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HPC 응용들의 효율적인 동시 실행을 위한 GPU 자원
공유 방안 분석
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요 약

그래픽 처리 장치(GPU)는 사용자에게 더 낮은 인프라 비용으로 다양한 애플리케이션의 실행을 가속화할 수 있

는 기하급수적인 컴퓨팅 용량을 제공함에 따라 오늘날의 HPC 및 클라우드 인프라의 중요한 부분이 되었다. 그러

나 기존 GPU는 한 번에 하나의 애플리케이션만 실행할 수 있으므로 리소스 활용도가 낮고 배치 비용이 증가하는

문제가 발생한다. 지금까지는 GPU에서 동시 실행을 가능하게 하기 위한 노력이 소프트웨어 기반이었으나,

NVIDIA의 MIG 기능이 도입되면서 GPU를 분할하여 애플리케이션에 격리된 리소스를 제공할 수 있게 되었다. 본

논문에서는 다양한 MIG 인스턴스에서 실행되는 HPC 애플리케이션의 동작을 연구한다. 또한 하드웨어 수준에서

GPU 리소스를 공유하는 것이 각 애플리케이션의 성능에 미치는 영향에 대해서도 연구한다.
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ABSTRACT

Graphics Processing Units (GPU) have become a significant part of today’s HPC and cloud infrastructures as

they offer users exponential computing capacity to accelerate the execution of diverse applications at lower

infrastructural costs. The traditional GPU however, allows for the execution of only one application at a time,

giving rise to issues of resource under-utilization and subsequently higher deployment costs. Until now, efforts to

enable concurrent executions on the GPU have been software-driven however with the introduction of the MIG

feature by NVIDIA, GPUs can now be partitioned to provide isolated resources to applications. This paper

investigates the behavior of HPC applications executed on different MIG instances. We also explore the

implications of sharing GPU resources at the hardware level, on the performance of each application.
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Ⅰ. Introduction

  Scientists researchers and engineers over the

years, have deployed various computing
infrastructures to model new products and

simulate the interactions of these products with

the world. The provisioning of cloud platforms

for instance, began a gradual shift from the use

of traditional on-premises supercomputers to
deploying applications including HPC applications

in the cloud [1] [2]. A typical HPC application

places significant demands on the compute

hardware and infrastructure that supports it and

hence may require the computing capabilities
available through accelerators like the GPU. In

cloud environments [3] [4] [5] [6], GPUs remain

a necessary computing resource for the efficient

execution of diverse workloads. Modern GPU

architectures offer users exponential GPU capacity

to accelerate the execution of diverse applications
such as High Performance Computing (HPC)

applications and Machine Learning (ML)

applications. NVIDIA’s GPU Cloud for instance

offers researchers the flexibility to run HPC

application containers on NVIDIA GPU’s[7]. The
opportunity to fuse HPC with Artificial

Intelligence (AI) and ML is also fueling the

advancement of computational science across a

broad range of industries and domains [8].

Additionally, deploying HPC applications in
cloud environments on a short-term basis enables

scientists to quickly deploy applications at a

relatively lower cost whilst leveraging the

capabilities of better computing infrastructure.

However in the medium to long run, this

translates into higher costs especially for users of
cloud environments since for the default GPU

run-time environment, only one application can be

executed at a time on the GPU.

Researchers [9] [10] [11] [12] also observed the

issue of resource under-utilization in the default
GPU run-time environment which has negative

cost implications for the user. Using Deep

Learning Inference Models, researchers [13] [14]

[15] [16] [17] have investigated the possibility of

saturating all Streaming Multiprocessors (SMs) of

the GPU in a bid to improve GPU utilization.
However, these reveal issues regarding optimum

resource allocation, performance isolation,

interference, and performance optimization.

A common approach to maximize resource

utilization is to maximize the concurrency of
applications executed on the GPU. NVIDIA’s

CUDA Streams [18] [19] for instance, allows

applications to improve GPU utilization by

interleaving operations in different streams within

the application in order to achieve concurrency.

NVIDIA has also introduced spatial sharing
approaches like Hyper-Q and it’s Multi-Process

Service (MPS) [20] as well as Multi-Instance

GPU (MIG) [21] to further improve resource

utilization by allowing multiple contexts to be

executed in parallel on shared GPU resources.
This paper seeks to investigate the behaviour of

selected HPC workloads when deployed on

various MIG instances. Through this research, we

• investigate the utilization of different GPU

resources when applications are deployed on
different MIG instances

• investigate the characteristics of selected HPC

applications by their performance on various MIG

instances.

