Thesis for the Degree of Masters

Interference—Aware Resource Scheduling
Using Application Clustering Analysis In

Virtualized Environments

r (

Mg BelNe] S8 BH BAS 088 1w

Adufu Theodora Kafui Adzo

Department of Computer Science
The Graduate School

Sookmyung Women’s University

Thesis for the Degree of Masters

Interference—Aware Resource Scheduling
Using Application Clustering Analysis In

Virtualized Environments

r (

Mg BelNe] S8 BH BAS 088 1w

Adufu Theodora Kafui Adzo

Department of Computer Science
The Graduate School

Sookmyung Women’s University

Interference—Aware Resource Scheduling
Using Application Clustering Analysis In

Virtualized Environments

By

Adufu Theodora Kafui Adzo

A Thesis submitted to the
Department of Computer Science and
the Graduate School of
Sookmyung Women’s University
in partial fulfillment of the requirements

for the degree of Master

In charge of major work: PROFESSOR KIM YOONHEE

June 2016

Interference—Aware Resource Scheduling Using
Application Clustering Analysis in Virtualized

Environments

This certifies that the degree of Master of

Adufu Theodora Kafui Adzo is approved by

(Signature)

Chair of Committee

(Signature)

Committee Member

(Signature)

Committee Member

The Graduate School

Sookmyung Women's University

June 2016

ACKNOWLEDGEMENT

First and foremost, I would like to thank the Almighty God for the
strength, ability and unparalleled wisdom He made available to me
throughout this research. I also thank His able Clergy who have always

encouraged me to challenge myself and strive for excellence.

[have been very fortunate to have a superb advisor, Professor
Yoonhee Kim whose professional abilities and knowledge are always
admired. She provided me with excellent guidance, allowed me to
investigate my own ideas, gave me many opportunities to learn, and
helped me conduct research which has led to the success of this thesis.
When [encountered obstacles in research, discussions with her often
inspired me. Her endless amount of energy is really an inspiration for
me to do better research and I greatly thank her for all the kindness,

support and encouragement.

Many thanks to my thesis reviewers and the defense jury committee,
Professor Byeong Mo Chang and Professor JongWon Choe, who have
all given me excellent guidance and advice. I am grateful for the
tremendous amount of time and effort that they have contributed to

this work.

[am blessed to have a knowledgeable faculty, supportive colleagues,
loving families and friends. Here in Korea, my research colleagues in
the Distributed and Cloud Computing Lab at Sookmyung University,
the Nam family, Salem Worship team, members of Winners’ Chapel

International Seoul and all my faithful friends, provided a great deal of

support in putting together this thesis. I cherish the times we spent
together discussing issues, working and dinning. And in Ghana, the
faculty of the Computer Science Department, headed by Dr. Ferdinand
A. Katsriku, have in no small measure spurred me on to higher heights.

Thank you.

Finally, I appreciate my parents Mr. and Mrs. Adufu, and my best friend
Eric Egan, who passed on to me a strong work ethic and the mentality
of leaving a lasting legacy in addition to their my ever-present support.
Together, your strong convictions about my bright future is admirable
and worthy of emulation. I am forever grateful for your unflinching
support, encouragement, and assistance during the writing of this

thesis.

CONTENTS

LIST OF TABLES ...ctttutiiieeiiiiiiiiiiienneiniiieciiieennsssesssimmmanmmnes II
LIST OF FIGUREScuuuiieeeetiietttttununeeaeeeeeeereennnnnneseseeeeeeeeesannnes IV
ABSTRACT ...otteiiieeeeiieetttteenneeeesreeeetreannssesssseeeerreenssnnssssssssennnes VI
I INTRODUCTION.....cctttteuuueeeerreeerrrmennnseesssrecesrmmnmmmossssssssssaes 1
1.Research Background and Problem Definition 1
2.Research Significance and Approach.....cccceeeveeiiiieeiiiineiiinnnn, 2
3. TheSIS STIUCLUIE .oiivvn it 4
II. RELATED WORKS......ciiieieiicee et ecteee et e eeeeneee 5

1.Performance Evaluation of OS-Level Virtualization Technologies

5
2. Interference—Aware Scheduling........coooevveeiivieeiiiieeiiiieeiieen, 6
3.Scheduling by Container Cluster Managers, (CCM) 7
4.Comparison of Related WOrksS....ooocoviieiieiiiiiiiieieieeeee, 9

III. INTERFERENCE-AWARE SCHEDULING BASED ON

APPLICATION CLUSTERING ANALYSIS....ccccoviveireeerneeennnnn. 11
1.Application Clustering Using K=Meansccccccceeevvnnnnn. 13
2. Interference Detection .ooiiveviieeiiiiiiiiie e, 15

3.Interference—Aware Scheduling........coooevveeiiiiieiiiineiiinennn. 16

4.Resource Selection Methodcooovvveiiiiiiiiineiiiineiiieeiee, 18
IV. EXPERIMENTS......itttitiiiiieeieiierneeeernereeernerncernersersnesnesnnns 21
1.Experiment Environment......coocoveieiiieiieiieiieeeeeeeeeae 21
@ Scientific APPLCALIONS couueeereererreereiseereesrsseereesrssessesesssssesseneses 21

@ Application Profile Data ... 24

2. Application Characterizationccoeeuvveeiiieeeevineeiiieeeiineennn. 26
3.Experiments and EvaluationsS......cccccccoeeeiiiieiiiineiiiinecieee, 28
@ Performance Interference per CIUSEEr ... ceonerenecrrnenns 28

@ Interference for Different Scheduling Strategies.............. 31

(3) Throughput OPtIMIZATION . e eeeeeeeeeeeeeeereeeeeeeeeeeeeseeseeseeseeeeseeseenes 35

V. CONCLUSION....ccutttierueeterneereerereeersernesseeserssersersersnesnssnnes 37
VI. REFERENCES. .. ctttttitttttiitieetettiererrierieeseesecsnsernererssssssnes 38
VII. ABSTRACT IN KOREAN ..ttuetueititueeriereeinerneererrnereerncreenes 46

-II-

LIST OF TABLES

TABLE 1. Comparison of Related Works =«-coreeeeereeeereeeneens 10

TABLE 2 Notations and Descriptions 12

TABLE 3. Applications with Their CPU and Memory Usage
PrOfileS ... 25

TABLE 4. Table of Application Clusters and Interference Ratios

TABLE 5. Relationship between interference ratio and execution

-1II-

LIST OF FIGURES

FIGURE 1. Architecture for Interference—Aware Scheduling

FIGURE 3. Interference Ratio Calculation Using Distances16

FIGURE 4. Montage GALFA Workflow Application <+« 22

FIGURE 5. The Shock Tube Problem in CEDeeerreeeeeeeenee. 23

FIGURE 6. Finding the Value of K Using the Elbow

FIGURE 7. Execution Times of Montage GALFA with Co-

Scheduled Applications ... 29

FIGURE 8. Execution Times of Montage GALFA (5 Planes) Using

-IvV-

Different SCheduling MethOdS .. 82

FIGURE 9. Interference among 3 applications using different

Scheduling Strategies .. 34

FIGURE 10. Relationship between Interference Ratio, Job Size

and Throughput .. 36

ABSTRACT

Virtual technologies such as container technologies and cloud
platforms provide scalable on—demand resource provisioning for the
execution of scientific applications and thus are being deployed more
and more in research and in production environments. However,
without an efficient performance isolation layer, it is not guaranteed
that applications sharing similar resources would not impact upon each
other. In this thesis, an interference—aware scheduling method that
mitigates the problem of performance interference based on the
results from clustering analysis of application characteristics, is
proposed. The proposed method detects the amount of interference
between the applications waiting to be scheduled in OS-level
virtualization environments and co-schedules them in a manner that
reduces contention for shared resources. The method is compared
with other container cluster scheduling techniques and results show
that the proposed method reduces performance interference and

hence improves the performance of applications.

