

GPU 에서 애플리케이션의 데이터 액세스 패턴 프로파일링

테오도라 아두푸, 김윤희*

컴퓨터과학과, 숙명여자대학교

theoadufu@sookmyung.ac.kr, *yulan@sookmyung.ac.kr

Profiling Data Access Patterns of Applications on

GPUs

Theodora Adufu, Yoonhee Kim*

Department of Computer Science, Sookmyung Women’s University

Abstract

Memory management is a significant aspect of executing applications on GPUs. With the advancements in GPU

architecture, issues such as data reuse, cache line eviction and data residency are to be considered for optimal

performance. Frequency of data access from global memory has significant impacts on the performance of the

application with increased latencies when accesses result in cache misses. Through static profiling, we identify

the access patterns to the global memory and investigate the relationship between frequent access patterns and

data residency in the cache. From our investigations, we observed that each application frequently accesses a

data region in memory though the range of addresses accessed differ. Index Terms—Static Profiling, Frequently

Accessed Data, Data Residency.

Ⅰ. INTRODUCTION

Graphics Processing Units (GPU) provide high

computational capacity for compute intensive

applications such as High Performance Computing

(HPC) applications. However, there remains a

bottleneck in performance mostly as a result of

misaligned memory accesses leading to high miss

rates. To alleviate this phenomenon, researchers

[1][2][3] have proposed the use of different

approaches which including the use of FIFO buffers

[4] to reorder memory requests and as a result

shorten the reuse distance of memory requests before

they are sent to L1 caches.

NVIDIA, with its Ampere architecture for instance,

offers a new feature that allows the user to leverage

data persistence in a defined portion of the L2 cache

for applications with high frequent accesses [5]. This

is an effort to reduce early eviction of data thus

ensuring that data that is frequently accessed is

available during the execution lifetime of the

application hence lowering access latencies.

This paper proposes the use of static profiling of

PTX code to determine the access frequencies of data

read from the global memory. From this, regions that

are frequently accessed can be identified and

applications can be classified into either streaming

normal or persistent categories based on the access

frequencies to the data regions. The range of

frequently accessed memory addresses can then be

marked for persistent data storage. Through this study,

 We determine the data access frequencies of

applications through static profiling and create

data access profiles for the applications

 We classify the applications into three groups;

persistent, normal and streaming based on a

frequency score

The proposed approach provides a basic application

classification for determining data residency

configurations for different applications on modern

GPU architectures.

The rest of the paper is organized as follows: in

Section 2, we briefly describe the research works

related to this study. In Section 3, we give details of

the proposed static profiling approach for determining

the data access profiles as well as the application

classification method. In Section 4, we present the

results of our study and conclude the paper in Section

5.

Ⅱ. RELATED WORKS

The designs of modern GPU architectures reveal an

attempt to maximize memory bandwidth by using as

much fast memory and as little slow-access memory

as possible hence improving over-all performance.

Prior research works [6][7][8][9] have attempted to

identify access patterns and analyze data reusability

between thread blocks to maximize the gains from

data locality among threads. Also according to Walden

et al.[2], the data layout of applications influence the

effective utilization of memory bandwidth in GPU

architectures. In order to maximize the benefits of

new features introduced in modern GPU architectures

such as the L2 cache residency control feature, it is

imperative to quantitatively determine the amount of

frequent accesses by the application and identify the

access patterns to the global memory. Degioanni's

StAMP[10], propose a memory access profile which

can be used by off-line scheduling strategies to

minimize interference overhead. However, they did

not consider the frequency of access to data regions.

In our research, creating a data access profile

serves as a basis for classifying an application. From

the data access profiles, data regions with continuous

access frequencies can be identified and explored to

influence data residency decisions.

Ⅲ. DATA ACCESS PROFILES BASED ON STATIC

PROFILING

In this section, we describe our data access profiling

approach. We begin the process by assembling a PTX

code from the application's executable and use a

modified PTX parser obtained from [11] to obtain

information for the data access profile. The data

access information is obtained in a two-step process.

The first step requires the building of a syntax tree

[7]. The syntax tree derives the thread-to-memory-

addresses accessed relationship in terms of thread ID,

block ID and other kernel parameters. This

information can be used to capture inter-thread,

inter-warp, inter-TB locality within the same kernel

as well as across multiple kernels.

Secondly, from the syntax tree, the addresses

accessed from the global memory by threads and the

frequency of accesses is obtained with the ld.global

command.

