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ABSTRACT

GPUs have successfully accelerated general-purpose applications in recent times as they provide much higher
instruction throughput and memory bandwidth to applications from different domains. There remains however a
bottleneck in the performance of GPUs due to large memory latencies. Caches reduce off-chip memory traffic
however, managing caches is difficult. With the new residency control feature introduced in the Nvidia Ampere
architectures, users can now control how much data is resident in the cache. During co-executions of multiple
applications, the caveat however is to identify which application requires data persistence and by how much. In
this paper, we characterize workloads by throughput and data access frequencies and experiment with three
co-scheduling scenarios to determine persistent cache allocations for optimum performance. We observed that
when co-executing applications with different data accesses, L2 set-aside allocations should not be biased towards

applications with persistent data accesses.
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I. Introduction

Graphics Processing Units (GPUs) in
comparison to traditional CPUs, provide much
higher instruction throughput and memory
bandwidth during the execution of applications
[1]. Since the introduction of NVIDIA’s Compute
Unified Device Architecture (CUDA), many
applications including High
Computing HPC) applications
[21[31[41[51[61[71[8][9], have leveraged the higher
capabilities to run faster on the GPU. As

Performance

scientific

researchers and private data centers have increased
their deployments of applications on GPUs, shared
clouds like Microsoft Azure[10], Amazon EC2[11]
also provide GPU-based infrastructure services to
support GPU clouds. There remains however, a
bottleneck in the performance of the GPU. GPUs
can  hide

memory access latencies  with

computation however, misaligned memory
accesses, poor data locality in the cache memory,
cache thrashing, high miss rates and poor thread
and block size configurations can have an
expensive  impact on  performance. @ HPC
applications for instance, seek to exploit more
parallelism through the use of multiple threads,
however these active threads contend for limited
GPU cache resources during execution. This
results in cache thrashing and high miss rates.
Memory optimization is thus, the most important
area for performance improvement. This paper
investigates the use of L2 cache residency control
as a means of optimizing memory and thus

improving performance.

@® We characterize applications by their data
request sizes and by the frequency of data reuse.
@® We apply residency control to optimize
memory and improve performance.

@ We investigate the impact of the size of the
L2 set-aside cache area on the performance of

applications when run concurrently.

In summary, this is a quantitative study on

exploiting data access frequency in the L2 cache
for a set-aside-aware execution of applications

which improves performance.

The paper is organized as follows: in Section 2,
we briefly discuss some related works on
optimizing L2 cache performance. We give a
background of the heterogeneous memory system
of the GPU architecture and the L2 Cache
residency control feature in Section 3. We explain
our experimental setup in Section 4 and present
the quantitative results in Section 5. We conclude
the paper in Section 6.

I. Related Works

Multiple memory optimization techniques and
approaches have been employed to mitigate the
effect of memory limitations. Though there has
been several studies to exploit the data locality in
GPUs [12] [13], Sohan Lal et al.[14] argue that
there is a lack of quantitative analysis of data
locality in GPUs.

2.1. Thrashing
Techniques
When applied to GPUs, cache bypassing

Improvement

proposed in CPUs as a thrashing-resistant
technique against early eviction in cachelines may
not achieve the expected improvement[15].
Cache-conscious wavefront scheduling (CCWS)
[13] improves the L1 cache hit rate in GPUs by
alleviating inter-warp contention. These techniques
however do not consider the size of reused data

to improve performance.

2.2. Sectored Caches

Recent GPU architectures including the Nvidia
Ampere architecture employ the use of sectored
caches to fetch only the sectors that are requested
instead of always fetching all the sectors of a
cache line. In A30, a sectored-cache has a cache
line size of 128 bytes (B), divided into four
sectors. On a miss, a sector-cache will only fetch

the 32 B sectors that are requested. A full cache
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line is not automatically fetched however if all
four sectors are requested, it is possible to fetch
a full cache line. This leads to improved
bandwidth utilization even for strided acceses. Jia.
et al [12] explore the use of sectored caches to
tackle issues such as data over-fetch and hence

improve performance.