Keywords: OS-level virtualization, Container, Application

characterization, Interference—aware, k—means, Interference

-VI-

I. INTRODUCTION

1. Research Background and Problem Definition

Virtualization provides efficient use of computing resources by
enabling dynamic resource provisioning during application executions.
Particularly, cloud computing provides scalable on-demand resource
provisioning for the execution of scientific applications. Recently,
lightweight containers such as Linux containers are also gaining
significant attention as efficient virtual technology solutions. Due to
their almost zero start—up times, minimal run—-time overhead, and the
relatively higher deployment density per physical host [1, 2, 3]
researchers are deploying containers to facilitate reproducibility of
scientific workflows [4], enhance security systems [5, 6] benchmark
virtual machines [7] and provide distributed storage [8]. As a result,
it is obvious that in coming years, container technologies will be
deployed in more areas of research and in production environments.
Consequently, allocating resources to the containers to ensure peak
performance in any research environment would be of utmost
importance.

However, without an efficient performance isolation layer, it is
not guaranteed that applications sharing similar resources would not
impact upon each other. Different Container Cluster Managers (CCM)
manage the placement of containerized applications across multiple
hosts each with a different approach. Most strategies tend to maximize

resource utility by placing most containers on a node to increase the
-1-

deployment density per physical host of containers [3]. In idealized
environments, the co—-located containers should not be affected by
other applications however, due to the resource sharing by containers
on a physical node, there is bound to be contention for shared
resources and hence performance interference by co-executed
applications. In fact, interference among containers is proportional to
the competition among co-located applications for shared resources.
According to [9,10,11], the execution time of a task running on a host
machine with other tasks, relative to the execution time on a host
machine alone, increases in direct proportion to an increase in the
number of processes co-running on the host machine. Knowing the
interference caused by different applications concurrently running on
a given node is therefore of utmost importance during effective
scheduling of containers in virtual environments using current

scheduling methods [12, 13, 14].

2. Research Significance and Approach

In this thesis, an interference—aware scheduling method that
mitigates the problem of performance interference based on the
results from clustering analysis of application characteristics, IS
proposed. The main design question for the proposed scheduler is how
to model an efficient scheduler that schedules containers to resources
based on the characteristics of the applications running on them in
order to reduce interference from co-located applications. First, each

application will have different resource needs, based on its

-2-

computation, memory usage and data access indicating that the level
of interference will vary per application depending on the
characteristics of the co-executed applications. Second, the
scheduling system must maximize performance at the lowest possible
interference.

This thesis proposes an interference—aware scheduler that
considers the type of the application and the resource usage (CPU,
Memory) of that application according to results from clustering
analysis. In order to improve the scheduling decisions of the scheduler,
first, an interference ratio is calculated according to a proposed
equation. With the results, selection of co—scheduled applications and
resources with is done according to the least expected interference
by the co—-executed application. Nadeem et al. [9], Zhang et al. [10]
and Chiang et al. [11] through their respective experiments ascertain
that, the execution time of a task running on a host machine with other
tasks, relative to the execution time on a host machine alone, increases
in direct proportion to an increase in the number of processes co—
running on the host machine. Following the above considerations, this
thesis considers interference as the change in the total execution time
of an application. In this thesis, the proposed scheduler aims to
minimize performance interference of containerized applications and
thus improve the throughput of applications. The thesis also considers
a scheduling environment which enables the user to indicate Service
Level Agreements (SLAs) by which executions should be made. In line

with this, the proposed method makes the following contributions:—

-3-

® (lusters a set of applications based on their CPU and memory
usage characteristics using K-means clustering method.

® C(alculates an interference ratio for a new application based on
the Euclidean distances between that applications and other
applications in a K-means cluster.

® Proposes an interference—aware scheduling method which co-
schedules tasks to minimize interference based on an interference
ratio.

® Schedules applications in a manner that maximizes the number

of applications that are executed from a queue at stable performance.

3. Thesis Structure

This thesis is structured into 5 chapters as follows: Chapter I
describes the research background with details of the research
problem, the significance of the research and the structure of the
thesis. Chapter II presents related works in four categories: (1)
Performance evaluation of OS level virtual environments, (2)
Application characterization methods, (3) Interference—-aware
scheduling techniques and (4) Scheduling in Container Cluster
Managers (CCM). Chapter III describes the proposed Interference-
aware Scheduling technique with descriptions of the profiling process,
the K-means clustering method[15], the proposed interference-
aware detection method and associated scheduling algorithm. In
Chapter 1V, the proposed method is evaluated through wvarious

experiments and the thesis is concluded in Chapter V.

-4 -

II. RELATED WORKS

Operating System—Level Virtualization such as FreeBSD Jails[16],
Linux VServer[17], Solaris Containers[18], Softricity[19], Virtuozzo
[20] and the recently popular Docker Containers[21], are widely
being deployed for research and production purposes. Containers
allow for multiple isolated user—-space abstractions for guest
processes without the need to host a Guest OS, thus are more
lightweight than traditional virtualization technologies such as Virtual
Machines (VM). In this section, some related works under four major
categories are described: (1) Performance evaluation of OS level
virtual environments, (2) Application characterization methods, (3)
Interference-aware scheduling techniques and (4) Scheduling in

Container Cluster Managers (CCM) as follows:

1. Performance Evaluation of OS-Level

Virtualization Technologies

Resource isolation and security isolation are examined for some
container—based systems using benchmark experiments by Stephen et
al[22]. Their experiments demonstrate that container—-based systems
are suitable for usage scenarios that require high levels of isolation
and efficiency such as server—type workloads. From their experiments,
container systems perform two times better for server—type
workloads than hypervisor-based systems. Miguel et al[23, 24]

however, evaluate the performance of container—based virtualization

-5-

for HPC environments. In their papers, benchmark experiments were
conducted to show that an isolation layer with least overhead is
essential for better resource sharing in user-oriented custom HPC
environments. From the results of both experiments, container—based
systems performed better than HPV systems represented by Xen, in
processing, memory, disks and network tests. Xen however had better
isolation due to non-shared Operating System (OS). Their experiments
indicate that the performance of HPC applications in container—based
virtualization systems could experience interference when
applications requiring similar resources are co-scheduled due to
relatively poor resource isolation. This also indicates that for HPC
scientific environments the absence of performance interference
cannot be guaranteed for all types of applications.