A. Data Access Granularity

Blocks are divided into warps of 32 threads with

every thread in the warp executing the same

instruction in lock-step manner but on different data.

When a warp executes an instruction that accesses

memory, the requests are processed together for all

the threads within the warp. Thus, we extract the

access frequencies at the warp granularity. With our

static profiling approach, we consider each entry and

exit of threads to a given data region in the global

memory as an access order and do not consider

multiple contiguous loads from the same data region

separately.

B. Data Access Profile

Using the information obtained, we create a data

access profile for each application. The data access

profile is expressed both graphically and in tabular

form. The data access graph shows only the

application's access patterns and frequencies.

However, the data access profile table contains

additional information derived from further analysis.

This includes the Frequently Accessed Address Range

(FAAR), the Sum of regions within FAAR, the total

memory regions, the Frequency Score (FS) and the

class of the application.

The Frequently Accessed Address Range (FAAR), is

the memory address region frequently accessed by

the application during the application's life-cycle, in

bytes. From the data access graph, this can be seen as

the dense parts of the graph. The number of regions

within this repeatedly accessed data region accessed

throughout the execution of the application is known

as the (Sum of regions in FAAR). This metric is

particularly useful in determining the class of the

application as well as the Total Memory Regions

accessed by the application.

C. Application Classification Approach

For quantitative analysis and application

classification, we calculate a Frequency Score (FS),

which is the ratio of all memory regions accessed in

The Frequently Accessed Address Range (FAAR) to

the Total Memory Regions accessed by the application

as shown in Equation 1.

Frequency score, FS = ∑Regions in FAAR (1)

 Total Memory Regions

Based on the Frequency Score, applications can be

classified into one of three classes: streaming(S),

normal (N) and persistent (P). We define these three

classes according to NVIDIA's caching policies [12]

and apportion an FS score range to each class. For a

score within the range, 0<FS<0.33, the application is

classified as streaming. For a score within the range

0.33<FS<0.66, the application is classified as normal.

When data is accessed frequently giving an FS score

within the range 0.66<FS<1, the application is

classified as persistent. Our classification is highly

dependent on the frequency of data access throughout

the application's execution life-cycle which serves as

a reliable measure.

IV. EXPERIMENTS AND RESULTS

We statically profile four applications: LSTM,

HISTOGRAM, GEMM and BICG from the Tango

Benchmarks [13], NVIDIA Cuda-Samples [14] and

Polybench benchmarks [15] respectively on the

NVIDIA A30 (Ampere architecture) using 1 GPU.

TABLE I

APPLICATION GRID-BLOCK DIMENSIONS

APPLICATION GRID X GRID Y THREAD X THREAD Y

LSTM 1 1 100 1

HISTOGRAM 128 64 64 1

GEMM 2 8 32 8

BICG 256 16 16 8

Fig. 1. Data access graphs for selected applications

TABLE II

DATA ACCESS PROFILE TABLE

APPLICATION FAAR, B TOTAL MEMORY

REGIONS

SUM OF REGIONS

IN FAAR

FS CLASS

LSTM 4197496 2406 2005 0.83 P

HISTOGRAM 16892 816 688 0.84 P

GEMM 10364 2416 292 0.12 S

BICG 51324 276 264 0.96 P

We compiled each application with CUDA version

12.0 before generating the PTX code. Table I shows

the grid/block dimensions of the workloads used

during the static profiling analysis.

A. Observation 1: Frequently Accessed Address

Region

From Figure 1, we observe that, all applications

frequently access data within a given range. The

range however varies for each application. LSTM

application for instance has a uniformly repeated

access pattern to data regions up to 4197496 B (4MB)

though it accesses data over a 7.6 MB range.

 GEMM on the other hand accesses a range of

10364 B (10KB) repeatedly at the beginning of the

execution and later streams data from different

memory locations up to 127 KB.

B. Observation 2: Frequency Score (FS) and

Classification of applications

The frequency score for each application is

calculated relative to the range of data regions

accessed by the application. From Table 2, we

observe that BICG application has the highest FS of

0.96 showing that most of the data it accesses is

within the given range identified as the frequently

accessed region. The size of the frequently accessed

memory region, 50KB, is however very small

compared to that of LSTM, 4MB. Though the size of

frequently accessed regions for HISTOGRAM and

GEMM is similar, HISTOGRAM has a higher FS of 0.84

which corresponds to the access patterns depicted in

the graph. GEMM on the other hand can be classified

as a streaming application as shown in the graph and

from the FS score of 0.12.