Our investigations reveal that:
• Using smaller MIG instances has significant

benefits including freeing computing resources for

use by other applications without significant

performance degradation.

• For compute intensive models, smaller MIG

instances may not be sufficient for executions
thus characterizing the application before execution

is necessary for proper resource allocation.

The rest of the paper is organized as follows:

in Section 2, we briefly discuss some related

works on resource sharing approaches on GPUs
and explain the motivation for this investigation

through our experimental study in section 3. In

Section 4, we give a description of GPU sharing

using MIG and explain our experimental setup in
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Section 5. We present the quantitative results of

our investigations in Section 6 and conclude the

paper in Section 7.

II. Related Works

A. Resource Sharing Approaches
Resource sharing approaches deployed on GPUs

can be classified into either temporal sharing

(time-slicing) or spatial sharing (hardware-based

sharing). The CUDA programming model provides

multiple technologies for concurrently executing
applications on GPU resources. CUDA Streams

for instance, allows processes within a particular

application to be submitted to different

independent queues for independent execution by

the GPU. With CUDA streams, resources such as
SMs, Memory, Memory bandwidth, caches are all

shared by the processes in the various streams of

an application in a time-sharing or temporal

sharing [22] manner. Thus, although CUDA

Streams tend to improve GPU utilization and
overall throughput, they have an adverse impact

on latency [12]. CUDA graphs [23] allow work

to be defined as graphs rather than single

operations to mitigate some of these overheads.

Multi-Process Service (MPS) [20] is a

software-based mechanism which allows spatial

sharing of GPU resources across multiple

co-operative processes of CUDA kernels like MPI

jobs via a hardware feature called Hyper-Q. By

leveraging GPU’s parallel compute capability,
MPS shares the GPU’s SM resources across

applications based on their resource demands. This

uncontrolled spatial sharing of GPU resources

cannot guarantee performance isolation and often

results in unpredictable application throughput and
latency [24]. MPS alternatively allows users to

determine a percentage limit of GPU resources

(SMs) to be used by a particular process when

the compute resource is allocated. However, other

resources like memory, memory bandwidth and
caches are all shared between co-executing

applications.

III. Experimental Study on Resource
Utilization by HPC Applications

Following observations by researchers [9] [10]

[11] [12] which revealed that Deep Learning (DL)
applications under-utilize GPU resources, we

conducted a preliminary experiment (Figure 1), to

investigate the compute and memory throughput

Fig. 1. Poor resource utilization of the NVIDIA A30 GPU
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of 15 selected HPC applications taken from

CUDA samples [25], Rodinia [26], PolyBench

[27] and Tango [28] Benchmarks on a full

NVIDIA A30 GPU using the Nsight Compute
profiler [29]. This was to ascertain whether the

claims by these researchers were true for HPC

applications as well.

From our experimental study Figure 1, we

observed that, most HPC applications had less
than 50% compute and memory throughput

indicating that the claims were true for HPC

applications as well. We observed also that there

were only few applications which fully engaged

the compute resources during the execution

life-cycle. The memory throughput was higher for
kernels in Histogram, SCAN, Resnet which are

applications known to be memory intensive.

Following these observations, we proceed to

investigate the behaviour of some of these
applications on different MIG instances.

IV. GPU-Sharing with MIG

Multi-Instance GPU (MIG) [21] is a new

technology introduced by NVIDIA that can

partition a GPU to better fit workloads that
require less compute and memory resources than

is available on a full GPU. The MIG feature on

the Ampere micro-architecture partitions the GPU

resources into dedicated compute cores, memory,

cache and memory bandwidths (Figure 2).

Fig. 2. MIG memory partitions for an MIG compute
configuration with three GPU Instances on A100 [30]

Until now, research has focused on improving

the resource utilization of SMs at the software

level through technologies like CUDA Streams,

Hyper-Q and MPS. However, this hardware-level

partitioning technology serves as a solution to the
problem of resource under-utilization as well as

providing isolation by partitioning the GPU

resources into dedicated compute cores, memory,

cache and memory bandwidths known as a GPU

Slice.
A GPU Slice [31] or GPC Slice is the

smallest fraction of the GPU that combines a

single GPU memory Slice and a single GPU SM

Slice. A GPU Memory Slice, the smallest fraction

of GPU memory, includes all the isolated blocks

of L2 cache slices, associated frame buffer
memory and proportions of memory bandwidth

available for computation. Similarly, a GPU SM

Slice is the smallest fraction of SMs on the GPU

available for computation when configured in

MIG mode.
MIG partitions a single GPU into multiple

predefined and isolated GPU Instances (GIs) [32]

on which workloads can be executed without the

bottlenecks of error and security related

interference. A GPU Instance (GI) is a
combination of GPU slices and GPU engines

which can be further partitioned into MIG

instances. Within a GI, GPU Memory and GPU

SM slices are shared and the SM slices can

further subdivided into Compute Instances (CI).
MIG instances can thus be created from a mix

and match of GPC Slices so long as there are

enough resources available to execute the

workload.