According to the experiments in Honeynet[25] the proposed
system is able to isolate compromised honeynets from other
honeypots on the server with container—based technology thereby
increasing security and system stability. Deployment and maintenance
of “honeypots” is hence faster and easier for low physical resource
utilization using LXC container—based virtualization. However, the
isolation of "honeynets" described in their research is focused on
isolating networks which have been compromised due to attacks by

hackers, and not performance isolation.

2. Interference—-Aware Scheduling

TRACONI[11] uses modeling and control techniques on application

-6-

statistics, VM statistics and interference profiles, to predict
interference in para—virtualized environments. With the results of their
prediction, incoming tasks are co-scheduled to resources with
applications of least interference using a Minimum Interference Batch
Scheduler (MIBS). MIBS is able to improve performance however,
TRACON's proposed method is limited to only para-virtualized
environments since it measures interference by the amount of I/O
operations performed by the virtual device driver and the native driver
of para-virtualized systems. The methods were also evaluated using
simulations and thus cannot be validated in real environments. On the
other hand, the proposed method considers different parameters of
applications in a relatively cost—-effective manner.

DejaVul[26] uses an “interference index” to estimate interference
between workloads. With the information from the index, DejaVu
profiler is able to increase the accuracy of estimated required
resources in order to maximize performance. Determining the
interference index requires profiling of low—level metrics of workloads
over many hours, however, workload clustering analysis is only used
to determine which sets of applications require interference—aware
scheduling and not the amount of interference introduced by co-
scheduling of applications. The proposed method however, considers

interference for all applications in the service system.

3. Scheduling by Container Cluster Managers, (CCM)
Container cluster managers orchestrate multiple containerized

-7-

applications across multiple hosts. Each of these CCMs have
scheduling policies and strategies which manage the provisioning of
resources to various containers for the execution of different types of
applications deployed on them.

Google's container—based cluster manager, Kubernetes[27], uses
an automatic bin—packing scheduling scheme to place containers into
pods based on their resource requirements and constraints. Scheduling
1s done using two user-configurable run-time scheduling policies:
FitPredicate[12] and the PriorityFunction[13]. The scheduler ranks
the machines that meet all of the rules indicated in the FitPredicates,
and then chooses the best one according to the PriorityFunction.
However, these policies do not consider interference from running
applications during the placement of containers.

Similarly, Apache Mesos[28], a distributed systems kernel that
uses a two-level scheduling scheme to manage task scheduling,
resource allocations and sharing in a heterogeneous cluster
environment, offers resources to Frameworks such as Apache
Marathon[14] using the Dominant Resource Fairness Algorithm. The
Frameworks schedule an application to an executor process or a
container launched on slave nodes. Tasks are however not scheduled
to resources with consideration of the effects of interference on the
performance of the co—scheduled applications.

Docker Swarml[29], the native clustering tool for Docker
containers employs a manager/agent deployment structure which

includes a host that runs a Swarm manager and other hosts which run

-8-

a Swarm agent each. The Swarm manager orchestrates and schedules
containers on the hosts whilst the Swarm agents enable the execution
of applications in Docker containers. Docker Swarm easily provisions
and manages large numbers of containers in node clusters during
large—scale HPC scientific experiments according to 3 scheduling
policies: bin—packing, spread and random[30].

The bin—-packing strategy chooses physical resources based on the
highest number of containers running on that resource whilst the
random scheduler does not consider the number of running containers.
The spread strategy on the other hand, schedules applications to
physical resources with the least number of containers running on
them and serves as the container placement strategy adopted by the
proposed method. The proposed method however, considers the
interference between applications based on results from clustering

analysis in order to mitigate interference.

4. Comparison of Related Works

From Table 1, it is observed that current Container Cluster
Managers schedule containers to physical resources without
considering performance interference. Scheduling methods which
consider interference are also deployed in hypervisor-based
virtualized platforms (VMs) and para-virtualized platforms and may
not be applicable to OS-level virtualized environments (Containers)
without major modifications. The proposed method introduces the

concept of interference—awareness into container environments based

-9-

on analysis from application characterization.

TABLE 1. COMPARISON OF RELATED WORKS

CHARATERISTICS OF SCHEDULING METHODS

RELATED JOB Application Application Resource Interference— Platform
WORKS TYPE characteristics clustering scheduler awareness
analysis scheduling
WORK 1 [27] Variable N X Mesos X Containers
/Marathon
WORK 2 [26] Variable A X Kubernetes X Pods/
containers
WORK 3 [29] Variable A X Docker Swarm X Containers
WORK 3 [14] Data @) X MIBS @) Virtual
Intensive Machines (VM)
WORK 4 [25] | Workload O (@) DejaVu O Virtual
Machines (VM)
PROPOSED Variable O O Interference— O Containers
WORK aware
Scheduler

-10-

III. INTERFERENCE-AWARE SCHEDULING
BASED ON APPLICATION CLUSTERING

In this thesis, the proposed interference—aware technique illustrates a
scheduling system of multiple applications waiting to be scheduled
unto container resources. It starts when a new application joins the
queue with profile information on some application characteristics.
First, the new application together with all the tasks in the queue are
re—clustered into specified number of clusters in a manner that
minimizes the Within the Cluster Sum of Squares (WCSS), using the k-
means algorithm. Next the distance between each application and the
centroid of the cluster in which the new application is found is detected
and the applications are scheduled to resources according to the
interference ratio.

Thus, the proposed scheduling technique begins with Application
Clustering (AC) of all waiting applications using K-Means algorithm
and performs Interference Detection (ID) between the clustered
applications, as part of our Interference-Aware Scheduling Algorithm
(IAS). 1t then invokes a Resource Selection Method (RSM) to place
applications in containers on physical resources. The proposed

interference aware technique is illustrated in Figure 1.

-11-

Waiting Applications

pp'f:n (@

!

Application
Clustering

Interference Aware
Scheduling

Resource selection
method

Node 2

Container Cluster

CLUSTERING

TABLE 2: NOTATIONS AND DESCRIPTIONS

Notation Description

Q a queune with a set of g; applications

i an ith application in a queune Q with resource usage
profile

Cluster(i)(zy,) An i*" Cluster containing r; data-points for h =
{0,1,--+, n }, and centroid c;

Th An h** data-point in Cluster(i)

x; An A" data-point in Cluster(i) selected for co-
execution

ci the centroid of Cluster (i)

Tk The interference ratio between x; and xy,

i the threshold value for interference

CaleDist(x, ¢)

Calculating the distance between data-point and cen-

troid

CalcR(x, ¢)

Calculating interference between two points

Sort(x, ¢) Sorting the data-points based on the interference ra-
tio

policy The policies indicated by the user (default: no-
schedule)

N a list of nodes in the node cluster

n; An i** pode from the list of nodes in the node cluster

condty, An h*® container on node(i)

-1 2-

FIGURE 1: INTERFERENCE-AWARE SCHEDULING BASED ON APPLICATION

Each of the components is described in the following sub-sections and

the key notations used are listed in Table 2.

1. Application Clustering Using K-Means

In recent computing research, unsupervised machine learning
techniques such as cluster analysis are used to provide solutions to
the NP-hard problem of application characterization since there is no

definite way of grouping data elements.

