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Abstract  

 
Memory management is a significant aspect of executing applications on GPUs. With the advancements in GPU 

architecture, issues such as data reuse, cache line eviction and data residency are to be considered for optimal 

performance. Frequency of data access from global memory has significant impacts on the performance of the 

application with increased latencies when accesses result in cache misses. Through static profiling, we identify 

the access patterns to the global memory and investigate the relationship between frequent access patterns and 

data residency in the cache. From our investigations, we observed that each application frequently accesses a 

data region in memory though the range of addresses accessed differ. Index Terms—Static Profiling, Frequently 

Accessed Data, Data Residency. 

 

Ⅰ. INTRODUCTION  

Graphics Processing Units (GPU) provide high 

computational capacity for compute intensive 

applications such as High Performance Computing 

(HPC) applications. However, there remains a 

bottleneck in performance mostly as a result of 

misaligned memory accesses leading to high miss 

rates. To alleviate this phenomenon, researchers 

[1][2][3] have proposed the use of different 

approaches which including the use of FIFO buffers 

[4] to reorder memory requests and as a result 

shorten the reuse distance of memory requests before 

they are sent to L1 caches.  

NVIDIA, with its Ampere architecture for instance, 

offers a new feature that allows the user to leverage 

data persistence in a defined portion of the L2 cache 

for applications with high frequent accesses [5]. This 

is an effort to reduce early eviction of data thus 

ensuring that data that is frequently accessed is 

available during the execution lifetime of the 

application hence lowering access latencies.  

This paper proposes the use of static profiling of 

PTX code to determine the access frequencies of data 

read from the global memory.  From this, regions that 

are frequently accessed can be identified and 

applications can be classified into either streaming 

normal or persistent categories based on the access 

frequencies to the data regions. The range of 

frequently accessed memory addresses can then be 

marked for persistent data storage. Through this study, 

 We determine the data access frequencies of 

applications through static profiling and create 

data access profiles for the applications  

 We classify the applications into three groups; 

persistent, normal and streaming based on a 

frequency score 

The proposed approach provides a basic application 

classification for determining data residency 

configurations for different applications on modern 

GPU architectures. 

The rest of the paper is organized as follows: in 

Section 2, we briefly describe the research works 

related to this study. In Section 3, we give details of 

the proposed static profiling approach for determining 

the data access profiles as well as the application 

classification method. In Section 4, we present the 

results of our study and conclude the paper in Section 

5. 

Ⅱ. RELATED WORKS  

The designs of modern GPU architectures reveal an 

attempt to maximize memory bandwidth by using as 

much fast memory and as little slow-access memory 

as possible hence improving over-all performance. 

Prior research works [6][7][8][9] have attempted to 

identify access patterns and analyze data reusability 

between thread blocks to maximize the gains from 

data locality among threads. Also according to Walden 

et al.[2], the data layout of applications influence the 

effective utilization of memory bandwidth in GPU 



 

architectures. In order to maximize the benefits of 

new features introduced in modern GPU architectures 

such as the L2 cache residency control feature, it is 

imperative to quantitatively determine the amount of 

frequent accesses by the application and identify the 

access patterns to the global memory. Degioanni's 

StAMP[10], propose a memory access profile which 

can be used by off-line scheduling strategies to 

minimize interference overhead. However, they did 

not consider the frequency of access to data regions.  

In our research, creating a data access profile 

serves as a basis for classifying an application. From 

the data access profiles, data regions with continuous 

access frequencies can be identified and explored to 

influence data residency decisions.  

 

Ⅲ. DATA ACCESS PROFILES BASED ON STATIC 

PROFILING  

In this section, we describe our data access profiling 

approach. We begin the process by assembling a PTX 

code from the application's executable and use a 

modified PTX parser obtained from [11] to obtain 

information for the data access profile. The data 

access information is obtained in a two-step process.  

The first step requires the building of a syntax tree 

[7]. The syntax tree derives the thread-to-memory-

addresses accessed relationship in terms of thread ID, 

block ID and other kernel parameters. This 

information can be used to capture inter-thread, 

inter-warp, inter-TB locality within the same kernel 

as well as across multiple kernels.  

Secondly, from the syntax tree, the addresses 

accessed from the global memory by threads and the 

frequency of accesses is obtained with the ld.global 

command. 

A. Data Access Granularity  

Blocks are divided into warps of 32 threads with 

every thread in the warp executing the same 

instruction in lock-step manner but on different data. 

When a warp executes an instruction that accesses 

memory, the requests are processed together for all 

the threads within the warp. Thus, we extract the 

access frequencies at the warp granularity. With our 

static profiling approach, we consider each entry and 

exit of threads to a given data region in the global 

memory as an access order and do not consider 

multiple contiguous loads from the same data region 

separately. 