On the NVIDIA A100 which serves as the

representative GPU for the MIG feature [21],
there are 19 possible MIG configurations as

shown in Figure 3. A GPU can be re-partitioned

into any of these configurations though not

without limitations. For instance, since MIG

re-partitioning is not dynamic on the A100 and
A30 GPUs, there is the issue of poor resource

allocation stemming from poor configurations.

This could further lead to inefficiencies in GPU

utilization and higher infrastructure costs.
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Fig. 3. Supported profiles of Multi Instance GPUs on
NVIDIA A100 architecture [21]

V. Experiment Environment

We conduct our experiments on the NVIDIA

A30 GPU (Table I) which allows for 5 possible
MIG configurations [21] as shown in Figure 4.

For these 5 configurations, there are a total of 3

possible GPU Instances (GIs) which can be

created on the A30 architecture (Table I) and

which are used in our experiments.

Fig. 4. Supported profiles of Multi Instance GPUs on
NVIDIA A30 architecture [21]

Table II shows the resources for each of the

available GPU Instances. We create the instances

in advance and do not take into account the time

taken to create the instances during our

investigations.

A. Applications/Workloads:
SCAN [25]: This is a simple parallel algorithm

based on the all-prefix-sums operation and used in

sorting, lexical analysis, string comparison,

polynomial evaluation, stream compaction, building

histograms and data structures (graphs, trees, etc.)

amidst others [33].
Breadth-Fir st-Search (BFS) [26]: This is a

graph traversal problem, which is commonly used

to find the shortest path between two nodes.

LavaMD [26]: This is a molecular dynamics

application that calculates the potential and

relocation of particles within a large 3D space.
GEMM [27]: This is an algorithm that

multiplies two input matrices to produce an output

matrix by partitioning the output matrix into tiles,

which are then assigned to thread blocks. It

serves as a fundamental building block for many
operations in neural networks.

B. Profiling Metrics:
To evaluate the effectiveness of the

proposed GPU sharing technology, we

collected metrics on the SM activity

(SMACT), the memory bandwidth utilization
(DRAMA), the GPU engine activity (GRACT)

and the occupancy of the SMs (SMOCC) every

100ms using NVIDIA Data Center GPU Manager

(DCGM) [341]. We show graphically, the moving

average for each metric per application in section

5. The metrics collected are described as follows:
GRACT shows the fraction of time any portion

of the graphics or compute engines were active.

It shows the ratio of time the graphics/compute

context is bound and the graphics pipe or

compute pipe is busy.
SMACT measures the ratio of cycles an SM

has at least one warp is active on a

multiprocessor averaged over all SMs. It is used

in tandem with the GRACT metric to confirm the

accuracy of the metrics collected.
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SMOCC measures the fraction of resident

warps on a multi-processor, relative to the

maximum number of concurrent warps supported

on a multiprocessor.
DRAMA essentially measures how active the

device memory interface is in sending or

receiving data from the global memory.

VI. Evaluation

In this section, we evaluate GPU sharing for 4
selected applications taken from from CUDA

samples [25], Rodinia [26], PolyBench [27]

benchmarks using the profiling metrics defined in

section 4. We share our observations on the

performance of applications on the various MIG

instances by comparing the 4 metrics obtained
using the DCGM profiler relative to executions on

a full GPU without MIG mode enabled.

A. Graphics Engine Activity (GRACT)
From Figure 5, we observed that, the reported

Graphics Engine Activity for BFS and GEMM

are relatively small (less than 10%) regardless of

the various MIG instances on which they are

deployed.

Fig. 5. GRACT

This revealed that BFS and GEMM were not
directly affected by the availability of GPU

resources as their utilization is relatively low. We

also observed that the Graphics Engine Activity

for the SCAN application was dependent on the

available resources as the activity of the GPU
was higher when SCAN was run on a MIG

1g.6gb instance compared to the MIG 2g.12gb

instance (0.4x) and MIG 4g.24gb instance (2.8x).

This revealed that for large applications

implementing the SCAN algorithm, the size of the
MIG instance must be carefully considered to

optimize performance.