C Start

v

Number of clusters
(Elbow method)
i. — -

| Identify a centroid |

l

Calculate distance of cbjects
to the centroids

I

Grouping objects based on
minimum distance

Has any object
moved groups?
No

=

FIGURE 2: FLOWCHART OF THE K-MEANS ALGORITHM [15]

In this thesis, the K-means[15] clustering algorithm as shown in
Figure 2 is deployed as the method of characterizing applications
because it is fast, robust and relatively efficient. This method

effectively partitions data into Voronoi cells[31]. The outcome of the

-1 3-

partitioning contains multiple sets each containing a unique center or
centroid and the Euclidean distances of the samples in a set to the
set’s center must be smaller than to any other sets’ centers.

For a given set of data points, X ={x1, X2, X3,...,Xn} with initial
centroids given as C = {c1, co, ..., cmJ, the algorithm calculates the
distance between each data point and cluster centroids. It then clusters
the data points into k clusters and computes the new cluster centroid.
If no data point was reassigned then the algorithm ends, otherwise it
classifies the data points and recalculates the new cluster centroid in
an iterative process.

However, the algorithm is naive in that, it trades off quality for
compactness of representation. That is, it does not consider the
accuracy of the value of k but only classifies the data points into k
number of clusters. Given various numbers of sets, k, the clustering
results may vary largely hence the need to determine the right number
of clusters. Among the various methods of determining k such as gap
statistics[32]), Information criterion approach[33] and cross-
validation[341, the elbow method[35] is used to determine the number
of clusters, k. This method looks at the percentage of variance
explained as a function of the number of clusters[35].

To calculate k, using the elbow method, first calculate the sum of
the squared distance between each member and its centroid, for
different values of k. The calculation, known as finding the Sum of

Squared Error (SSE) is done with equation 1.

-14-

SSE = Zf; Zmeq diSt(m’QP (1)

With the results for various values of k, the k at which SSE changes
abruptly is selected as the value of k. At this point, the grouping of the
applications is done into k number of clusters.

The K-means clustering algorithm aims to group the available
applications into k sets based on the application's CPU usage and
memory usage characteristics. The clustering is such that, the Within
Cluster Sum of Squares (WCSS) between the data—points is minimized

for each cluster according to equation 2.

K .
WSS =] - c]-||2 (2)
J=1

2. Interference Detection

The proposed interference detection service is based on the
concept of using distances between clusters to estimate workloads and
their resource utilization[36] coupled with the concept of estimating
interference between cells in cellular clusters using the distances
between cells in cellular networks[37]. In this thesis, interference
detection is done through the computation of an interference ratio
between a target application, xx(a, b) and all the applications in the

application cluster such as x;(a, b) in Figure 3.

-15-

Cale,) m
[

Cluster 2

A
*n(a, b}
\i_-{//
Cluster a
& Cenwroid, Cde, d)
B application, (s bl
/ x(a, b)
& \
| = e)
N m //
= —

FIGURE 3: INTERFERENCE RATIO CALCULATION USING DISTANCES

First, a two-dimensional Euclidean distance between a target
application, xx(a, b) and the centroid of their cluster, Co(c, d) and that
of other applications, xj(a, b) and the centroid of the target application,
Co(c, d), is computed and noted according to equation 3. Next an
interference ratio is calculated according to equation 4.

dist(xy, Cg) = \/((a -0+ (b-d)? (3)

. _ dist(xk, C2)
Interference ratio, r = dist(xj, C2) W

3. Interference—Aware Scheduling

The proposed interference—aware scheduling technique is based
on batch scheduling[11]. It however includes the clustering of
applications based on their resource usage in containers to show a
scheduling procedure for multiple applications waiting to be scheduled
iIn a manner that mitigates interference. The Interference—-Aware
Scheduling (IAS) algorithm, Algorithm 1, considers the characteristics

-1 6-

of an application and the interference between that application and co—
scheduled applications before assigning the application to resources.

Scheduling of applications begins when a new application enters
the queue, Q, of waiting applications = {q; for i=1, 2, 3--- n}. All the
applications in the queue are characterized into k clusters as
mentioned in previous sections. The value of k is determined using the
elbow method. It starts when a new application joins the queue with

profile information on CPU utilization and memory usage.

Algorithm 1 Interference-aware Scheduling Algorithm

Input: A Queuve Q ={g; | i =1, 2,--n}, SLA {deadline, priority, etc}
1: New application arrives;

2: while (Q =!0) do

3k« FindK(Elbow);

Cluster(i)(z,, ¢;) + Cluster(K-means);
T + SelectX;(zp, ¢;);
dist(zj, ¢;) + CalcDist(z;, ¢;);

6: for each z;, in Cluster(i)(zy, ¢;) do

T: dist(zh, ¢j) + Caledist(zp, ¢;);

8 rin + CalcR(dist(z;, ¢;), dist(zp, ¢;));
9: end for

10: end while

11: zpSchedule « Sort(zp, rjp);

12: zj, SelectMin(r;p,);
13: if rjp < o then
14: Perform resource selection;
15: else

b

el |

16: if policy == no — schedule then
17: Fail(z;);

18 end if

19: end if

Output: Co-execute z;, 7,

First, the new application together with all the tasks in the queue

1s re—clustered into specified number of clusters in a manner that
-1 7-

minimizes the Within the Cluster Sum of Squares(Lines 2), using the
k-means algorithm. A target application is randomly selected from the
gueue and the interference between the target application and other
applications in the service system is detected using the proposed
interference ratio(Lines 5-9). After, applications are sorted in order
of increasing levels of interference(Lines 11). The scheduler then
selects a co—application with the least interference ratio(Lines 12) and
compares the interference ratio to a preset threshold value. If the ratio
1s less than the threshold value, the scheduler then invokes the
resource selection method to select a suitable node from the
cluster(Lines 13-14). The method returns nodes for the execution of
each pair of applications into containers according to their resource
demands. The applications are co—scheduled to containers on the node.
Otherwise, the service system considers the policies indicated by the
user in order to invoke the resource selection method. In this service
system, the policy used is the no-schedule policy. The no-schedule
policy requires that the selected application is not scheduled when the

minimum interference ratio is higher than the threshold.

4. Resource Selection Method

Interference—aware scheduling methods for scientific applications
alm at minimizing the performance over—heads introduced by co-
scheduling applications on a particular physical resource. It 1is
therefore important that in a container cluster, the resource that

minimizes the likelihood of interference is selected. This thesis adopts

-1 8-

a Scheduling Strategy that prefers nodes with the least number of
containers with the assumption that the number of containers is
directly proportional to the amount of interference[30]. The method

is illustrated in algorithm 2.

Algorithm 2 Resource Selection Method
Input: NodeList N = {(n;) | 1 = 0,1,---, m }, Co-scheduled applications

[zx(ming, ming)], [z;(minc, ming)]
1: Set resource available == true;
2: Node, n; « FindNode(min,,,;);
3: if resource available == true then
i: conty ¢ Creale [x;.(mim-. min/()}:
5 else
6: Stopped(conty) ¢ FindStopped(n;);

7. if Stopped(cont,) > 3 then

8: for each xj, in co-scheduled applications do
0: conty, ¢ R(‘Sli\n('()lll{xp,(lllill(', mum)]:
10: end for

11: end if

122 Results ¢ Execute(xy):
13: end if

Output: Execution Results

When the resource selection method is invoked, the scheduler
looks for available nodes with the least number of containers based on
the assumption that, the interference for resources increases with the
number of containers on each physical resource (Lines 1). The method
proceeds to find stopped containers on the node for restarting,
otherwise, the method creates containers based on the required

memory and CPU resources of the applications. When there are
-19-

sufficient number of stopped containers, the method restarts two
stopped containers according to the required resources (Lines 2-7).
Otherwise, the method creates new containers into which the
resources would be scheduled (Lines 9-10). The method returns the
results of executing the applications in the containers to the scheduling

algorithm.