V. CONCLUSION AND FUTURE WORK

This paper uses static profiling analysis to identify

for selected applications, the access patterns to global

memory when executed on NVIDIA's A30 GPU. From

our investigations, we observed that each application

accesses a given memory region repeatedly. We

classify the applications into three groups based on

the frequency of access throughout the life-cycle of

the application.

ACKNOWLEDGMENT

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government(MSIT) (No. 2021R1A2C1003379).

참 고 문 헌

[1] Duong, Nam, et al. "Improving Cache Management

Policies Using Dynamic Reuse Distances." 45th Annual

IEEE/ACM International Symposium on Microarchitecture,

Pages 389-400, 2012

[2] A. Walden, M. Zubair, C. P. Stone and E. J. Nielsen,

"Memory Optimizations for Sparse Linear Algebra on GPU

Hardware," 2021 IEEE/ACM Workshop on Memory Centric

High Performance Computing (MCHPC), 2021, pp. 25-32,

doi: 10.1109/MCHPC54807.2021.00010.

[3] D. Tripathy, A. Abdolrashidi, L. N. Bhuyan, L. Zhou, and

D. Wong, “Paver: Locality graph-based thread block

scheduling for gpus,” ACM Transactions on Architecture and

Code Optimization (TACO), vol. 18, no. 3, pp. 1– 26, 2021.

[4] Fang Juan, Zelin Wei, and Huijing Yang. 2021. "Locality-

Based Cache Management and Warp Scheduling for

Reducing Cache Contention in GPU" Micromachines 12, no.

10: 1262. https://doi.org/10.3390/mi12101262

[5] NVIDIA A100 datasheet, https://www.nvidia.com/cont-

ent/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-

a100-datasheet-nvidia-us-2188504-web.pdf,

[6] Danqi Wang; Chai Kiat Yeo, "Exploring Locality of

Reference in P2P VoD Systems," Multimedia, IEEE

Transactions on, vol.14, no.4, pp.1309, 1323, Aug.2012

[7] D. Tripathy, A. Abdolrashidi, Q. Fan, D. Wong, and M.

Satpathy, “Localityguru: A ptx analyzer for extracting thread

block-level locality in gpgpus,” in 2021 IEEE International

Conference on Networking, Architecture and Storage (NAS),

pp. 1– 8, IEEE, 2021.

[8] Di Carlo, S.; Prinetto, P.; Savino, A., "Software-Based

Self-Test of SetAssociativeCache Memories," Computers,

IEEE Transactions on , vol.60, no.7, pp.1030,1044, July 2011

doi:10.1109/TC.2010.166

[9] Fensch, C.; Barrow-Williams, N.; Mullins, R.D.; Moore,

S., "Designing a PhysicalLocality Aware Coherence Protocol

for Chip Multiprocessors," Computers, IEEE Transactions

on , vol.62, no.5, pp.914,928, May 2013

[10] Théo Degioanni, Isabelle Puaut. StAMP: Static Analysis

of Memory access Profiles for real-time tasks. WCET 2022

- 20th International Workshop on Worst-Case Execution

Time Analysis, Jul 2022, Modena, Italy.

⟨10.4230/OASIcs.WCET.2022.1⟨. ⟨hal-03723457⟨

[11] PTX Parser,https://github.com/JIeunAmy/coalescing_

graph_with_PTX

[12] Kernel Profiling Guide, https://docs.nvidia.com/nsight-

compute/ProfilingGuide/

[13] Karki, Aajna Keshava, Chethan Shivakumar, Spoorthi

Skow, Joshua Hegde, Goutam Jeon, Hyeran. (2019).

Tango: A Deep Neural Network Benchmark Suite for

Various Accelerators.137-138. 10.1109/ISPASS.2019.00021.

[14] CUDA SAMPLES, https://github.com/NVIDIA/cuda-

samples/

[15] Louis-Noël Pouchet. 2012. Polybench: The polyhedral

benchmark suite. http://www.cs.ucla.edu/pouchet/soft-

ware/polybench.

[16] Adufu, T. and Kim Y. (2022). A Performance

Benchmark of Cached Data Access Patterns on GPUs.

KNOM Review '22-02 Vol.25 No.02, pg 30-39.

https://doi.org/10.22670/knom.2022.25.2.

[17] NSIGHT COMPUTE, https://developer.nvidia.com/

nsight-compute

https://docs.nvidia.com/nsight
https://github.com/NVIDIA/cuda
https://developer.nvidia.com/