LavaMD application did not run on the MIG

1g.6gb instance since the available SMs were

insufficient. This revealed the need to first
characterize applications before allocating MIG

resources to them as well as validated the

isolation provided through the MIG technology.

B. Streaming Multiprocessor Activity (SMACT)
We also observed the SMACT for each

application as shown in Figure 6. Similar to the

observations for GRACT, we observed that

LavaMD had the highest SM activity per SM
showing that LavaMD is a compute intensive

application since for more than 80% of the

execution cycles, the assigned SMs have at least

one warp assigned to them. BFS and GEMM

show far less SM activity whilst the activity for

SCAN varies across the MIG instances similar to
observations for GRACT.

Fig. 6. SMACT

C. Streaming Multiprocessor and Occupancy
(SMOCC)

From Figure 7, we observed that for LavaMD

application, though the SMACT and GRACT

recorded were high, the occupancy is relatively

low. This revealed that there is the need to

optimize the LavaMD application to maximize the
fraction of resident warps on each SM during
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execution. The SMOCC for SCAN, BFS and

GEMM is consistent with the GRACT and

SMACT showing that these applications have a

good mapping of warps to SMs.

Fig. 7. SMOCC

D. DRAM Activity (DRAMA)
Figure 8 shows the DRAM activity for the

applications. We observed that, SCAN uses the

device memory interface more actively than

LavaMD, BFS and GEMM since the operations in

SCAN require continuous reading and writing

from the GPU memory.
Unlike the other applications, the size of the

MIG instance significantly affects the DRAM

activity recorded for SCAN. This revealed that,

for memory intensive applications, the MIG

instance allocated must have sufficient memory
resources in order to mitigate possible bottlenecks.

Fig. 8. DRAMA

E. Scenarios for Co-Running HPC applications in
MIG instances

Having observed from our experiments that
most applications are able to run successfully on

smaller partitions of the GPU without significant

overheads, we investigate scenarios for co-running

applications on the NVIDIA A30 GPU. In Figure

9, we show the optimal execution configuration

for co-running applications with different

minimum resource requirements. We consider the
case where a user submits a batch of 3

applications to be executed concurrently on MIG

instances on NVIDIA A30 GPU.

Fig. 9. 5 Possible Execution Scenarios Based on Available
Configurations on NVIDIA A30

We recall that, on the NVIDIA A30 GPU,

there are five (5) possible MIG configurations as

shown in Figure 9. Thus if, for instance, the

batch contains two (2) applications of SCAN and
one (1) application of LavaMD, the MIG

configurations which can allow for the execution

of all three applications concurrently is either

configuration 3 or configuration 4. This is due to

the fact that, based on profiled information, the

minimum resource required for the execution of
LavaMD is the MIG 2g.12gb instance while the

SCAN application can be executed on the MIG

1g.6gb instance. All other MIG configurations

would require that at least one application waits

for the completion of another application before
being executed.

Consequently, for a case where the batch

contains two (2) applications of LavaMD and one

(1) application of SCAN, there will be no

possible MIG configuration which can allow for
the execution of all three applications concurrently

since the minimum resource requirement for

LavaMD is satisfied by the MIG 2g.12gb

instance. In that case, the execution times of the

applications may have to be considered as well.
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Ⅶ. Conclusion and Future Works

The paper first confirms that when deploying

HPC applications on full GPU resources, there is

resource under-utilization. The paper then
investigated the behaviour of selected HPC

applications when deployed on various MIG

instances. It was observed that, by deploying

applications on smaller MIG instances, computing

resources are freed for use by other applications
without significant performance degradation.

Applications can run thus be executed

concurrently in different MIG instances without

any interference as long as there are available

resources.

From our investigations, we observed the need
to first characterize applications before allocating

MIG resources to them in order to determine the

right MIG resource for execution. We also

observed the for memory intensive applications,

the MIG instance allocated must have sufficient
memory resources in order to mitigate possible

bottlenecks such as Out-Of-Memory (OOM)

situations. We also recommend that HPC

applications be optimized to maximize the fraction

of resident warps on each SM during execution
and hence improve resource utilization.

Though we do not take into account the time

taken to create the instances in the experiments,

we observed slight changes in the metrics

collected on the full resource as compared to
MIG 4g instance. For instance, for the LavaMD

application, we observed a higher percentage of

compute engine and SM activity seen in the

values for GRACT and SMACT for a No MIG

case and the MIG 4g case though the resources

in each case are expected to be the same. We
consider this as part of the overheads in

deploying the applications in MIG instances and

would investigate this further in future research

works. We also intend to investigate various

scheduling scenarios for MIG instances.
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