2.3. Residency Control

Walden et al [16] in an effort to maximize
memory bandwidth utilization for a sparse linear
algebra kernel explore the L2 residency control
and the asynchronous copy instruction features of
the A100 architecture. From their experiments, the
use of L2 persistence and asynchronous memory
copies improve the overall performance by 81.2%,
which is slightly better than the original mapping
algorithm with the new A1l00 features. They
however did not explore the impact of the size of
the L2 set-aside area on performance.

. GPU Memory Architecture

The GPU contains multiple small hardware units
called Streaming Multiprocessors (SMs), on-chip
L2 cache and a high bandwidth DRAM also
known as the global memory (Fig. 1).

SM-0 SM-1 SM-(n-1)

Registers Registers
(256KB per M in A30) e (256KB per SM in A30)
L1/SMEM
(192 KB In A30)

[y A

Registers
(256KB per SM in A30)

L1/SMEM
(192 KB in A30)
Iy

12 Cache (24MB in A30)

Global Memory (ORAM, 2468 in A30)

Fig. 1. Memory architecture of A30

The SMs can execute many threads concurrently.
These threads are grouped physically into warps
of 32 threads each. As stated GPUs contains

32

many SMs, and these SMs can execute many
threads concurrently. The threads in the SMs
access data and instructions from the global
memory (DRAM) at a given bandwidth.
Bandwidth is best served by using as much fast
memory and as little slow-access memory as
possible. Thus, there exists on-chip memory such
as registers which are allocated to individual
threads, Read-only memory for specific tasks such
as texture memory, and the L1 cache/shared

memory, for fast data access within each SM.

The L1 cache/shared memory is on-chip memory
that is shared within thread blocks or CUDA
blocks. The shared memory usage is however
controlled via software while L1 cache is
controlled by hardware. Because L1 cache and
shared memory exists on-chip, it is faster than
both L2 cache and global memory. The L1 cache
is however very small in size and not coherent.
To ensure coherence in data accessed from the
global memory by different SMs, the L2 cache is

used.

L2 cache can be accessed by all threads in all
CUDA blocks. Retrieving data from the L2 cache
is faster than retrieving data directly from global
memory (DRAM). In modern GPU architectures,
access to global memory is cached in L1 and L2
by default.

3.1. L2 Caching Policy
The L2 cache potentially provides higher
bandwidth and lower latency accesses to global
memory. A typical cache line size is 128B in
GPUs. In the Ampere architecture, the loads and
stores can be serviced at 32 B granularity known

as a sector[14].

When a CUDA kemel accesses a data region in
the global memory repeatedly, such data accesses
can be considered to be persisting. On the other
hand, if the data is only accessed once, such data

accesses can be considered to be streaming.
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A caching policy is used to determine which
portion of data to cache. Due to the relatively
small ratio of cache sizes to input data sizes of
many HPC applications, there is the need for a
policy to select the data to prioritize for caching.
Consequently, the data access frequencies are
considered in the eviction of the data cache lines.
Streaming data for instance is first in the eviction
priority order and will likely be evicted when
cache eviction is required. This policy is known

as the evict_first policy.

Data considered as persistent and hence stored in
the set-aside region will be last in the eviction
priority order and will likely be evicted only after
other data with the evict_first and evict_normal

policies are evicted.

The persistence offered by the evict_first policy
provides the opportunity to cache frequently
accessed data and thus minimize the time spent in
fetching newer cache lines from the global

memory during executions.

3.2. L2 Cache Data Persistence

Control

The A30 architecture offers a new feature that
allows a portion of the L2 cache to perform
persistent data accesses to device memory, which
ultimately enables higher bandwidth and lower
latency accesses to device memory.This is
achieved through the use of APIs offered in the
CUDA version 11 toolkit to set aside a portion
of the 24-MB L2 cache to perform persistent data
accesses to global memory. If this set-aside
portion is not used by persistent accesses, normal

accesses or streaming data can use it.

The L2 cache set-aside size for persisting accesses
may be adjusted, within limits. For our
experiments, we set aside a limit of 75% of the
L2 cache memory for persisting accesses. Since
the L2 cache size of the A30 GPU is 24MB, this
translates to 18MB of L2 cache memory set aside

for persistent accesses.