-20-

IV.EXPERIMENTS

Other experiments that validated the proposed interference—aware
technique are presented in this section. The experiment environment,
target applications, and the experimental setting along with

experimental results is described in the following sections.

1. Experiment Environment

Docker containers[21], a lightweight virtualization solution for fast
creation of containers and execution of applications independent of
hypervisor layer, is deployed as the execution infrastructure for all
the experiments. To manage the scheduling of Docker containers,
Docker Swarm[29] is deployed. This container cluster consists of
two nodes on the same local network with one node serving as both
the Docker Swarm Manager and a Swarm Agent whilst the other
node serves as a Swarm Agent only. The nodes in the proposed
service system have a total RAM of 8GB and 12 CPU cores for the
Swarm Manager, and total RAM of 8GB and 4 CPU cores for the
Swarm Agent node respectively. Each of these server machines are
operated by Ubuntu Trusty Tahr Operating System. To facilitate
accuracy of the results, Ubuntu 14.04-based container images which
have been pre—installed with the scientific applications are used for

these experiments.

(D Scientific Applications

-21-

Scientific applications are classified into bag of tasks (BOT) and
workflows[38] represented as Direct Acyclic Graphs (DAG). In the
experiments, a selection of 4 scientific applications, each with
different CPU and Memory usage characteristics is made and their
resource usage data for different parameters is profiled as shown
in Table 3. The experiments include 3 BOT applications, CFD[39],
Melt[40], Peptide[41] and 1 workflow application, Montage
GALFA[42] as explained below.
A) Montage GALFA

Montage[42] is a high performance Astronomical Image Mosaic
Engine for creating composite FITS (Flexible Image Transport
System) mosaics using multiple astronomical images. Due to the
large input, intermediary and output data sizes, this application is

considered a data—intensive application.

i
QO
| T

/"Q‘f_ o

FIGURE 4: MONTAGE GALFA WORKFLOW APPLICATION

In this thesis, a set of five data cubes is obtained from the Galactic

-2 2-

Arecibo L-band Feed Array HI survey[43] and the data cubes are
aggregated into a mosaic following three major steps as shown in
Figure 4. First, the input data cubes are shrunk by averaging
different number of planes (5, 10, 15, 20, 25 in this thesis) in the
wavelength axis. Then, the shrunk images are re—projected to map
the input pixel space to sky coordinates and to the output pixel
space. Finally, the re-projected images are aggregated to produce
the final mosaic.
B) Computational Fluid Dynamics (CFD)

The second target application is a CPU-intensive application
known as Computational Fluid Dynamics simulation application

which is used for 2-dimensional Euler unsteady flow analysis.

] 7 M
ure. {| Low Pressure |
T \\ \ /
\ /

E wave p a Normal shock propagating
into the driver gas into driven gas

ol o L, | » o

Paosition of diaphragm Contact surface between
the driver and driven gases

FIGURE 5: THE SHOCK TUBE PROBLEM IN CFD

The application example used in this experiment is the 2-D shock

tube problem using aerodynamics grids in Figure 5. In this experiment,

grid mesh of three different sizes, 2KB, 32KB, 512KB, are used as

input data. Each size of grid mesh data translates to a different memory

and CPU usage profile.

C) Large-scale Atomic/Molecular Massively Parallel Simulator

-2 3-

(LAMMPS)
The third is a molecular dynamics code to model an ensemble of
particles in a liquid, solid, or gaseous state. It can model atomic,
polymeric, biological, metallic, granular, and coarse—grained
systems using a variety of force fields and boundary conditions. The
simulator is used for simulating different types of particle behaviors.
In this experiment, Melt and Peptide problems are solved using their
corresponding application ensembles.

a) Melt: simulates the rapid melting of a 3d LJ system.

b) Peptide: Peptide simulates the granular particle pour and flow of

both 2d and 3d systems.

The above two applications are considered as separate
applications in these experiments due to their different input data
sets and execution modules. Also, due to their relatively stable
memory usage across different runs, both Melt and Peptide

applications are considered as memory intensive jobs.

©@ Application Profile Data

For the experiments, memory resource usage data and CPU
utilization data is obtained for 4 different scientific applications with
varying parameters for each application as shown in Table 3. The
memory usage, CPU utilization information and the number of
instructions executed by each application is obtained using Valgrind
profiling tool[44] and htop system profiler[45]. In addition to

memory usage data, Valgrind profiling tool is able to provide

-2 4-

information on the number of instructions executed, the amount of
cache misses, the call function as well as thread and memory errors.

TABLE 3: APPLICATIONS’ CPU AND MEMORY USAGE PROFILES

GALFA (5 planes) 14,708,736 132.9
14,716,928 126.2
GALFA (15 planes) 14,745,600 121.01
GALFA (20 planes) 14,766,080 119.5

GALFA (25 planes) 14,782,464 117.9
13,967,360 201.4
CFD (32KB mesh) 14,098,432 205.2
CFD (512KB mesh) 403,230,720 206.7

Melt (500 runs) 23,183,360 100
Melt (1000 runs) 23,314,432 100
Melt (1500 runs) 23,445,504 100

Melt (2000 runs) 23,576,576 100
Melt (2500 runs) 23,707,648 100
Melt (3000 runs) 23,838,720 100
Melt (3500 runs) 23,969,792 100

Peptide (500 runs) 32,460,800 99.9

39,362,100 0029

500
Peptide (1500 runs) 34,213,888 100
Peptide (2000 runs) 35,606,528 100
Peptide (2500 runs) 36,810,752 100
Peptide (3000 runs) 37,613,568 100
500 runs

38,817,792 100

Peptide (3500 runs)

Htop also, provides corresponding information on CPU and
memory usage. In this thesis, only two characteristics, CPU and
Memory usage, would be considered. For each characteristic, the
data represented below is based on the maximum resource usage of
each application during their execution life-cycle. From Table 3, it
is observed that, the resource usage of applications is similar for

changing parameters of that application.