B. Data Access Profile  

Using the information obtained, we create a data 

access profile for each application. The data access 

profile is expressed both graphically and in tabular 

form. The data access graph shows only the 

application's access patterns and frequencies. 

However, the data access profile table contains 

additional information derived from further analysis. 

This includes the Frequently Accessed Address Range  

(FAAR), the Sum of regions within FAAR, the total 

memory regions, the Frequency Score (FS) and the 

class of the application.  

The Frequently Accessed Address Range (FAAR), is 

the memory address region frequently accessed by 

the application during the application's life-cycle, in 

bytes. From the data access graph, this can be seen as 

the dense parts of the graph. The number of regions 

within this repeatedly accessed data region accessed 

throughout the execution of the application is known 

as the (Sum of regions in FAAR). This metric is 

particularly useful in determining the class of the 

application as well as the Total Memory Regions 

accessed by the application.  

C. Application Classification Approach 

For quantitative analysis and application 

classification, we calculate a Frequency Score (FS), 

which is the ratio of all memory regions accessed in 

The Frequently Accessed Address Range (FAAR) to 

the Total Memory Regions accessed by the application 

as shown in Equation 1. 

Frequency score, FS = ∑Regions in FAAR       (1) 

     Total Memory Regions 

 

Based on the Frequency Score, applications can be 

classified into one of three classes: streaming(S), 

normal (N) and persistent (P). We define these three 

classes according to NVIDIA's caching policies [12] 

and apportion an FS score range to each class. For a 

score within the range, 0<FS<0.33, the application is 

classified as streaming. For a score within the range 

0.33<FS<0.66, the application is classified as normal. 

When data is accessed frequently giving an FS score 

within the range 0.66<FS<1, the application is 

classified as persistent. Our classification is highly 

dependent on the frequency of data access throughout 

the application's execution life-cycle which serves as 

a reliable measure. 

 

IV. EXPERIMENTS AND RESULTS 

We statically profile four applications: LSTM, 

HISTOGRAM, GEMM and BICG from the Tango 

Benchmarks [13], NVIDIA Cuda-Samples [14] and 

Polybench benchmarks [15] respectively on the 

NVIDIA A30 (Ampere architecture) using 1 GPU.  

TABLE I 

APPLICATION GRID-BLOCK DIMENSIONS 

APPLICATION  GRID X GRID Y THREAD X THREAD Y 

LSTM 1 1 100 1 

HISTOGRAM 128 64 64 1 

GEMM 2 8 32 8 

BICG 256 16 16 8 

 



 

 

Fig. 1. Data access graphs for selected applications 

 

 

TABLE II 

DATA ACCESS PROFILE TABLE 

APPLICATION FAAR, B TOTAL MEMORY 

REGIONS 

SUM OF REGIONS 

IN FAAR 

FS CLASS 

LSTM 4197496 2406 2005 0.83 P 

HISTOGRAM 16892 816 688 0.84 P 

GEMM 10364 2416 292 0.12 S 

BICG 51324 276 264 0.96 P 

 

We compiled each application with CUDA version 

12.0 before generating the PTX code. Table I shows 

the grid/block dimensions of the workloads used 

during the static profiling analysis. 

 

A. Observation 1: Frequently Accessed Address 

Region 

From Figure 1, we observe that, all applications 

frequently access data within a given range. The 

range however varies for each application. LSTM 

application for instance has a uniformly repeated 

access pattern to data regions up to 4197496 B (4MB) 

though it accesses data over a 7.6 MB range.  

 GEMM on the other hand accesses a range of 

10364 B (10KB) repeatedly at the beginning of the 

execution and later streams data from different 

memory locations up to 127 KB. 

B. Observation 2: Frequency Score (FS) and 

Classification of applications 

The frequency score for each application is 

calculated relative to the range of data regions 

accessed by the application. From Table 2, we 

observe that BICG application has the highest FS of 

0.96 showing that most of the data it accesses is 

within the given range identified as the frequently 

accessed region. The size of the frequently accessed 

memory region, 50KB, is however very small 

compared to that of LSTM, 4MB. Though the size of 

frequently accessed regions for HISTOGRAM and 

GEMM is similar, HISTOGRAM has a higher FS of 0.84 

which corresponds to the access patterns depicted in 

the graph. GEMM on the other hand can be classified 

as a streaming application as shown in the graph and 

from the FS score of 0.12.  

 



 

V. CONCLUSION AND FUTURE WORK 

This paper uses static profiling analysis to identify 

for selected applications, the access patterns to global 

memory when executed on NVIDIA's A30 GPU. From 

our investigations, we observed that each application 

accesses a given memory region repeatedly. We 

classify the applications into three groups based on 

the frequency of access throughout the life-cycle of 

the application. 
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