IV. Experimental Setup

4.1. Hardware and Software

Description

Table [1] summarizes the experimental setup for
our experiments. We execute our experiments on
an Nvidia Ampere GPU device with 24GB of
Device memory and 24MB of L2 cache. We use
1 of the 2 GPUs in our A30 environment. The
compute capability is 8.0 and a cache line has a
size of 128 Bytes. For profiling, we use Nvidia’s

Nsight Compute [17].

Table 1. Experimental Setup

GPU Device NVIDIA A30
Compute capability 8.0

Device Memory 24GB

GPU memory bandwidth | 933 GB/s

L2 cache size 24MB

L1 cache size 192KB

Profiler Nsight Compute

4.2. Sliding Window Experiment

We implement a sample micro-benchmark [18]
which uses a 1024 MB region in GPU global
memory through the following kernel code Fig. 2.

_glohal_ void kemel{int "data_persistent, int *data_streaming, IntdataSize, int freqSize}
int id = blockidy.x* blockDim.x+ threadidix;

data_persistentfid % freqSize] = 2 * data_persistentid % freqSize] data_strearingjtid %
tataSize} = 2 *data_streamingflid % detaSize],

}

Fig. 2. Kemel code for sliding window experiment [18]

An access policy window Fig. 3 specifies a
contiguous region of global memory and a
persistence property in the L2 cache for accesses
within that region. As shown in Fig. 3, the
stream level attribute data structure is used to set
the region of the device memory which will

persist in L2 cache when initially accessed.
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Fig. 3. Access Policy for sliding window experiment [18]

Similar to NVIDIA’s sliding window experiment
[18], we specified the access to the freqSize *
sizeof(int) bytes of memory to be persistent and
varied this persistent data region from 10MB to
40MB (Fig. 4) to model various scenarios where
data fits in or exceeds the available set-aside
portion of 18MB for our NVIDIA A30 GPU.
Normal or streaming accesses can use the
remaining 6MB of the non set-aside L2 portion.
We wused a fixed hit-ratio of 1.0 for our

experiment.

10MB - 40MB
sliding window
—

+—>

Persis
tent
data »

1024 MB

18 MB L2 for persistent accesses

Fig. 4. Mapping the persistent accesses to L2 set-aside

for our Nvidia A30 environment

The performance of the kernel in Fig. 2 is shown
in Fig. 5 and Fig. 6. With a hit ratio of 1.0, the
hardware attempted to cache the whole 40MB
window in the set-aside L2 cache area. However,
since the set-aside area (18MB) was smaller than
the window, cache lines were evicted to make
room for data required for the executions. The
premature eviction of data before any significant

reuse is known as cache thrashing.
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Fig. b. Sliding window with hit-ratio

When the persistent data region fitted well into
the 18MB set-aside portion of the L2 cache, a
performance increase of as much as 47% is
observed in Fig. 5. However, once the size of
this persistent data region exceeded the size of
the L2 set-aside cache portion, there was
approximately 25% drop in performance. We
attribute the fall in performance to thrashing of

L2 cache lines.

Controlling the hit-ratio

The hitRatio value can be used to manually
control the amount of  data different
accessPolicyWindows from concurrent CUDA
streams can cache in L2. The hitRatio can
therefore be used to reduce the amount of data

moved into and out of the L2 cache.

In order to optimize the performance and reduce
thrashing, we tuned the numbytes and hitratio
parameters in the access window so that a
random 10MB of the total persistent data
(data_in_cache) was resident in the L2 set-aside
cache portion and investigated the performance
with an experiment. According to equation 1, this
translated to a hit ratio of 0.556.

data_in_cache
Hitratip = Z22=1_c00N¢ (1)

numbytes

From the results in Fig. 6, we observed an
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overall improvement in performance for L2
set-aside cache portions which exceeded the size

of the persistent data region.

Sliding window speedup
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Fig. 6. Sliding window with adjusted hit-ratio

4.3. Workloads
We chose two workloads from the
cudaSDKsamples[19] benchmark suites with data
input sizes greater than our L2 cache size for our
experiments. A short description of the workloads,
the input data sizes and the kernels per workload

is given below and summarized in Table 2.