-2 5-

2. Application Characterization

At the start of the experiments, Application Clustering is used to
characterize the applications based on the application characteristic
profiles (CPU and memory usage) of each application as shown in
Chapter III. To find the number of clusters, k, which is most suitable
for this experiment environment, the Simple K-Means method in Weka
[46] is used to find the Sum of Squared Errors for different values of
K. The results are presented in Figure 6. From the results of running
the algorithm on the data set for various values of k as shown in Figure
6, the number of clusters which is most suitable for the experiment is

3. In the rest of the experiment, the number of clusters, k, is set to 3.

Elbow Method: Finding K

I
I

20.7780048

| S
(= I

i T 1065580152
s
. 18.65580002

- 17.65580002

= =
co W

16.65580002

=
-~

Sum of Squared Errors (SSE)

= e
W

1 2 3 4 5 6 7

Value of K

FIGURE 6: FINDING THE VALUE OF K USING THE ELBOW METHOD

Table 4 presents the details of the clustering analysis based on the

-2 6-

CPU usage and memory usage of 4 scientific applications when

executed with different parameters,

technique.

using K-means clustering

TABLE 4: APPLICATION CLUSTERS AND INTERFERENCE RATIOS

Cluster O CFD (512KB mesh) 0.00043
Melt (500 runs) 0.01940

Melt (1000 runs) 0.01910

Melt (1500 runs) 0.01886

Melt (2000 runs) 0.01858

Melt (2500 runs) 0.01831

Melt (3000 runs) 0.0186

Melt (3500 runs) 0.01781

Cluster 1 Peptide (500 runs) 0.0093
Peptide (1000 runs) 0.0089

Peptide (1500 runs) 0.0085

Peptide (2000 runs) 0.00797

Peptide (2500 runs) 0.00754
Peptide (3000 runs) 0.00727

Peptide (3500 runs) 0.00691

GALFA (5 planes) 1.0000

GALFA (10 planes) 0.9535

GALFA (15 planes) 0.8199

Cluster 2 GALFA (20 planes) 0.7450
GALFA (25 planes) 0.6949

CFD (2KB mesh) 0.2928

CFD (32KB mesh) 0.3796

From the analysis, the sets of applications are grouped into 3

clusters based on their distances from the centroids of the clusters.

The centroids of the Clusters are first initialized at (32460800, 99.9),
(23838720, 100.0) and (23183360, 100.0) and finalized at (403230720,

-2 7-

206.7), (295672680, 99.9) and (14540800, 145.0) for Clusters 0, 1, 2
respectively through an iterative process of grouping applications in a
way that minimizes the value of the Within Cluster Sum of Squares
(WCSS). The distance between the applications and the finalized
centroids 1s then calculated for the grouping of the applications into
three clusters, Cluster O, Cluster 1 and Cluster 2 respectively.

Cluster 1 has 15 applications, Cluster 2 has 7 applications whilst
Cluster O has only 1 application, CFD (512KB mesh) according to the
variations in the resource usages of the applications. Montage GALFA
(5) from Cluster 2 is randomly chosen as the target application and the
interference ratio between Montage GALFA (5) application and all
other applications in the queue waiting to be scheduled to resources
1s calculated and presented in Table 4.

From the results, applications in Cluster 2 have the highest amount
of interference with Montage GALFA (5 planes), with interference
ratio ranging from 0.29 to 1.0. This is because they have more similar
resource usage profiles than other applications, reflecting the

contention for resources.

3. Experiments and Evaluations
@D Performance Interference per Cluster

The proposed method is validated with the following illustrative
experiment. The experiment also illustrates the performance
interference in containers. For this experiment, it is assumed that only

two containers, each running one application, can run on the physical

-2 8-

resource available. In this experiment scenario, Montage GALFA(5
planes) application from Cluster 2 is paired and co-executed with
CFD(512KB mesh) as Co, Melt(3500 runs) as C; and another Montage
GALFA(5 planes) application as Cg from Clusters 0, 1 and 2
respectively under the same conditions according to the scenario in

Figure 7.

Execution times of C1, co-scheduled with other
applications from different clusters

2200

2 . N
a0 N & N\

2050

2000

1950

Execution time, secs

1900

1850

1800 Application pairs
(C2.Co) (C2Cy C2Cy)

[Execution time of application Interference or change in
when running alone execution time

FIGURE 7: EXECUTION TIMES OF MONTAGE GALFA WITH CO—

SCHEDULED APPLICATIONS

Figure 7 shows the changes in execution time of a new application,
Cq in Cluster 2, when co-executed with applications from different
clusters, Co. C; and Cg respectively. From the above method, the
interference ratio of the applications relative to Csis 0.00043, 0.01781

and 1, for Co, C1, and C2respectively. The execution time of Czin each

-29-

run is compared to the execution time of C2 when executed alone in a
container on the physical node, 2110 seconds. In this experiment, the
differences in the execution time are considered as the amount of
performance interference due to co—-scheduling with another
application.

From the results, Co experiences the most interference of about 63
seconds when executed with a similar application from the same
cluster whilst Cz experiences the least interference of 4 seconds when
co—executed with Co This validates the hypothesis that there is
performance interference among containers on the same physical
resource as well as proves that the proposed interference ratio
accurately predicts the interference among applications from different
clusters. The results also show that, it is imperative to clearly
understand the performance relationship between co-located

applications during the co—scheduling of applications.

TABLE 5 RELATIONSHIP BETWEEN INTERFERENCE RATIO AND

EXECUTION TIMES

Interference ratio, r Normalized Execution time
0.0004 0.0019

0.2567 0.0190

0.5158 0.0013

0.7608 0.0000

1.0000 0.0299

Correlation 0.427

A further experiment to evaluate the relationship between the

-30-

interference ratio and the execution times of applications is conducted.
Selected applications with interference ratios of 0.00432, 0.2567,
0.51579, 0.7119481 and 1 respectively are co—executed.

The execution times of the applications are normalized according
to equation 5 where ET. is the execution time of an application when
co-scheduled, and ET, is the execution time of the same application
when executed alone. From the results, the correlation between the
interference ratio and the normalized execution times is calculated as
0.427. This shows a relatively positive relationship between the
interference ratio and the ensuing change in execution times. Thus
deploying the proposed method will facilitate proper co—scheduling of
applications in order to mitigate interference and improve performance
of applications.

@ Interference for Different Scheduling Strategies

In order to validate the proposed interference—aware scheduling
service, b applications of Montage GALFA(5 planes) and 5 Melt(3500
runs) applications are scheduled and executed using three scheduling
strategies: bin—packing, random and the proposed interference aware
scheduler which is based on spread strategy[30]. The proposed
scheduling strategy is compared to the two other scheduling strategies.

The bin—packing strategy chooses resources based on the highest
number of containers running on that resource whilst the random
scheduler does not consider the number of running containers. The
proposed method however, considers the interference between

applications and schedules applications to resources with the least

-31-

number of containers running on them based on the assumption that
fewer containers correspond to less contention. Due to the differences
in execution times of both applications, Melt(3500 runs) is run
iteratively in 20 runs to cover the span of time for which Montage
GALFA (5 planes) is executed.

Figure 8 describes the scheduling result of the interference—aware
scheduling algorithm, as shown in Chapter IlI. For each scheduling
method, the average execution times of Montage GALFA(5S planes) is
calculated and the results are compared to the execution time of
running the application alone, 2110 seconds.

2200

i ¢ '
- :

|

|

Execution time, secs

1750

1700 e

Bin-packing Random Interference aware Scheduling strategy
7 Execution time of application = Execution time of application when
= when running alone scheduled by a scheduling strateqy

FIGURE 8: EXECUTION TIMES OF MONTAGE GALFA(5 PLANES) USING

DIFFERENT SCHEDULING METHODS

From the results, the execution time of the proposed interference-
aware method is the least at 2147 seconds whilst that of bin—packing

strategy is the highest at 2164 seconds. This is because bin—packing

-32-

strategy packs containers on the node with the highest number of
containers without considering the contention for shared resources.
Increased number of containers indicate a higher contention for shared
resources. This also shows that the proposed method is able to
mitigate interference.

