaming or normal according to the caching

policy used for Nvidia Ampere devices.

Kernel
Data 
Request 
MB

Data 
cache 
MB

Data 
to L1 
MB

Access 
type

Histogram64 64 64 100 Streaming

mergedHisto
gram64    136.56 1.14 143.20 Persistent

gpuConjugat
eGradient

108.8 40.39 46.82 Normal

Table 3. Data transfer by the L2 cache

From Table 3, mergedHistogram64 was

characterized to have persistent access type as it

accessed the L2 cache more frequently. The data

transferred through the L2 cache is also

represented graphically in Fig. 8.

Fig. 8. Data transferred by the L2 cache

5.2. Warp Stalls

The warp scheduler can mask the delay of the

warp by switching to a different warp when one

warp is stopped owing to memory work or other

reasons. With the Nsight Compute profiler, we

collected warp stall sampling metrics for the first

100 address spaces during the execution of

histogram and conjugated gradient kernels We

compared the effect of allocating set-aside area to

one of the kernels at a time during concurrent

executions.

Fig. 9. Warp stalls for kernels run concurrently (no

set-aside)

From the results in Fig. 9, we observed that,

when there was no set-aside area in the L2

cache, histogram64 kernel did not have a warp

stall. This confirmed the assertion that the data

loaded into the L2 cache is hardly re-used.

Fig. 10. Warp stalls for kernels run concurrently

(set-aside)
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On the other hand, when a set-aside area of

18MB is allocated to histogram64, the kernel had

a bursty warp stall (Fig. 10).

NVIDIA maintains that normal or streaming

accesses can use set-aside portions of the L2

when not in use however this may come at a

cost of memory stalls.

5.3. Set-aside aware concurrent

executions

The above observation for warp stalls revealed

the need to identify the portion of L2 cache to

allocate for persistence during concurrent

executions in order to maximize the overall

performance of the applications.

To investigate this, we considered three

co-scheduling scenarios showing different

allocations of L2 cache.

We set the hit ratio to 1.0 and the maximum

persistence of the L2 cache to 0.75% of the total

size of the L2 cache.

At the given hit ratio of 1.0, we tuned the

window size of the applications for each

concurrent run as follows: (H/mH=3, CG=15),

(H/mH=9, CG=9) and (H/mH=15, CG=3). We

observed the differentials in the number of

elapsed cycles as shown in Table 4.

Kernel
H/mH=3

CG=15

H/mH=9

CG=9

H/mH=15

CG=3

Hi stogram64,

H
−11312 16072 41104

mergedHistogr

am, mH
−12698 57302 −48538

gpuConjugate

Gradient, CG
51170 94080 115122

Table 4. Differentials in Elapsed Cycles for different

set-aside areas

From the results, we observed that, because of

the streaming nature of data accesses in

histogram64, there was poor performance when

15MB of the L2 cache was reserved for persistent

access by gpuConjugateGradient as the

Histogram64 kernel had more elapsed cycles of

(11312 cycles) relative to execution in

single-mode.

On the other hand, there was a general increase

in performance when the larger persistent data

region (15MB) was allocated maximally to the

histogram; the Histogram64 kernel had fewer

elapsed cycles of about 41104 cycles relative to

execution in single-mode.

The normalized speed-up values for the concurrent

executions of kernels in both the histogram and

conjugate gradient workloads according to the

folllowing set-aside allocation (H/mH=3, CG=15),

(H/mH=9, CG=9) and (H/mH=15, CG=3) is

represented in Fig. 11.

Fig. 11. Normalized speed-up in set-aside concurrent

executions

From the results, we observed that, for optimal

performance of all applications, larger persistent

set-aside area must be allocated to kernels with

streaming accesses such as histogram64, to

enhance overall performance.

ⅤI. Conclusions and Future Works

According to Alsop J. et al [22], although

caching can significantly improve performance by

enabling local data reuse, in some cases the best

caching policy is not the one that enables the

most caching.
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With the new residency control feature introduced

in Nvidia Ampere architectures, an end-user must

decide on the best caching policy by identifying

the access patterns of the workloads.

The kernel that generates the most data from the

global memory may not necessarily be the kernel

which requires persistence in the L2 cache.

Contrary to the intuition to allocate less persistent

data region to a kernel with streaming access

whilst concurrently allocating more to the kernel

with either normal or persistent data access, we

observed that, allocating more persistent region to

a kernel with streaming access when co-executed

with that of normal access yielded optimal overall

performance.

In future, we intend to expand the number of

workloads profiled and observe their behavior for

different co-scheduling scenarios.
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