Table 2. Description of workloads

Input
K 1 d
Workload Fern:s an Data,
unctions
MB
Histogram64,
Hist 64
istogram mergedHistogram64
Conjugate ] .
. gpuConjugateGradient | 108.8
Gradient

Histogram: A histogram is a commonly used
analysis tool in image processing and data mining
applications. They show the frequency of
occurrence of each data element [20]. The
histogram used in our experiments has two (2)
kernels: histogram64() and mergedhistogram64()

used for analysis in our experiments.

Conjugate  Gradient (CG) Solver: The
conjugateGradientMultiBlockCG

conjugate gradient solver on a GPU using Multi

implements  a

Block Cooperative Groups. The sample used in

our experiments has only one kernel [21].

4.4. Application Characterization for

Frequent Accesses
We began by profiling each of the kernels for the
workloads to determine the L2 cache access
patterns. This was to inform the decision on the
size of cache resources to be allocated to each
application during scheduling. We considered the
approach by Alsop et al. [22] and characterized

the kernels according to the following:

Memory intensiveness: As a general rule,
workloads with low compute bandwidth and high
memory request bandwidth are more likely to be
sensitive to caching policy than workloads with
low memory request bandwidth and high compute
bandwidth [22].

Frequent Data Accesses: Kernels with smaller
data sizes generated from global memory into L2
cache but with relative large data sizes generated
to L1 cache can be considered to be reusing data
in the L2 cache compared to other kernels and
are thus classified to have Persistent accesses.
Kernels with similar or same data size generated
from global memory into L2 cache and into L1
cache can be considered to have Streaming
accesses. Finally, kernels considered to have
Normal accesses are those with relatively smaller
sized data generated into L1 cache compared to
data generated from global memory into L2

cache.

V. Results

5.1. Application Characterization
Based on the values of the compute throughput
and memory throughput for each of the kernels
shown in Fig. 7, we ascertained that all the
kernels were memory intensive with kernel

histogram64 being the most memory intensive.

We also collected metrics on data request and

access sizes to obtain insight into which
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workloads have persistent accesses and which

Compute and Memory Throughput

g o
36
a

-

2w
£

A

: — .
Histogramé4 mergedHistogram gpuConjugateGradient
Kernel

B Compute(SM) (%) B Memory(%)

Fig. 7. The compute and memory throughput for the

kernels

ones have streaming accesses. Based on the
difference in the size of data generated in L1
relative to the data cached, we identified the
access type for each kernels as either persistent,
streaming or normal according to the caching

policy used for Nvidia Ampere devices.

Table 3. Data transfer by the L2 cache

Data Data Data
Kernel Request | cache to L1 é&cceess
MB MB MB yp
Histogram64 | 64 64 100 Streaming
ggﬁgimsm 13656 | 114 | 14320 | Persistent
gpuConjugat
eGradient 108.8 40.39 46.82 Normal

From Table 3,

characterized to have persistent access type as it

mergedHistogram64  was

accessed the L2 cache more frequently. The data
transferred through the L2 cache is also
represented graphically in Fig. 8.

L2: Data Requests

gpuConj

DATA SIZE (MB)
8

B

60
4
0
Hi 4 q

mTotal Data Request ~ mTotal Data Cached  mData generated to L1

dHi

KERNEL

Fig. 8. Data transferred by the L2 cache
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5.2. Warp Stalls
The warp scheduler can mask the delay of the
warp by switching to a different warp when one
warp is stopped owing to memory work or other
reasons. With the Nsight Compute profiler, we
collected warp stall sampling metrics for the first
100 address spaces during the execution of
histogram and conjugated gradient kernels We
compared the effect of allocating set-aside area to
one of the kernels at a time during concurrent

executions.