A similar experiment is run with 1 Montage GALFA(5 planes)
workflow, 1 Melt(3500) application as well as 1 Peptide(3000)
application and co—executed them in three runs using three scheduling
strategies: bin—-packing, random and the proposed interference
aware scheduler. Similarly, since the bin-packing strategy chooses
resources based on the highest number of containers running on that
resource, it schedules all the applications on the same node. The
random scheduler and the proposed method however schedule both
Montage GALFA(S planes) and Peptide(3000) on the same node. The
proposed method considers the interference ratio between the
applications in making the scheduling decision and chooses Peptide
(3000) which has a ratio of 0.00728 relative to 0.0181 of Melt(3500)
applications. Due to the differences in execution times of both
applications, Melt(3500) and Peptide(3000) applications are run
iteratively in 20 runs to cover the span of time for which Montage

GALFA(5 planes) is executed.

-3 3-

2245 0.00803

a8 0.00808

2205
0.00807

2185
0.00808

2185
0.00805

0.00604

EXECUTION TIME, $ECS
1
&
THROUGHPUT, TASKS PER SEC

0.00603

0.00602

0.00601

0.008

Bin-packing Interfer ence aware

Random
SCHEDULING STRATESY

I Execution time of application = Execution time of application when
when running alone scheduled by a scheduling strategy

FIGURE 9: INTERFERENCE AMONG 3 APPLICATIONS USING DIFFERENT

SCHEDULING STRATEGIES.

Figure 9 describes the scheduling result of the proposed
interference—aware scheduling algorithm. For each scheduling method,
the execution time of the workflow, Montage GALFA(5 planes), is
obtained and the results are compared. From the results, the execution
time of the proposed interference—aware method and the random
method is the least at 2117 seconds whilst that of bin—packing strategy
is the highest at 2214 seconds. This is because the bin-packing
strategy schedules all the applications on the same node
without considering the contention for shared resources.

Also from figure 9, the proposed method is able to improve the
throughput of Montage GALFA application by 4.58% relative to the

throughput when executed alone as well as mitigate interference.

-3 4-

@ Throughput Optimization

In the above scenario, the proposed method is able to improve the
execution time for which the Montage GALFA(5 planes) application is
executed. This translates to a throughput of 0.0060504 tasks per
second relative to that of 0.006007 tasks per second when the
application is run with bin—packing method for instance. However,
Montage GALFA(5 planes) consists of 13 major tasks executed by
different modules in the workflow during the execution process. This
number of tasks is relatively few and thus does not adequately reflect
the improvement in throughput obtainable by the proposed method.
Thus, a simulation experiment using CloudSim[47], which considers
applications with different tasks is conducted in this section to show
the throughput improvement by the proposed service system. In this
thesis, throughput T, is defined as the number of tasks completed

during an execution, per the time of execution as seen in equation 5.

Number of tasks
Throughput, T = (5)

Execution time

-35-

1.4

1.2

0.8

0.6

0.

1]

o I I | . | |
50000

100000 150000 200000

-

Throughput, tasks per sec

-y

N

Job size

0.2 0.4 m 0.6 m08
FIGURE 10: RELATIONSHIP BETWEEN INTERFERENCE RATIO, JOB SIZE

AND THROUGHPUT

In the simulation scenario, different jobs with different number of
tasks are executed and their throughputs are compared. This thesis
sets the interference to 0.2, 0.4, 0.6 and 0.8 for these experiments.
From the results, more tasks are executed when the interference ratio
i1s at 0.2 as seen by the high throughput value. This adds to the fact
that including interference—awareness in scheduling decisions helps
improve the throughput and the performance of applications. The
throughput however reduces as the job size increases due to the
increased number of failed jobs as a result of the no—schedule policy

of the proposed scheduling system.

-36-

V. CONCLUSION

In this thesis, an interference—aware scheduling service system
that mitigates the problem of performance interference based on the
results from clustering analysis of application characteristics 1is
proposed. The proposed scheduler schedules containers to resources
based on results from clustering analysis of the applications running
on them in order to reduce interference from co—located applications.
The proposed method is evaluated with corresponding experiments
and it i1s compared with two other scheduling methods used in
container clusters. From the results, the proposed method improves
the performance of the target application as well as improves the
throughput of the target applications. Also, the optimal interference
ratio for maximized throughput as well as the optimal threshold value
at which the execution time is minimal is evaluated with corresponding
experiments. From the experiments, interference—-awareness
improves the execution times of applications and thus improves
performance.

In the future, the application analysis would be expanded to include
other metrics of the application such as I/O, Network bandwidth usage,
data locality and number of instructions executed. With the results, the
proposed method would more accurately predict the interference

between applications.

-37-

VI.REFERENCES

[1] Adufu T., Choi J., and Kim Y., “Is container—based technology a
winner for high performance scientific applications?” Network
Operations and Management Symposium (APNOMS), 2015 17th Asia-

Pacific

[2] Felter W., Ferreira A., Rajamony R., and Rubio J., “An Updated
Performance Comparison of Virtual Machines and Linux Containers,”

IBM Research Report, RC25482 (AUS1407-001), 2014.

[3] Li W., Kanso A., and Gherbi A., “Leveraging Linux Containers to
Achieve High Availability for Cloud Services,” Proceedings of the

IEEE International Conference on Cloud Engineering, 2015, pp. 76-83.

[4] Boettiger C., “An Introduction to Docker for Reproducible
Research,” ACM SIGOPS Operating Systems Review - Special Issue
on Repeatability and Sharing of Experimental Artifacts, Vol. 49, Issue
1, 2015, pp.71-79

[5] Memari N., Hashim S. J. B., and Samsudin K. B., “Towards virtual
honeynet based on LXC virtualization” Region 10 Symposium, 2014

IEEE, pp. 496-501

[6] Bui T., “Analysis of Docker Security,” arXiv:1501.02967 [cs.CR],

-3 8-

2015.

[7] Varghese B., Akgun O., Miguel 1., Thai L., and Barker A., “Cloud
Benchmarking for Performance,” Proceedings of the 6th IEEE

International Conference on Cloud Computing Technology and Science,

2014, pp.535-540

[8] Yoon H., Ravichandran M., and Schwan K., “Distributed Cloud

Storage Services with FleCS Containers,” Open Cirrus Summit, 2011

[9] Nadeem F. and Fahringer T., “Predicting the execution time of
grid workflow applications through local learning”, In Proceedings of
the Conference on High Performance Computing Networking, Storage

and Analysis, SC ’09, pages 33:1-33:12. ACM, 2009.

[10] Zhang Y., Sun W., and Inoguchi Y., “Predicting running time of
grid tasks based on cpu load predictions”, In Proceedings of the 7th
[EEE/ACM International Conference on Grid Computing, GRID 06,
pages 286—292. IEEE Computer Society, 2006,

[11] Ron C., Chiang H., and Huang H., “TRACON: Interference-Aware
Scheduling for Data-Intensive Applications in Virtualized
Environments”, IEEE Transactions On Parallel And Distributed

Systems, 2011 International Conference.

-390-

[12] FitPredicates: Scheduling policy in Kubernetes, available online:
https://github.com/kubernetes/kubernetes/blob/master/plugin/pkg/sc
heduler/algorithm/predicates/predicates.go (accessed on April 27,

2016).

[13] PriorityFunction: A scheduling policy in Kubernetes, available
online:
https://github.com/kubernetes/kubernetes/blob/master/plugin/pkg/sc

heduler/algorithm/priorities/priorities.go (accessed on April 27, 2016).

[14] Marathon: A framework for Apache Mesos, available online:
https://mesosphere.github.io/marathon/docs/ (accessed on April 27,
2016).

[15] MacQueen J. B., “Some methods for classification and analysis
of multivariate observations,” in Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, L. M. L. Cam
and J. Neyman, Eds., vol. 1. University of California Press, 1967, pp.
281-297.

[16] Kamp P. and Watson R. N. M., “Jails: Confining the omnipotent

root”, In Proceedings of the 2nd International SANE Conference, 2000.

[17] Potzl H., Linux-vserver technology, available online:

http://linux-vserver.org/Linux-VServer-Paper, 2004 (accessed on

-4 0-

April 27, 2016).

[18] Sun Microsystems. Solaris containers: Server virtualization and
manageability, available online:

http://www.sun.com/software/whitepapers/solaris10/grid

containers.pdf, (accessed on April 27, 2016).

[19] Alpern B., Auerbach J., Bala V., Frauenhofer T., Mummert T., and
Pigott M., “Pds: A virtual execution environment for software
deployment”, In Proceedings of the 1st International Conference on

Virtual Execution Environments, 2005.

[20] SWsoft. Virtuozzo server virtualization, available online:
http://www.swsoft.com/en/products/virtuozzo (accessed on April 27,

2016).

[21] Docker, available online: http://www.docker.com (access on April

27, 2016).

[22] Soltesz S., Potzl H., Fiuczynski M. E., Bavier A., and Peterson L.,
“Container-based Operating System Virtualization: A Scalable, High-
performance Alternative to Hypervisors”, EuroSys '07 Proceedings of
the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, pp. 275-287

4 1-

[23] Xavier M. G., Neves M. V., and DeRose C. A. F., “A Performance
Comparison of Container—based Virtualization for MapReduce Clusters”
Parallel, Distributed and Network—-Based Processing (PDP), 2014 22nd

Euromicro International Conference on, 2014, pp. 299-306

[24] Xavier M.G., Neves M.V., Rossi F.D., Ferreto T.C., Lange T., and
DeRose C.A.F., “Performance evaluation of container—-based
virtualization for high performance computing environments.” In
Parallel, Distributed and Network-Based Processing (PDP), 2013 21st

Euromicro International Conference on, pages 233-240, Feb 2013.

[25] Memari N., Hashim S. J. B., and Samsudin K. B., "Container Based
Virtual Honeynet for Increased Network Security" Information
Technology: Towards New Smart World (NSITNSW), 2015 5th
National Symposium on Date 17-19 Feb. 2015

[26] Vasi¢ N., Novakovi¢ D., Miu¢in S., Kosti¢ D., and Bianchini B.,
“DejaVu: Accelerating Resource Allocation in Virtualized

Environments”, In ASPLOS, 2012.

[27] Kubernetes: An Open-Source Cluster Manager from Google,

available online: http://kubernetes.io/ (accessed on April 27, 2016).

[28] Dharmesh K. Apache Mesos Essentials. Packt Publishing Ltd,
2015.

-4 2-

[29] Docker Swarm, clustering for Docker, available online:

https://docs.Docker.com/swarm/ (accessed on April 27, 2016).

[30] Docker Swarm rescheduling policies, available online:
https://github.com/Docker/swarm/blob/master/experimental/reschedu

ling.md (access on April 27, 2016).

[31] Aurenhammer F., and Klein R., "Voronoi Diagrams." Ch. 5 in
Handbook of Computational Geometry (Ed. J.-R. Sack and J. Urrutia).
Amsterdam, Netherlands: North—Holland, pp. 201-290, 2000.

[32] Tibshirani R., Walther G., and Hastie T., "Estimating the number
of clusters in a data set via the gap statistic", J. R. Statist. Soc. B (2001)
63, Part 2, pp. 411-423

[33] Kodinariya T.M., and Makwana P.R., “Review on determining
number of Cluster in K-Means Clustering”, International Journal of
Advance Research in Computer Science and Management Studies,

Volume 1, Issue 6, November 2013.
[34] Cross validation method: available online:

https://www.cs.cmu.edu/~schneide/tut5/node42.html (accessed on

April 27, 2016).

-4 3-

[35] Elbow Method, available online:
https://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in

_a_data_set

[36] Di S., Kondo D., and Cappello, “Characterizing Cloud Applications
on a Google Data Center”, 2013 42nd International Conference on

Parallel Processing

[37] Alex N., “Interference Estimation in Cellular Systems” IJCA
Special Issue on “Novel Aspects of Digital Imaging Applications” DIA,
2011

[38] Duan R., Prodan R., and Xiaorong L., “Multi-Objective Game
Theoretic Scheduling of Bag-ofTasks Workflows on Hybrid Clouds”,

[EEE transaction on cloud computing, vol .2 , no. 1, January—March

2014.

[39] Computational Fluid Dynamics, available online: http://www.cfd-

online.com/Wiki/Main_Page (accessed on April 27, 2016).

[40] Melt, available online:

http://lammps.sandia.gov/doc/Section_example.html

[41] Peptide, available online:
http://scent.gist.ac.kr/downloads/tutorial/2012/1/Lammps_Tutorial_2

-4 4-

0120706.pdf

[42] Montage, available online: http://montage.ipac.caltech.edu/

[43] Peek et al.,, “The GALFA-HI Survey: Data Release 1”7, The
Astrophysical Journal Supplement, Volume 194, Issue 2, article id. 20,
13 pp. 2011.

[44] Valgrind, available online: http://valgrind.org/ (accessed on April
27, 2016).

[45] htop, available online: http://hisham.hm/htop/ (accessed on April
27, 2016).

[46] Jain 1.S., Aalam M. A., and Doja M. N., “K-means clustering using
WEKA interface”, Proceedings of the 4th National Conference;
INDIACom-2010 Computing For Nation Development, February 25 —
26, 2010 Bharati Vidyapeeth’s Institute of Computer Applications and

Management, New Delhi

[47] Rodrigo N., Calheiros, Ranjan R., Beloglazov A., DeRose C. A. F.,
and Buyya R., "Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms," Software: Practice and Experience, 41(1), pp. 23-50,
2011.

-4 5-

ABSTRACT IN KOREAN

Tl

o
N

{]

o

FFF HOme FHFo] b

Dept. of Computer Science

The Graduate School

Sookmyung Women’s University

ﬂ.o
o

=
o

el

ol 7]

ofell A

i
o]

s
R

iz
JJo

jpuze)

o
o
o
of

A ST e S

!

N

[N

B

el
o
Njy

<

o

el

il

= A=)

&

KN
S

’

ZH ol

7V 3},

FAlo): 0s-eue]

N

2] K-means,

-4 6-