Warp stalls for kernels run concurrently (No set-

aside)

= ] =] ]
5] =8 = =

Warp stalls

=
=

)

4 81216202428 323640 44 45 52 56 60 64 63 72 76 80 84 83 92 96100

Address space

=—=fiistogramé64 =——mergedhistogramb4 ——gpuconjugatedgradient

Fig. 9. Warp stalls for kernels run concurrently (no
set-aside)

From the results in Fig. 9, we observed that,
when there was no set-aside area in the L2
cache, histogram64 kernel did not have a warp
stall. This confirmed the assertion that the data
loaded into the L2 cache is hardly re-used.

Warp stalls for kernels run concurrently (Set-aside)

2500

200

g

Warp stalls

:

300

0

‘Address space

——gpuc

Fig. 10. Warp stalls for kernels run concurrently
(set-aside)
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On the other hand, when a set-aside area of
18MB is allocated to histogram64, the kernel had
a bursty warp stall (Fig. 10).

NVIDIA maintains that normal or streaming
accesses can use set-aside portions of the L2
when not in use however this may come at a

cost of memory stalls.

5.3. Set-aside
executions
The above observation for warp stalls revealed

aware concurrent

the need to identify the portion of L2 cache to

allocate  for  persistence  during concurrent
executions in order to maximize the overall

performance of the applications.

To investigate this, we considered three

co-scheduling scenarios showing different

allocations of L2 cache.

We set the hit ratio to 1.0 and the maximum
persistence of the L2 cache to 0.75% of the total
size of the L2 cache.

At the given hit ratio of 1.0, we tuned the
window size of the applications for each
concurrent run as follows: (H/mH=3, CG=15),
(H/mH=9, CG=9) and (H/mH=15, CG=3). We
observed the differentials in the number of

elapsed cycles as shown in Table 4.

Table 4. Differentials in Elapsed Cycles for different

set-aside areas

H/mH=3 | H/mH=9 | H/mH=15
Kernel

CG=15 CG=9 CG=3
Histogram64,
I —11312 16072 41104
mergedHistogr

—12698 57302 —48538
am, mH
gpuConjugate

51170 94080 115122

Gradient, CG

From the results, we observed that, because of
the streaming nature of data accesses in
histogram64, there was poor performance when

15MB of the L2 cache was reserved for persistent

access by  gpuConjugateGradient as  the
Histogram64 kernel had more elapsed cycles of
(11312 cycles) relative to  execution in

single-mode.

On the other hand, there was a general increase
in performance when the larger persistent data
region (15MB) was allocated maximally to the
histogram; the Histogram64 kernel had fewer
elapsed cycles of about 41104 cycles relative to

execution in single-mode.

The normalized speed-up values for the concurrent
executions of kernels in both the histogram and
conjugate gradient workloads according to the
folllowing set-aside allocation (H/mH=3, CG=15),
(HmH=9, CG=9) and (H/mH=15, CG=3) is
represented in Fig. 11.

Normalized Speed-up in set-aside aware executions
1015

=

=
&

Normalized speed-up
=
2
S -

o

2
@
&

(H/mH=3,CG=13) (H/mH=9, CG=9) (H/mH=15.CG=3)

Kemels by set-aside allocations

® Histogram64 mergedHistogram gpuConjugateGradient

Fig. 11. Normalized speed-up in set-aside concurrent

executions

From the results, we observed that, for optimal
performance of all applications, larger persistent
set-aside area must be allocated to kernels with
streaming accesses such as histogram64, to

enhance overall performance.

VI. Conclusions and Future Works

According to Alsop J. et al [22], although
caching can significantly improve performance by
enabling local data reuse, in some cases the best
caching policy is not the one that enables the

most caching.
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With the new residency control feature introduced
in Nvidia Ampere architectures, an end-user must
decide on the best caching policy by identifying

the access patterns of the workloads.

The kernel that generates the most data from the
global memory may not necessarily be the kernel
which requires persistence in the L2 cache.
Contrary to the intuition to allocate less persistent
data region to a kernel with streaming access
whilst concurrently allocating more to the kernel
with either normal or persistent data access, we
observed that, allocating more persistent region to
a kernel with streaming access when co-executed
with that of normal access yielded optimal overall

performance.

In future, we intend to expand the number of
workloads profiled and observe their behavior for

different co-scheduling scenarios.
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